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Subspaces of Rn

Definitions
1. R denotes the set of real numbers, and is an example of a set of scalars.
2. Rn is the set of all n-tuples of real numbers, i.e.,

Rn = {(x1, x2, . . . , xn) | xi ∈ R, 1 ≤ i ≤ n} .

3. The vector space Rn consists of the set Rn written as column matrices,
along with the (matrix) operations of addition and scalar
multiplication. Unless stated otherwise, Rn means the vector space Rn.

Remark
Rn is a concrete example of the abstract vector space will be studied in the
next chapter.



A vectors is denoted by a lower case letter with an arrow written over it; for
example, ~u, ~v, and ~x denote vectors.

Another example: ~u =


−2
3

0.7
5
π

 is a vector in R5, written ~u ∈ R5.

To save space on the page, the same vector ~u may be written instead as a
row matrix by taking the transpose of the column:

~u =
[
−2, 3, 0.7, 5, π

]T
.



We are interested in nice subsets of Rn, defined as follows.

Definition (Subspaces)
A subset U of Rn is a subspace of Rn if
S1. The zero vector of Rn, ~0n, is in U;
S2. U is closed under addition, i.e., for all ~u, ~w ∈ U, ~u + ~w ∈ U;
S3. U is closed under scalar multiplication, i.e., for all ~u ∈ U and k ∈ R,

k~u ∈ U.
Both subset U =

{
~0n

}
and Rn itself are subspaces of Rn. Any other

subspace of Rn is called a proper subspace of Rn.

Notation
If U is a subset of Rn, we write U ⊆ Rn.
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Example

In R3, the line L through the origin that is parallel to the vector

~d =

 −51
−4

 has (vector) equation

 x
y
z

 = t

 −51
−4

 , t ∈ R, so

L =
{

t~d | t ∈ R
}
.

Claim. L is a subspace of R3.
I First: ~03 ∈ L since 0~d = ~03.
I Suppose ~u,~v ∈ L. Then by definition, ~u = s~d and ~v = t~d, for some

s, t ∈ R. Thus
~u + ~v = s~d + t~d = (s + t)~d.

Since s + t ∈ R, ~u + ~v ∈ L; i.e., L is closed under addition.



Example (continued)

I Suppose ~u ∈ L and k ∈ R (k is a scalar). Then ~u = t~d, for some t ∈ R,
so

k~u = k(t~d) = (kt)~d.

Since kt ∈ R, k~u ∈ L; i.e., L is closed under scalar multiplication.
I Therefore, L is a subspace of R3.

Remark

Note that there is nothing special about the vector ~d used in this example;
the same proof works for any nonzero vector ~d ∈ R3, so any line through
the origin is a subspace of R3.



Example

In R3, let M denote the plane through the origin having equation

3x−2y+ z = 0; then M has normal vector ~n =

 3
−2
1

. If ~u =

 x
y
z

, then

M =
{
~u ∈ R3 | ~n · ~u = 0

}
,

where ~n · ~u is the dot product of vectors ~n and ~u.

Claim. M is a subspace of R3.
I First: ~03 ∈ M since ~n ·~03 = 0.
I Suppose ~u,~v ∈ M. Then by definition, ~n · ~u = 0 and ~n · ~v = 0, so

~n · (~u + ~v) = n · ~u + n · ~v = 0 + 0 = 0,

and thus (~u + ~v) ∈ M; i.e., M is closed under addition.



Example (continued)
I Suppose ~u ∈ M and k ∈ R. Then ~n · ~u = 0, so

~n · (k~u) = k(~n · ~u) = k(0) = 0,

and thus k~u ∈ M; i.e., M is closed under scalar multiplication.

I Therefore, M is a subspace of R3.

Remark
As in the previous example, there is nothing special about the plane chosen
for this example; any plane through the origin is a subspace of R3.



Problem

Is U =




a
b
c
d


∣∣∣∣∣∣∣∣ a, b, c,d ∈ R and 2a− b = c + 2d

 a subspace of R4?

Justify your answer.

Solution

The zero vector of R4 is the vector


a
b
c
d

 with a = b = c = d = 0.

In this case, 2a− b = 2(0) + 0 = 0 and c + 2d = 0 + 2(0) = 0, so
2a− b = c + 2d. Therefore, ~04 ∈ U.



Solution (continued)
Suppose

~v1 =


a1

b1

c1
d1

 and ~v2 =


a2

b2

c2
d2

 are in U.

Then 2a1 − b1 = c1 + 2d1 and 2a2 − b2 = c2 + 2d2. Now

~v1 + ~v2 =


a1

b1

c1
d1

+


a2

b2

c2
d2

 =


a1 + a2

b1 + b2

c1 + c2
d1 + d2

 ,

and

2(a1 + a2)− (b1 + b2) = (2a1 − b1) + (2a2 − b2)

= (c1 + 2d1) + (c2 + 2d2)

= (c1 + c2) + 2(d1 + d2).

Therefore, ~v1 + ~v2 ∈ U.



Solution (continued)
Finally, suppose

~v =


a
b
c
d

 ∈ U and k ∈ R.

Then 2a− b = c + 2d. Now

k~v = k


a
b
c
d

 =


ka
kb
kc
kd

 ,

and
2ka− kb = k(2a− b) = k(c + 2d) = kc + 2kd.

Therefore, k~v ∈ U.

It follows from the Subspace Test that U is a subspace of R4.



Problem

Is U =


 1

s
t

 ∣∣∣∣∣∣ s, t ∈ R

 a subspace of R3? Justify your answer.

Solution

Note that ~03 6∈ U, and thus U is not a subspace of R3.

(You could also show that U is not closed under addition, or not closed
under scalar multiplication.)



Problem

Is U =


 r

0
s

 ∣∣∣∣∣∣ r, s ∈ R and r2 + s2 = 0

 a subspace of R3?

Justify your answer.

Solution
Since r ∈ R, r2 ≥ 0 with equality if and only if r = 0. Similarly, s ∈ R
implies s2 ≥ 0, and s2 = 0 if and only if s = 0. This means r2 + s2 = 0 if and
only if r2 = s2 = 0; thus r2 + s2 = 0 if and only if r = s = 0. Therefore U
contains only ~03, the zero vector, i.e., U = {~03}. As we already observed,
{~0n} is a subspace of Rn, and therefore U is a subspace of R3.



The null space and the image space

Definitions (Null Space and Image Space)
Let A be an m× n matrix. The null space of A is defined as

null(A) = {~x ∈ Rn | A~x = ~0m},

and the image space of A is defined as

im(A) = {A~x | ~x ∈ Rn}.

Remark
1. Since A is m× n and ~x ∈ Rn, A~x ∈ Rm, so im(A) ⊆ Rm while

null(A) ⊆ Rn.
2. Image space is also called column space of A, denoted as col(A):

col(A) = span (~a1, · · · ,~an) = im(A).



Problem
Prove that if A is an m× n matrix, then null(A) is a subspace of Rn.

Proof.

S1. Since A~0n = ~0m, ~0n ∈ null(A).
S2. Let ~x,~y ∈ null(A). Then A~x = ~0m and A~y = ~0m, so

A(~x + ~y) = A~x + A~y = ~0m +~0m = ~0m,

and thus ~x + ~y ∈ null(A).
S3. Let ~x ∈ null(A) and k ∈ R. Then A~x = ~0m, so

A(k~x) = k(A~x) = k~0m = ~0m,

and thus k~x ∈ null(A).
Therefore, null(A) is a subspace of Rn. �



Problem
Prove that if A is an m× n matrix, then im(A) is a subspace of Rm.

Proof.

S1. Since ~0n ∈ Rn and A~0n = ~0m, ~0m ∈ im(A).
S2. Let ~x,~y ∈ im(A). Then ~x = A~u and ~y = A~v for some ~u,~v ∈ Rn, so

~x + ~y = A~u + A~v = A(~u + ~v).

Since ~u + ~v ∈ Rn, it follows that ~x + ~y ∈ im(A).
S3. Let ~x ∈ im(A) and k ∈ R. Then ~x = A~u for some ~u ∈ Rn, and thus

k~x = k(A~u) = A(k~u).

Since k~u ∈ Rn, it follows that k~x ∈ im(A).
Therefore, im(A) is a subspace of Rm. �



The Eigenspace

Definition (Eigenspace)
Let A be an n× n matrix and λ ∈ R. The eigenspace of A corresponding to
λ is the set

Eλ(A) = {~x ∈ Rn | A~x = λ~x} .



Example

A =

(
4 −2
−1 3

)
has two eigenvalues: λ1 = 2 and λ2 = 5 with

corresponding eigenvectors

~v1 =

(
1
1

)
and ~v2 =

(
−1
1/2

)
Hence,

Eλ1(A) = E2(A) = {t~v1|t ∈ R}
Eλ2(A) = E5(A) = {t~v2|t ∈ R}



x

y

−5 −4 −3 −2 −1 1 2 3 4 5 6

−4

−3
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−1

1
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5

6

A =

(
4 −2
−1 3

)
Eλ1(A)

Eλ2(A)



x

y

−5 −4 −3 −2 −1 1 2 3 4 5 6

−4

−3

−2

−1

1

2

3

4

5

6

A =

(
4 −2
−1 3

)
E2(A) =

{
t
(
1
1

) ∣∣∣∣t ∈ R
}

E5(A) =

{
t
(
−1
1/2

) ∣∣∣∣t ∈ R
}



Note that

Eλ(A) = {~x ∈ Rn | A~x = λ~x}

=
{
~x ∈ Rn | λ~x−A~x = ~0n

}
=

{
~x ∈ Rn | (λI−A)~x = ~0n

}
showing that

Eλ(A) = null(λI−A).

It follows that
I if λ is not an eigenvalue of A, then Eλ(A) = {~0n};
I the nonzero vectors of Eλ(A) are the eigenvectors of A corresponding

to λ;
I the eigenspace of A corresponding to λ is a subspace of Rn.



Linear Combinations and Spanning Sets

Definition (Linear Combinations and Spanning)
Let ~x1,~x2, . . . ,~xk ∈ Rn and t1, t2, . . . , tk ∈ R. Then the vector

~x = t1~x1 + t2~x2 + · · ·+ tk~xk

is called a linear combination of the vectors ~x1,~x2, . . . ,~xk; the (scalars)
t1, t2, . . . , tk ∈ R are the coefficients. The set of all linear combinations of
~x1,~x2, . . . ,~xk is called the span of ~x1,~x2, . . . ,~xk, and is written

span{~x1,~x2, . . . ,~xk} = {t1~x1 + t2~x2 + · · ·+ tk~xk | t1, t2, . . . , tk ∈ R} .

Additional Terminology. If U = span{~x1,~x2, . . . ,~xk}, then
I U is spanned by the vectors ~x1,~x2, . . . ,~xk.
I the vectors ~x1,~x2, . . . ,~xk span U.
I the set of vectors {~x1,~x2, . . . ,~xk} is a spanning set for U.



Example

Let ~x ∈ R3 be a nonzero vector. Then span{~x} = {k~x | k ∈ R} is a line
through the origin having direction vector ~x.

Example

Let ~x,~y ∈ R3 be nonzero vectors that are not parallel. Then

span{~x,~y} = {k~x + t~y | k, t ∈ R}

is a plane through the origin containing ~x and ~y.

How would you find the equation of this plane?



Problem

Let ~x =


8
3

−13
20

, ~y =


2
1
−3
5

 and ~z =


−1
0
2
−3

. Is ~x ∈ span{~y,~z}?

Solution
An equivalent question is: can ~x be expressed as a linear combination of ~y
and ~z?
Suppose there exist a, b ∈ R so that ~x = a~y + b~z. Then

8
3

−13
20

 = a


2
1
−3
5

+ b


−1
0
2
−3

 =


2 −1
1 0
−3 2
5 −3

[
a
b

]
.

Solve this system of four linear equations in the two variables a and b.



Solution (continued)
2 −1 8
1 0 3
−3 2 −13
5 −3 20

→


1 0 3
0 1 −2
0 0 0
0 0 −1


Since the system has no solutions, ~x 6∈ span{~y,~z}. �



Problem

Let ~w =


8
3

−13
21

, ~y =


2
1
−3
5

 and ~z =


−1
0
2
−3

. Is ~w ∈ span{~y,~z}?

This is almost identical to a previous problem, except that ~w (above) has
one entry that is different from the vector ~x of that problem.

Solution
In this case, the system of linear equations is consistent, and gives us
~w = 3~y − 2~z, so ~w ∈ span{~y,~z}.



Theorem
Let ~x1,~x2, . . . ,~xk ∈ Rn and let U = span{~x1,~x2, . . . ,~xk}. Then

1. U is a subspace of Rn containing each ~xi, 1 ≤ i ≤ k;
2. if W is a subspace of Rn and ~x1,~x2, . . . ,~xk ∈W, then U ⊆W.

Remark
Property 2 is saying that U is the “smallest” subspace of Rn that contains
~x1,~x2, . . . ,~xk.



Proof. ( Part 1 of Theorem )

Since U = span{~x1,~x2, . . . ,~xk} and 0~x1 + 0~x2 + · · ·+ 0~xk = ~0n, ~0n ∈ U.

Suppose ~x,~y ∈ U. Then for some si, ti ∈ R, 1 ≤ i ≤ k,

~x = s1~x1 + s2~x2 + · · ·+ sk~xk

~y = t1~x1 + t2~x2 + · · ·+ tk~xk

Thus

~x + ~y = (s1~x1 + s2~x2 + · · ·+ sk~xk) + (t1~x1 + t2~x2 + · · ·+ tk~xk)

= (s1 + t1)~x1 + (s2 + t2)~x2 + · · ·+ (sk + tk)~xk.

Since si + ti ∈ R for all 1 ≤ i ≤ k, ~x+~y ∈ U, i.e., U is closed under addition.



Proof. ( Part 1 of Theorem – continued)
Suppose ~x ∈ U and a ∈ R. Then for some si ∈ R, 1 ≤ i ≤ k,

~x = s1~x1 + s2~x2 + · · ·+ sk~xk

Thus

a~x = a(s1~x1 + s2~x2 + · · ·+ sk~xk)

= (as1)~x1 + (as2)~x2 + · · ·+ (ask)~xk.

Since asi ∈ R for all 1 ≤ i ≤ k, a~x ∈ U. Hence, U is closed under scalar
multiplication.

Therefore, U is a subspace of Rn. Furthermore, since

~xi =

i−1∑
j=1

0~xj + 1~xi +

k∑
j=i+1

0~xj,

it follows that ~xi ∈ U for all i, 1 ≤ i ≤ k.



Proof. (Part 2 of Theorem)
Let W ⊂ Rn be a subspace that contains ~x1, · · · ,~xn. We need to prove that
U ⊆W.

Suppose ~x ∈ U. Then ~x = s1~x1 + s2~x2 + · · ·+ sk~xk for some si ∈ R, 1 ≤ i ≤ k.
Since W contain each ~xi and W is closed under scalar multiplication, it
follows that si~xi ∈W for each i, 1 ≤ i ≤ k. Furthermore, since W is closed
under addition, ~x = s1~x1 + s2~x2 + · · ·+ sk~xk ∈W. Therefore, U ⊆W.



Problem (revisited)

Is U =




a
b
c
d


∣∣∣∣∣∣∣∣ a, b, c,d ∈ R and 2a− b = c + 2d

 a subspace of R4?

Justify your answer.

Solution (Another)

Let ~v =


a
b
c
d

 ∈ U. Since 2a− b = c + 2d, c = 2a− b− 2d, and thus

U =




a
b

2a− b− 2d
d


∣∣∣∣∣∣∣∣ a,b,d ∈ R

 = span




1
0
2
0

 ,


0
1
−1
0

 ,


0
0
−2
1


 .

By a previous Theorem, U is a subspace of R4.



Problem
Let ~x,~y ∈ Rn, U1 = span{~x,~y}, and U2 = span{2~x− ~y, 2~y + ~x}. Prove that
U1 = U2.

Solution
To show that U1 = U2, prove that U1 ⊆ U2, and U2 ⊆ U1. We begin by
noting that, by the first part of the previous Theorem, U1 and U2 are
subspaces of Rn.

Since 2~x− ~y, 2~y + ~x ∈ U1, it follows from the second part of the previous
Theorem that span{2~x− ~y, 2~y + ~x} ⊆ U1, i.e., U2 ⊆ U1.

Also, since

~x =
2

5
(2~x− ~y) +

1

5
(2~y + ~x) ,

~y = −1

5
(2~x− ~y) +

2

5
(2~y + ~x) ,

~x,~y ∈ U2. Therefore, by the second part of the previous Theorem,
span{~x,~y} ⊆ U2, i.e., U1 ⊆ U2. The result now follows.



Problem

Show that Rn = span{~e1,~e2, . . . ,~en}, where ~ej denote the jth column of In.

Solution

Let ~x =


x1

x2

...
xn

 ∈ Rn. Then ~x = x1 ~e1 + x2 ~e2 + · · ·+ xn ~en, where

x1, x2, . . . , xn ∈ R. Therefore, ~x ∈ span{~e1,~e2, . . . ,~en}, and thus
Rn ⊆ span{~e1,~e2, . . . ,~en}.

Conversely, since ~ei ∈ Rn for each i, 1 ≤ i ≤ n (and Rn is a vector space), it
follows that span{~e1,~e2, . . . ,~en} ⊆ Rn. The equality now follows.



Problem

Let ~x1 =


1
1
1
1

 ,~x2 =


0
1
1
1

 ,~x3 =


0
0
1
1

 ,~x4 =


0
0
0
1

.

Does {~x1,~x2,~x3,~x4} span R4? (Equivalently, is span{~x1,~x2,~x3,~x4} = R4?)

Solution
To prove span{~x1,~x2,~x3,~x4} = R4, we need to prove two directions:

span{~x1,~x2,~x3,~x4} ⊆ R4 and R4 ⊆ span{~x1,~x2,~x3,~x4}.

For the first relation, since ~x1,~x2,~x3,~x4 ∈ R4 (and R4 is a vector space),
span{~x1,~x2,~x3,~x4} ⊆ R4.



Solution (continued)
For the second relation, notice that

~e1 = ~x1 − ~x2

~e2 = ~x2 − ~x3

~e3 = ~x3 − ~x4

~e4 = ~x4,

showing that ~e1,~e2,~e3,~e4 ∈ span{~x1,~x2,~x3,~x4}. Therefore, since
span{~x1,~x2,~x3,~x4} is a vector space,

R4 = span{~e1,~e2,~e3,~e4} ⊆ span{~x1,~x2,~x3,~x4},

and the equality follows.



Problem

Let ~u1 =


1
−1
1
−1

 , ~u2 =


−1
1
1
1

 , ~u3 =


1
−1
−1
1

 , ~u4 =


1
−1
1
1

.

Show that span{~u1, ~u2, ~u3, ~u4} 6= R4.

Solution
If you check, you’ll find that ~e2 can not be written as a linear combination
of ~u1, ~u2, ~u3, and ~u4.



Spanning sets of null(A) and im(A)

Lemma
Let A be an m× n matrix, and let {~x1,~x2, . . . ,~xk} denote a set of basic
solutions to A~x = ~0m. Then

null(A) = span{~x1, · · · ,~xk}.

Lemma
Let A be an m× n matrix with columns ~c1,~c2, . . . ,~cn. Then

im(A) = span{~c1,~c2, . . . ,~cn}.



Proof. (of null(A) = span{~x1, · · · ,~xk})
"⊇:" Because ~xi ∈ null(A) for each i, 1 ≤ i ≤ k, it follows that

span{~x1,~x2, . . . ,~xk} ⊆ null(A).

"⊆:" Every solution to A~x = ~0m can be expressed as a linear combination of
basic solutions, implying that

null(A) ⊆ span{~x1,~x2, . . . ,~xk}.

Therefore, null(A) = span{~x1,~x2, . . . ,~xk}. �



Proof. (of im(A) = span{~c1,~c2, . . . ,~cn})
"⊆:" Suppose ~y ∈ im(A). Then (by definition) there is a vector ~x ∈ Rn so
that ~y = A~x. Write ~x =

[
x1 x2 . . . xn

]T. Then

~y = A~x =
[
~c1 ~c2 . . . ~cn

]


x1

x2

...
xn

 = x1~c1 + x2~c2 + · · ·+ xn~cn.

Therefore, ~y ∈ span{~c1,~c2, . . . ,~cn}, implying that

im(A) ⊆ span{~c1,~c2, . . . ,~cn}.



Proof. (continued)
Notice that for each j, 1 ≤ j ≤ n,

A~ej =
[
~c1 ~c2 . . . ~cn

]



0
0
...
0
1
0
...
0


← jth row

= 0~c1 + 0~c2 + · · ·+ 0~cj−1 + 1~cj + 0~cj+1 + · · ·+ 0~cn

= ~cj.

Thus ~cj ∈ im(A) for each j, 1 ≤ j ≤ n. It follows that

span{~c1,~c2, . . . ,~cn} ⊆ im(A),

and therefore
im(A) = span{~c1,~c2, . . . ,~cn}.

�
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