Math 221: LINEAR ALGEBRA

Chapter 4. Vector Geometry §4-2. Projections and Planes

Le Chen¹
Emory University, 2020 Fall

(last updated on 10/26/2020)

The Dot Product and Angles

Projections

Planes

Cross Product

Shortest Distances

NOTE: Much of this chapter is what you would learn in Multivariable Calculus. You might find it interesting/useful to read. But I will only cover the material important to this course.

The Dot Product and Angles

Definition

Let
$$\vec{u} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ be vectors in \mathbb{R}^3 . The **dot product** of \vec{u} and \vec{v} is
$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2,$$

i.e., $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$ is a scalar.

Remark

Another way to think about the dot product is as the 1×1 matrix

$$\vec{u}^T \vec{v} = \left[\begin{array}{ccc} x_1 & y_1 & z_1 \end{array} \right] \left[\begin{array}{c} x_2 \\ y_2 \\ z_2 \end{array} \right] = \left[\begin{array}{ccc} x_1 x_2 + y_1 y_2 + z_1 z_2 \end{array} \right].$$

Theorem (Properties of the Dot Product)

Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^3 (or \mathbb{R}^2) and let $k \in \mathbb{R}$.

1. $\vec{u} \cdot \vec{v}$ is a real number.

2. $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \vec{\mathbf{v}} \cdot \vec{\mathbf{u}}$. (commutative property)

(associative property)

(distributive properties)

3. $\vec{u} \cdot \vec{0} = 0$. 4. $\vec{u} \cdot \vec{u} = ||\vec{u}||^2$.

5. $(\mathbf{k}\vec{\mathbf{u}}) \cdot \vec{\mathbf{v}} = \mathbf{k}(\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}) = \vec{\mathbf{u}} \cdot (\mathbf{k}\vec{\mathbf{v}}).$

6. $\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} + \vec{\mathbf{u}} \cdot \vec{\mathbf{w}}$.

 $\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} - \vec{\mathbf{w}}) = \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} - \vec{\mathbf{u}} \cdot \vec{\mathbf{w}}.$

Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^3 (or \mathbb{R}^2). There is a unique angle θ between \vec{u} and \vec{v} with $0 \le \theta \le \pi$.

Theorem

Let \vec{u} and \vec{v} be nonzero vectors, and let θ denote the angle between \vec{u} and \vec{v} . Then

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| \ ||\vec{\mathbf{v}}|| \cos \theta.$$

Proof.

We first prove the Law of Cosines – a generalization of the Pythagorean theorem:

$$\begin{array}{c|c}
a & p & c \\
\hline
\theta & q & b-q \\
\hline
b
\end{array}$$

$$c^{2} = p^{2} + (b - q)^{2} = a^{2} \sin^{2} \theta + (b - a \cos \theta)^{2}$$
$$= a^{2} (\sin^{2} \theta + \cos^{2} \theta) + b^{2} - 2ab \cos \theta$$
$$= a^{2} + b^{2} - 2ab \cos \theta.$$

Proof. (continued)

In terms of vectors, we see that

$$\begin{aligned} ||\vec{\mathbf{v}} - \vec{\mathbf{w}}||^2 &= ||\vec{\mathbf{v}}||^2 + ||\vec{\mathbf{w}}||^2 - 2||\vec{\mathbf{v}}|| \, ||\vec{\mathbf{w}}|| \cos \theta \\ || \\ (\vec{\mathbf{v}} - \vec{\mathbf{w}}) \cdot (\vec{\mathbf{v}} - \vec{\mathbf{w}}) &= ||\vec{\mathbf{v}}||^2 - 2\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} + ||\vec{\mathbf{w}}||^2 \\ &\downarrow \downarrow \\ ||\vec{\mathbf{v}}||^2 + ||\vec{\mathbf{w}}||^2 - 2||\vec{\mathbf{v}}|| \, ||\vec{\mathbf{w}}|| \cos \theta = ||\vec{\mathbf{v}}||^2 - 2\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} + ||\vec{\mathbf{w}}|| \\ &\downarrow \downarrow \\ \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} &= ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \cos \theta. \end{aligned}$$

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \cos \theta.$$

- ▶ If $0 \le \theta < \frac{\pi}{2}$, then $\cos \theta > 0$.
- $\blacktriangleright \text{ If } \theta = \frac{\pi}{2}, \text{ then } \cos \theta = 0.$
- $\blacktriangleright \text{ If } \frac{\pi}{2} < \theta \leq \pi \text{, then } \cos \theta < 0.$

Therefore, for nonzero vectors $\vec{\mathrm{u}}$ and $\vec{\mathrm{v}},$

- $ightharpoonup \vec{u} \cdot \vec{v} > 0$ if and only if $0 \le \theta < \frac{\pi}{2}$.
- $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$ if and only if $\theta = \frac{\pi}{2}$.
- $ightharpoonup \vec{\mathrm{u}} \cdot \vec{\mathrm{v}} < 0$ if and only if $\frac{\pi}{2} < \theta \leq \pi$.

Definition

Vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ are orthogonal if and only if $\vec{\mathbf{u}} = \vec{\mathbf{0}}$ or $\vec{\mathbf{v}} = \vec{\mathbf{0}}$ or $\theta = \frac{\pi}{2}$.

Theorem

Vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ are orthogonal if and only if $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$.

Find the angle between
$$\vec{\mathbf{u}} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
 and $\vec{\mathbf{v}} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.

Solution

$$\begin{split} \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} &= 1, \ ||\vec{\mathbf{u}}|| = \sqrt{2} \ \mathrm{and} \ ||\vec{\mathbf{v}}|| = \sqrt{2}. \end{split}$$
 Therefore,
$$\cos \theta = \frac{\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}}{||\vec{\mathbf{u}}|| \ ||\vec{\mathbf{v}}||} = \frac{1}{\sqrt{2}\sqrt{2}} = \frac{1}{2}.$$

$$||\vec{\mathrm{u}}|| \ ||\vec{\mathrm{v}}||$$

Since
$$0 \le \theta \le \pi$$
, $\theta = \frac{\pi}{3}$.

Therefore, the angle between \vec{u} and \vec{v} is $\frac{\pi}{3}$.

Find the angle between
$$\vec{\mathbf{u}} = \begin{bmatrix} 7 \\ -1 \\ 3 \end{bmatrix}$$
 and $\vec{\mathbf{v}} = \begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}$

Solution

 $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$, and therefore the angle between the vectors is $\frac{\pi}{2}$.

Find all vectors
$$\vec{\mathbf{v}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}$$
 orthogonal to both $\vec{\mathbf{u}} = \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}$ and $\vec{\mathbf{w}} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

Solution

There are infinitely many such vectors. Since \vec{v} is orthogonal to both \vec{u} and \vec{w} ,

$$\begin{array}{rcl} \vec{v} \cdot \vec{u} & = & -x - 3y + 2z = 0 \\ \vec{v} \cdot \vec{w} & = & y + z = 0 \end{array}$$

Solution (continued)

This is a homogeneous system of two linear equation in three variables.

I has is a nonnegeneous system of two linear equation in three variables
$$\begin{bmatrix} -1 & -3 & 2 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -5 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Therefore,
$$\vec{\mathbf{v}} = \mathbf{t} \begin{bmatrix} 5 \\ -1 \\ 1 \end{bmatrix}$$
 for all $\mathbf{t} \in \mathbb{R}$.

Are A(4, -7, 9), B(6, 4, 4) and C(7, 10, -6) the vertices of a right angle triangle?

Solution

$$\overrightarrow{AB} = \begin{bmatrix} 2\\11\\-5 \end{bmatrix}, \quad \overrightarrow{AC} = \begin{bmatrix} 3\\17\\-15 \end{bmatrix}, \quad \overrightarrow{BC} = \begin{bmatrix} 1\\6\\-10 \end{bmatrix}$$

- $ightharpoonup \overrightarrow{AB} \cdot \overrightarrow{AC} = 6 + 187 + 75 \neq 0.$
- $ightharpoonup \overrightarrow{BA} \cdot \overrightarrow{BC} = (-\overrightarrow{AB}) \cdot \overrightarrow{BC} = -2 66 50 \neq 0.$
- $\overrightarrow{CA} \cdot \overrightarrow{CB} = (\overrightarrow{-AC}) \cdot (-\overrightarrow{BC}) = \overrightarrow{AC} \cdot \overrightarrow{BC} = 3 + 102 + 150 \neq 0.$

Because none of the angles is $\frac{\pi}{2}$, the triangle is not a right angle triangle.

A rhombus is a parallelogram with sides of equal length. Prove that the diagonals of a rhombus are perpendicular.

Solution

Define the parallelogram (rhombus) by vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$.

Then the diagonals are $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$.

Show that $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$ are perpendicular.

$$\begin{split} (\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) &= \vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} - \vec{v} \cdot \vec{v} \\ &= ||\vec{u}||^2 - \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{v} - ||\vec{v}||^2 \\ &= ||\vec{u}||^2 - ||\vec{v}||^2 \\ &= 0, \qquad \text{since } ||\vec{u}|| = ||\vec{v}||. \end{split}$$

Therefore, the diagonals are perpendicular.

Projections

Given two nonzero vectors \vec{u} and \vec{d} , one can always express \vec{u} as a sum $\vec{u} = \vec{u}_1 + \vec{u}_2$, where \vec{u}_1 is parallel to \vec{d} and \vec{u}_2 is orthogonal to \vec{d} .

 \vec{u}_1 is the projection of \vec{u} onto \vec{d} , written $\vec{u}_1 = \operatorname{proj}_{\vec{d}} \vec{u}$.

How to find $\vec{\mathbf{u}}_1 = \operatorname{proj}_{\vec{\mathbf{d}}} \vec{\mathbf{u}}$?

$$\vec{u}_{2} \cdot \vec{u}_{1} = 0 \qquad (\vec{u}_{1} \perp \vec{u}_{2})$$

$$\vec{u}_{2} \cdot (t\vec{d}) = 0 \qquad (\vec{u}_{1} = t\vec{d})$$

$$t(\vec{u}_{2} \cdot \vec{d}) = 0$$

$$\vec{u}_{2} \cdot \vec{d} = 0 \qquad (t \neq 0 \text{ b.c. } \vec{u} \neq \vec{0})$$

$$(\vec{u} - \vec{u}_{1}) \cdot \vec{d} = 0 \qquad (\vec{u}_{1} + \vec{u}_{2} = \vec{u})$$

$$\vec{u} \cdot \vec{d} - \vec{u}_{1} \cdot \vec{d} = 0$$

$$\vec{u} \cdot \vec{d} - (t\vec{d}) \cdot \vec{d} = 0 \qquad (\vec{u}_{1} = t\vec{d})$$

$$\vec{u} \cdot \vec{d} - t(\vec{d} \cdot \vec{d}) = 0$$

$$\vec{u} \cdot \vec{d} - t(|\vec{d}||^{2} = 0)$$

$$\vec{u} \cdot \vec{d} = t||\vec{d}||^{2}$$

$$t = \frac{\vec{u} \cdot \vec{d}}{||\vec{d}||^{2}} \qquad (\vec{d} \neq \vec{0})$$

$$\vec{u}_{1} = \frac{\vec{u} \cdot \vec{d}}{||\vec{d}||^{2}} \qquad (\vec{u}_{1} = t\vec{d})$$

Theorem

Let \vec{u} and \vec{d} be vectors with $\vec{d} \neq \vec{0}$.

1. The projection of \vec{u} onto \vec{d} is

$$\vec{u}_1 = \operatorname{proj}_{\vec{d}} \vec{u} = \frac{\vec{u} \cdot \vec{d}}{||\vec{d}||^2} \vec{d}.$$

2.

$$\vec{u}_2 = \vec{u} - \frac{\vec{u} \cdot \vec{d}}{||\vec{d}||^2} \vec{d}$$

is orthogonal to \vec{d} .

length

direction

Let
$$\vec{\mathbf{u}} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$
 and $\vec{\mathbf{v}} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$. Find vectors $\vec{\mathbf{u}}_1$ and $\vec{\mathbf{u}}_2$ so tha $\vec{\mathbf{u}} = \vec{\mathbf{u}}_1 + \vec{\mathbf{u}}_2$, with $\vec{\mathbf{u}}_1$ parallel to $\vec{\mathbf{v}}$ and $\vec{\mathbf{u}}_2$ orthogonal to $\vec{\mathbf{v}}$.

Solution

$$\vec{u}_1 = \operatorname{proj}_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{||\vec{v}||^2} \vec{v} = \frac{5}{11} \begin{bmatrix} 3\\1\\-1 \end{bmatrix} = \begin{bmatrix} 15/11\\5/11\\-5/11 \end{bmatrix}.$$

$$\vec{u}_2 = \vec{u} - \vec{u}_1 = \begin{bmatrix} 2\\-1\\0 \end{bmatrix} - \frac{5}{11} \begin{bmatrix} 3\\1\\1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 7\\-16\\5 \end{bmatrix} = \begin{bmatrix} 7/11\\-16/11\\5/11 \end{bmatrix}.$$

Let P(3,2,-1) be a point in \mathbb{R}^3 and L a line with equation

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$$

Find the shortest distance from P to L, and find the point Q on L that is closest to P.

Solution

Let $P_0 = P_0(2, 1, 3)$ be a point on L, and let $\vec{d} = \begin{bmatrix} 3 & -1 & -2 \end{bmatrix}^T$. Then $\overrightarrow{P_0Q} = \operatorname{proj}_{\vec{d}} \overrightarrow{P_0P}$, $\overrightarrow{OQ} = \overrightarrow{OP_0} + \overrightarrow{P_0Q}$, and the shortest distance from P to L is the length of \overrightarrow{QP} , where $\overrightarrow{QP} = \overrightarrow{P_0P} - \overrightarrow{P_0Q}$.

Solution (continued)

$$\overrightarrow{P_0P} = \begin{bmatrix} 1 & 1 & -4 \end{bmatrix}^T, \overrightarrow{d} = \begin{bmatrix} 3 & -1 & -2 \end{bmatrix}^T.$$

$$\overrightarrow{P_0P} = \begin{bmatrix} 1 & 1 & -4 \end{bmatrix}, \ \overrightarrow{d} = \begin{bmatrix} 3 & -1 & -2 \end{bmatrix}.$$

$$\overrightarrow{P_0Q} = \operatorname{proj}_{\overrightarrow{d}} \overrightarrow{P_0P} = \frac{\overrightarrow{P_0P} \cdot \overrightarrow{d}}{||\overrightarrow{d}||^2} \overrightarrow{d} = \frac{10}{14} \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 15 \\ -5 \\ -10 \end{bmatrix}.$$

so $Q = Q(\frac{29}{7}, \frac{2}{7}, \frac{11}{7})$.

Therefore,

$$P_0 \dot{P} = \begin{bmatrix} 1 & 1 & -4 \end{bmatrix}$$

 $\overrightarrow{0Q} = \overrightarrow{0P_0} + \overrightarrow{P_0Q} = \begin{bmatrix} 2\\1\\3 \end{bmatrix} + \frac{1}{7} \begin{bmatrix} 15\\-5\\-10 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 29\\2\\11 \end{bmatrix},$

Solution (continued)

Finally, the shortest distance from P(3,2,-1) to L is the length of \overrightarrow{QP} , where

where
$$\overrightarrow{QP} = \overrightarrow{P_0P} - \overrightarrow{P_0Q} = \begin{bmatrix} 1\\1\\-4 \end{bmatrix} - \frac{1}{7} \begin{bmatrix} 15\\-5\\-10 \end{bmatrix} = \frac{2}{7} \begin{bmatrix} -4\\6\\-9 \end{bmatrix}.$$

Therefore the shortest distance from P to L is

$$||\overrightarrow{QP}|| = \frac{2}{7}\sqrt{(-4)^2 + 6^2 + (-9)^2} = \frac{2}{7}\sqrt{133}.$$

Planes

Definition

A nonzero vector \vec{n} is a normal vector to a plane if and only if $\vec{n} \cdot \vec{v} = 0$ for every vector \vec{v} in the plane.

Given a point P_0 and a nonzero vector \vec{n} , there is a unique plane containing P_0 and orthogonal to \vec{n} .

Consider a plane containing a point P_0 and orthogonal to vector \vec{n} , and let P be an arbitrary point on this plane.

Then

$$\vec{n}\cdot\overrightarrow{P_0P}=0,$$

 $or,\ equivalently,$

$$\vec{\mathbf{n}} \cdot (\overrightarrow{\mathbf{0P}} - \overrightarrow{\mathbf{0P_0}}) = 0,$$

and is a vector equation of the plane.

$$\vec{n} \cdot (\overrightarrow{OP} - \overrightarrow{OP_0}) = 0 \iff \vec{n} \cdot \overrightarrow{OP} = \vec{n} \cdot \overrightarrow{OP_0}$$

by setting
$$P_0 = P_0(x_0, y_0, z_0)$$
, $P = P(x, y, z)$, $\vec{n} = \begin{bmatrix} a & b & c \end{bmatrix}^T$

$$\iff \left[\begin{array}{c} \mathbf{b} \\ \mathbf{c} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{y} \\ \mathbf{z} \end{array}\right] = \left[\begin{array}{c} \mathbf{b} \\ \mathbf{c} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{y}_0 \\ \mathbf{z}_0 \end{array}\right]$$

$$\iff \quad ax + by + cz = ax_0 + by_0 + cz_0,$$

setting
$$d = ax_0 + by_0 + cz_0 - a$$
 scalar

$$\iff \boxed{ax+by+cz=d} \;, \text{ where } a,b,c,d \in \mathbb{R}.$$

This is the scalar equation of the plane.

Find an equation of the plane containing $P_0(1, -1, 0)$ and orthogonal to $\vec{n} = \begin{bmatrix} -3 & 5 & 2 \end{bmatrix}^T$.

Solution

A vector equation of this plane is

$$\begin{bmatrix} -3 \\ 5 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} x-1 \\ y+1 \\ z \end{bmatrix} = 0.$$

A scalar equation of this plane is

$$-3x + 5y + 2z = -3(1) + 5(-1) + 2(0) = -8,$$

i.e., the plane has scalar equation

$$-3x + 5y + 2z = -8$$
.

Find the shortest distance from the point P(2,3,0) to the plane with equation 5x + y + z = -1, and find the point Q on the plane that is closest to P.

Solution

Pick an arbitrary point P_0 on the plane.

Then
$$\overrightarrow{QP} = \operatorname{proj}_{\overrightarrow{n}} \overrightarrow{P_0P}$$
, $||\overrightarrow{QP}||$ is the shortest distance, and $\overrightarrow{0Q} = \overrightarrow{0P} - \overrightarrow{QP}$.

$$\vec{n} = \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}^T$$
. Choose $P_0 = P_0(0, 0, -1)$. Then

$$\overrightarrow{P_0P} = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}^T$$

Solution (continued)

$$\overrightarrow{P_0P} = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}^T.$$
 $\vec{n} = \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}^T.$

$$\overrightarrow{QP} = \operatorname{proj}_{\vec{n}} \overrightarrow{P_0P} = \overrightarrow{\overrightarrow{P_0P} \cdot \vec{n}}_{||\vec{n}||^2} \vec{n} = \frac{14}{27} \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}^T.$$

Since $||\overrightarrow{QP}|| = \frac{14}{27}\sqrt{27} = \frac{14\sqrt{3}}{9}$, the shortest distance from P to the plane is $\frac{14\sqrt{3}}{9}$.

To find Q, we have

$$\overrightarrow{0Q} = \overrightarrow{0P} - \overrightarrow{QP} = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}^{T} - \frac{14}{27} \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}^{T}$$
$$= \frac{1}{27} \begin{bmatrix} -16 & 67 & -14 \end{bmatrix}^{T}.$$

Therefore $Q = Q\left(-\frac{16}{27}, \frac{67}{27}, -\frac{14}{27}\right)$.

Romark

Here is a general answer: the distance from $P\left(x_{0},y_{0},z_{0}\right)$ to the plane ax+by+cz=d is

distance =
$$\frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}$$

The Cross Product

Definition

Let
$$\vec{u} = \begin{bmatrix} x_1 & y_1 & z_1 \end{bmatrix}^T$$
 and $\vec{v} = \begin{bmatrix} x_2 & y_2 & z_2 \end{bmatrix}^T$. Then
$$\vec{u} \times \vec{v} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ -(x_1 z_2 - z_1 x_2) \\ x_1 y_2 - y_1 x_2 \end{bmatrix}.$$

Remark

 $\vec{u} \times \vec{v}$ is a vector:

- \blacktriangleright Direction: orthogonal to both \vec{u} and $\vec{v}.$
- ▶ Size: the area of the corresponding parallelogram.

Remark

A mnemonic device

$$\vec{u} \times \vec{v} = \left| \begin{array}{ccc} \vec{i} & x_1 & x_2 \\ \vec{j} & y_1 & y_2 \\ \vec{k} & z_1 & z_2 \end{array} \right|, \text{ where } \vec{i} = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right], \vec{j} = \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right], \vec{k} = \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right].$$

Or equivalently,

$$\vec{u} \times \vec{v} = \left| \begin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{array} \right|$$

Theorem

Let $\vec{v}, \vec{w} \in \mathbb{R}^3$.

- - 1. $\vec{v} \times \vec{w}$ is orthogonal to both \vec{v} and \vec{w} .

2. If \vec{v} and \vec{w} are both nonzero, then $\vec{u} \times \vec{w} = \vec{0}$ if and only if \vec{v} and \vec{w} are parallel.

Find all vectors orthogonal to both $\vec{u} = \begin{bmatrix} -1 & -3 & 2 \end{bmatrix}^T$ and $\vec{v} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$. (We previously solved this using the **dot product**.)

Solution

$$\vec{\mathrm{u}} \times \vec{\mathrm{v}} = \left| egin{array}{ccc} \vec{\mathrm{i}} & -1 & 0 \\ \vec{\mathrm{j}} & -3 & 1 \\ \vec{\mathrm{k}} & 2 & 1 \end{array} \right| = -5\vec{\mathrm{i}} + \vec{\mathrm{j}} - \vec{\mathrm{k}} = \left[egin{array}{c} -5 \\ 1 \\ -1 \end{array} \right]$$

Any scalar multiple of $\vec{u} \times \vec{v}$ is also orthogonal to both \vec{u} and \vec{v} , so

$$\mathbf{t} \begin{bmatrix} -5\\1\\-1 \end{bmatrix}, \quad \forall \mathbf{t} \in \mathbb{R},$$

gives all vectors orthogonal to both $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$.

(Compare this with our earlier answer.)

Given two lines

$$L_1: \left[\begin{array}{c} x \\ y \\ z \end{array}\right] = \left[\begin{array}{c} 3 \\ 1 \\ -1 \end{array}\right] + s \left[\begin{array}{c} 1 \\ 1 \\ -1 \end{array}\right] \quad \text{and} \quad L_2: \left[\begin{array}{c} x \\ y \\ z \end{array}\right] = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array}\right] + t \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array}\right],$$

A. Find the shortest distance between L_1 and L_2 .

B. Find the points P on L_1 and Q on L_2 that are closest together.

Solution

$$\vec{\mathbf{d}}_1 = \begin{bmatrix} & 1 \\ & 1 \\ & -1 \end{bmatrix}, \vec{\mathbf{d}}_2 = \begin{bmatrix} & 1 \\ & 0 \\ & 2 \end{bmatrix}$$

The shortest distance between L_1 and L_2 is the length of the projection of $\overrightarrow{P_1P_2}$ onto $\vec{n}=\vec{d}_1\times\vec{d}_2$.

$$\overrightarrow{P_1P_2} = \left[\begin{array}{c} -2 \\ 1 \\ 1 \end{array} \right] \quad \text{and} \quad \vec{n} = \left[\begin{array}{c} 1 \\ 1 \\ -1 \end{array} \right] \times \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right] = \left[\begin{array}{c} 2 \\ -3 \\ -1 \end{array} \right]$$

$$\text{proj}_{\vec{n}}\overrightarrow{P_1P_2} = \frac{\overrightarrow{P_1P_2} \cdot \vec{n}}{||\vec{n}||^2}\vec{n}, \quad \text{and} \quad ||\text{proj}_{\vec{n}}\overrightarrow{P_1P_2}|| = \frac{|\overrightarrow{P_1P_2} \cdot \vec{n}|}{||\vec{n}||}.$$

Therefore, the shortest distance between L_1 and L_2 is $\frac{|-8|}{\sqrt{14}} = \frac{4}{7}\sqrt{14}$.

$$ec{\mathbf{d}}_1 = \left[egin{array}{c} 1 \\ 1 \\ -1 \end{array}
ight], ec{\mathbf{d}}_2 = \left[egin{array}{c} 1 \\ 0 \\ 2 \end{array}
ight];$$

$$\overrightarrow{0P} = \left[\begin{array}{c} 3+s \\ 1+s \\ -1-s \end{array} \right] \text{ for some } s \in$$

$$\overrightarrow{0Q} = \begin{bmatrix} 1+t \\ 2 \end{bmatrix}$$
 for some $t \in \mathbb{F}$

Now $\overrightarrow{PQ} = \begin{bmatrix} -2-s+t & 1-s & 1+s+2t \end{bmatrix}^T$ is orthogonal to both L_1 and L_2 , so

$$\overrightarrow{PQ} \cdot \vec{d}_1 = 0 \quad \text{and} \quad \overrightarrow{PQ} \cdot \vec{d}_2 = 0,$$

i.e.

$$\begin{array}{rcl}
-2 - 3s - t & = & 0 \\
s + 5t & = & 0.
\end{array}$$

This system has unique solution $s = -\frac{5}{7}$ and $t = \frac{1}{7}$. Therefore,

$$\mathrm{P} = \mathrm{P}\left(\frac{16}{7}, \frac{2}{7}, -\frac{2}{7}\right) \quad \text{and} \quad \mathrm{Q} = \mathrm{Q}\left(\frac{8}{7}, 2, \frac{2}{7}\right).$$

The shortest distance between L_1 and L_2 is $||\overrightarrow{PQ}||$. Since

he shortest distance between
$$m L_1$$
 and $m L_2$ is $||PQ||$. Since $m P=P\left(rac{16}{\pi},rac{2}{\pi},-rac{2}{\pi}
ight)$ and $m Q=Q\left(
m C_2
ight)$

 $\mathrm{P}=\mathrm{P}\left(rac{16}{7},rac{2}{7},-rac{2}{7}
ight)$ and $\mathrm{Q}=\mathrm{Q}\left(rac{8}{7},2,rac{2}{7}
ight),$

Therefore the shortest distance between L_1 and L_2 is $\frac{4}{7}\sqrt{14}$.

and

 $\overrightarrow{PQ} = \frac{1}{7} \begin{vmatrix} 8 \\ 14 \\ 2 \end{vmatrix} - \frac{1}{7} \begin{vmatrix} 16 \\ 2 \\ -2 \end{vmatrix} = \frac{1}{7} \begin{vmatrix} -8 \\ 12 \\ 4 \end{vmatrix},$

 $||\overrightarrow{PQ}|| = \frac{1}{7}\sqrt{224} = \frac{4}{7}\sqrt{14}.$

Shortest Distances

Problem (Challenge Problem)

Write yourself a plan to find the shortest distance in \mathbb{R}^3 between either a point, line or plane, to either a point, line or plane.

Point-point distance

If P and Q are two points, then $d(P,Q) = |\overrightarrow{PQ}|$.

Point-plane distance

If P is a point and $\Sigma: \vec{n} \cdot \vec{x} = d$ is a plane containing a point Q, then

$$d\left(P,\Sigma\right) = \frac{\left|\overrightarrow{PQ} \cdot \vec{n}\right|}{\left|\vec{n}\right|}$$

Point-line distance

If P is a point and L is a line $\vec{r}(t) = Q + t\vec{u}$, then

$$d\left(P,L\right) = \frac{\left|\overrightarrow{PQ} \times \vec{u}\right|}{\left|\vec{u}\right|}$$

Line-line distance

If L is a line $\vec{r}(t) = Q + t\vec{u}$ and M is another line $\vec{s} = P + t\vec{v}$, then

$$d\left(L,M\right) = \frac{\left|\overrightarrow{PQ} \cdot (\vec{u} \times \vec{v})\right|}{\left|\vec{u} \times \vec{v}\right|}$$

Plane-plane distance

If $\Sigma: \vec{n}\cdot\vec{x}=d$ and $\Theta: \vec{n}\cdot\vec{x}=e$ are two parallel planes, then $d\left(\Sigma,\Theta\right)=\frac{|e-d|}{|\vec{n}|}$

