Math 221: LINEAR ALGEBRA

Chapter 4. Vector Geometry §4-4. Linear Operators on \mathbb{R}^3

Le Chen¹

Emory University, 2020 Fall

(last updated on 10/26/2020)

Rotations

Reflections

Multiple Actions

Summary

NOTE: Much of this chapter is what you would learn in Multivariable Calculus. You might find it interesting/useful to read. But I will only cover the material important to this course.

Rotations

Definition

Let A be an $m \times n$ matrix. The transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by

 $T(\vec{x}) = A\vec{x}$ for each $\vec{x} \in \mathbb{R}^n$

is called the matrix transformation induced by A.

Definition (Rotations in \mathbb{R}^2)

The transformation

 $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$

denotes counterclockwise rotation about the origin through an angle of θ .

Rotation through an angle of θ preserves scalar multiplication.

Rotation through an angle of θ preserves vector addition.

\mathbf{R}_{θ} is a linear transformation

Since R_{θ} preserves addition and scalar multiplication, R_{θ} is a linear transformation, and hence a matrix transformation.

The matrix that induces R_{θ} can be found by computing $R_{\theta}(E_1)$ and $R_{\theta}(E_2)$, where

$$E_{1} = \begin{bmatrix} 1\\0 \end{bmatrix} \text{ and } E_{2} = \begin{bmatrix} 0\\1 \end{bmatrix}.$$
$$R_{\theta}(E_{1}) = R_{\theta} \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} \cos\theta\\\sin\theta \end{bmatrix},$$

and

$$R_{\theta}(E_2) = R_{\theta} \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} -\sin\theta\\\cos\theta \end{bmatrix}$$

The Matrix for R_{θ}

The rotation $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation, and is induced by the matrix

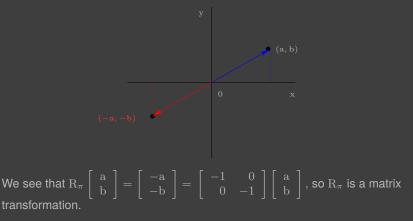
$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}.$$

Example (Rotation through π)

We denote by

 $R_{\pi}:\mathbb{R}^2\to\mathbb{R}^2$

counterclockwise rotation about the origin through an angle of π .



Problem

The transformation $R_{\frac{\pi}{2}}: \mathbb{R}^2 \to \mathbb{R}^2$ denotes a counterclockwise rotation about the origin through an angle of $\frac{\pi}{2}$ radians. Find the matrix of $R_{\frac{\pi}{2}}$.

Solution

First,

$$\mathbf{R}_{\frac{\pi}{2}} \left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array} \right] = \left[\begin{array}{c} -\mathbf{b} \\ \mathbf{a} \end{array} \right]$$

Furthermore $R_{\frac{\pi}{2}}$ is a matrix transformation, and the matrix it is induced by is

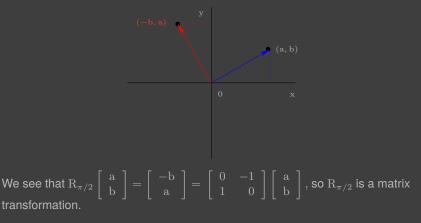
$$\left[\begin{array}{c} -\mathbf{b} \\ \mathbf{a} \end{array}\right] = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array}\right].$$

Example (Rotation through $\pi/2$)

We denote by

 $\mathbf{R}_{\pi/2}: \mathbb{R}^2 \to \mathbb{R}^2$

counterclockwise rotation about the origin through an angle of $\pi/2$.



Reflections

Example

In \mathbb{R}^2 , reflection in the x-axis, which transforms $\begin{bmatrix} a \\ b \end{bmatrix}$ to $\begin{bmatrix} a \\ -b \end{bmatrix}$, is a matrix transformation because

$$\left[\begin{array}{c} \mathbf{a} \\ -\mathbf{b} \end{array}\right] = \left[\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array}\right] \left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array}\right].$$

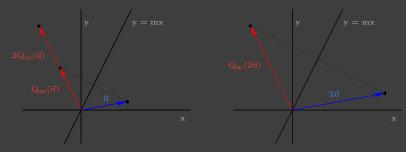
Example

In \mathbb{R}^2 , reflection in the y-axis transforms $\begin{bmatrix} a \\ b \end{bmatrix}$ to $\begin{bmatrix} -a \\ b \end{bmatrix}$. This is a matrix transformation because

$$\left[\begin{array}{c} -\mathbf{a} \\ \mathbf{b} \end{array} \right] = \left[\begin{array}{c} -1 & 0 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array} \right].$$

 $\label{eq:Reflection in the line } y = x \text{ transforms } \left[\begin{array}{c} a \\ b \end{array} \right] \text{ to } \left[\begin{array}{c} b \\ a \end{array} \right].$ This is a matrix transformation because

Example (Reflection in y = mx preserves scalar multiplication) Let $Q_m : \mathbb{R}^2 \to \mathbb{R}^2$ denote reflection in the line y = mx, and let $\vec{u} \in \mathbb{R}^2$.

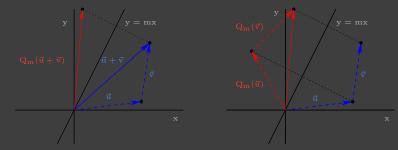


The figure indicates that $Q_m(2\vec{u}) = 2Q_m(\vec{u})$. In general, for any scalar k, $Q_m(k\vec{x}) = kQ_m(\vec{x})$.

i.e., Q_m preserves scalar multiplication.

Example (Reflection in y = mx preserves vector addition)

Let $\vec{u}, \vec{v} \in \mathbb{R}^2$.



The figure indicates that

 $Q_m(\vec{u}) + Q_m(\vec{v}) = Q_m(\vec{u} + \vec{v}),$

i.e., Q_m preserves vector addition.

$\mathbf{Q}_{\mathbf{m}}$ is a linear transformation

Since $\rm Q_m$ preserves addition and scalar multiplication, $\rm Q_m$ is a linear transformation, and hence a matrix transformation.

The matrix that induces ${\rm Q}_m$ can be found by computing ${\rm Q}_m({\rm E}_1)$ and ${\rm Q}_m({\rm E}_2),$ where

$$E_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $E_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Example $(Q_m(E_1))$

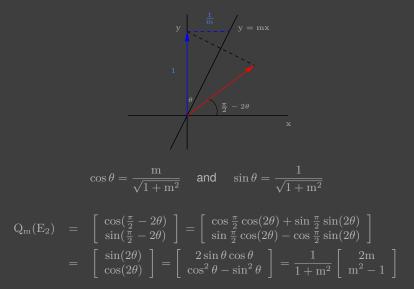
$$y \qquad y = mx$$

$$m \qquad m$$

$$\cos \theta = \frac{1}{\sqrt{1 + m^2}} \quad \text{and} \quad \sin \theta = \frac{m}{\sqrt{1 + m^2}}$$

$$Q_m(E_1) = \begin{bmatrix} \cos(2\theta) \\ \sin(2\theta) \end{bmatrix} = \begin{bmatrix} \cos^2 \theta - \sin^2 \theta \\ 2\sin \theta \cos \theta \end{bmatrix} = \frac{1}{1 + m^2} \begin{bmatrix} 1 - m^2 \\ 2m \end{bmatrix}$$

Example $(Q_m(E_2))$



The Matrix for Reflection in y = mx

The transformation $Q_m: \mathbb{R}^2 \to \mathbb{R}^2$, reflection in the line y = mx, is a linear transformation and is induced by the matrix

$$\frac{1}{1+m^2} \left[\begin{array}{cc} 1-m^2 & 2m \\ 2m & m^2-1 \end{array} \right].$$

Multiple Actions

Problem

Find the rotation or reflection that equals reflection in the x-axis followed by rotation through an angle of $\frac{\pi}{2}$.

Solution

Let Q_0 denote the reflection in the x-axis, and $R_{\frac{\pi}{2}}$ denote the rotation through an angle of $\frac{\pi}{2}$. We want to find the matrix for the transformation $R_{\frac{\pi}{2}} \circ Q_0$.

 Q_0 is induced by $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, and $R_{\frac{\pi}{2}}$ is induced by $B = \begin{bmatrix} \cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\ \sin \frac{\pi}{2} & \cos \frac{\pi}{2} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

Solution

Hence $R_{\frac{\pi}{2}} \circ Q_0$ is induced by

$$BA = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Notice that $BA = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is a reflection matrix.
How do we know this?

Solution (continued) Compare BA to

$$Q_m = \frac{1}{1+m^2} \left[\begin{array}{cc} 1-m^2 & 2m \\ 2m & m^2-1 \end{array} \right]$$

Now, since $1 - m^2 = 0$, we know that m = 1 or m = -1. But $\frac{2m}{1+m^2} = 1 > 0$, so m > 0, implying m = 1.

Therefore,

$$\mathbf{R}_{\frac{\pi}{2}} \circ \mathbf{Q}_0 = \mathbf{Q}_1,$$

reflection in the line y = x.

Problem (Relection followed by reflection)

Find the rotation or reflection that equals reflection in the line y = -x followed by reflection in the y-axis.

Solution

We must find the matrix for the transformation $Q_{Y} \circ Q_{-1}$.

 Q_{-1} is induced by

$$\mathbf{A} = \frac{1}{2} \begin{bmatrix} 0 & -2 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix},$$

and $Q_{\rm Y}$ is induced by

$$\mathbf{B} = \left[\begin{array}{cc} -1 & 0\\ 0 & 1 \end{array} \right].$$

Therefore, $Q_{Y} \circ Q_{-1}$ is induced by BA.

Solution (continued)

$$BA = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

What transformation does BA induce?

Rotation through an angle θ such that

 $\cos \theta = 0$ and $\sin \theta = -1$.

Therefore, $Q_{Y} \circ Q_{-1} = R_{-\frac{\pi}{2}} = R_{\frac{3\pi}{2}}$.

Summary

In general,

▶ The composite of two rotations is a rotation

$$\mathbf{R}_{\theta} \circ \mathbf{R}_{\eta} = \mathbf{R}_{\theta+\eta}.$$

▶ The composite of two reflections is a rotation.

$$Q_m \circ Q_n = R_\theta$$

where θ is 2× the angle between lines y = mx and y = nx.

▶ The composite of a reflection and a rotation is a reflection.

$$R_{\theta} \circ Q_n = Q_m \circ Q_n \circ Q_n = Q_m$$