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NOTE: Much of this chapter is what you would learn in Multivariable Calculus.
You might find it interesting/useful to read.

But I will only cover the material important to this course.



Theorem

Given three vectors ~u =

 x0

y0

z0

, ~v =

 x1

y1

z1

, and ~w =

 x2

y2

z2

, it holds

that

~u · (~v × ~w) = det
[
~u ~v ~w

]
= det

 x0 x1 x2

y0 y1 y2

z0 z1 z2

 .



Proof.

Let ~u =

 x0

y0

z0

, ~v =

 x1

y1

z1

, and ~w =

 x2

y2

z2

. Then

~u · (~v × ~w) =

 x0

y0

z0

 ·

 y1z2 − z1y2

−(x1z2 − z1x2)
x1y2 − y1x2


= x0(y1z2 − z1y2)− y0(x1z2 − z1x2) + z0(x1y2 − y1x2)

= x0

∣∣∣∣ y1 y2

z1 z2

∣∣∣∣− y0

∣∣∣∣ x1 x2

z1 z2

∣∣∣∣+ z0
∣∣∣∣ y1 y2

z1 z2

∣∣∣∣
=

∣∣∣∣∣∣
x0 x1 x2

y0 y1 y2

z0 z1 z2

∣∣∣∣∣∣ .
�



Theorem (Properties of the Cross Product)

Let ~u,~v and ~w be in R3.
1. ~u × ~v is a vector.
2. ~u × ~v is orthogonal to both ~u and ~v.
3. ~u ×~0 = ~0 and ~0× ~u = ~0.
4. ~u × ~u = ~0.
5. ~u × ~v = −(~v × ~u).
6. (k~u)× ~v = k(~u × ~v) = ~u × (k~v) for any scalar k.
7. ~u × (~v + ~w) = ~u × ~v + ~u × ~w.
8. (~v + ~w)× ~u = ~v × ~u + ~w × ~u.



Theorem (The Lagrange Identity)

If ~u,~v ∈ R3, then
||~u × ~v||2 = ||~u||2||~v||2 − (~u · ~v)2.

Proof.

Write ~u =

 a1

a2

a3

 and ~v =

 b1

b2

b3

, then both sides are equal to

(a1b2 − a2b1)
2 + (a1b3 − a3b1)

2 + (a2b3 − a3b2)
2 .

Work out these by yourself! �



As a consequence of the Lagrange Identity and the fact that

~u · ~v = ||~u|| ||~v|| cos θ,

we have

||~u × ~v||2 = ||~u||2||~v||2 − (~u · ~v)2

= ||~u||2||~v||2 − ||~u||2||~v||2 cos2 θ
= ||~u||2||~v||2(1− cos2 θ)
= ||~u||2||~v||2 sin2 θ.

Taking square roots on both sides yields,

||~u × ~v|| = ||~u|| ||~v|| sin θ.

Note that since 0 ≤ θ ≤ π, sin θ ≥ 0.

If θ = 0 or θ = π, then sin θ = 0, and ||~u × ~v|| = 0. This is consistent with our
earlier observation that if ~u and ~v are parallel, then ~u × ~v = ~0.



Theorem
Let ~u and ~v be nonzero vectors in R3, and let θ denote the angle between ~u
and ~v.

1. ||~u × ~v|| = ||~u|| ||~v|| sin θ, and is the area of the parallelogram defined
by ~u and ~v.

2. ~u and ~v are parallel if and only if ~u × ~v = ~0.

Proof. (area of parallelogram)
The area of the parallelogram defined by ~u and ~v is ||~u||h, where h is the height of
the parallelogram.

~u

~v h

θ

Since sin θ = h
||~v|| , we see that h = ||~v|| sin θ. Therefore, the area is

||~u|| ||~v|| sin θ.

�



Theorem

The volume of the parallelepiped determined by the three vectors ~b, ~c, and
~a in R3 is

|~a · (~b ×~c)|.



Problem
Find the area of the triangle having vertices A(3,−1, 2), B(1, 1, 0) and
C(1, 2,−1).

Solution

The area of the triangle is half the area of the parallelogram defined by
−→
AB

and
−→
AC.

−→
AB =

 −2
2

−2

 and
−→
AC =

 −2
3

−3

. Therefore

−→
AB ×

−→
AC =

 0
−2
−2

 ,

so the area of the triangle is 1
2
||
−→
AB ×

−→
AC|| =

√
2. �



Problem
Find the volume of the parallelepiped determined by the vectors

~u =

 2
1
1

, ~v =

 1
0
2

, and ~w =

 2
1

−1

.

Solution
The volume of the parallelepiped is

|~w · (~u × ~v)| =

∣∣∣∣∣∣det

 2 1 2
1 0 1
1 2 −1

∣∣∣∣∣∣ = 2.
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