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Subspaces of R*



Subspaces of R*

Definitions
1. R denotes the set of real numbers, and is an example of a set of scalars.

2. R" is the set of all n-tuples of real numbers, i.e.,
R" = {(x1,x2,.--,%n) | xi ER,1 <i<n}.

3. The vector space R" consists of the set R" written as column matrices,
along with the (matrix) operations of addition and scalar
multiplication. Unless stated otherwise, R® means the vector space R".



Subspaces of R*

Definitions
1. R denotes the set of real numbers, and is an example of a set of scalars.

2. R" is the set of all n-tuples of real numbers, i.e.,
R" = {(x1,x2,.--,%n) | xi ER,1 <i<n}.

3. The vector space R" consists of the set R" written as column matrices,
along with the (matrix) operations of addition and scalar
multiplication. Unless stated otherwise, R® means the vector space R".

Remark

R™ is a concrete example of the abstract vector space will be studied in the
next chapter.



A vectors is denoted by a lower case letter with an arrow written over it; for
example, U, ¥V, and X denote vectors.



A vectors is denoted by a lower case letter with an arrow written over it; for
example, U, ¥V, and X denote vectors.

—2
3
Another example: @ = | 0.7 | is a vector in R®, written @ € R®.
5
0



A vectors is denoted by a lower case letter with an arrow written over it; for
example, U, ¥V, and X denote vectors.

—2
3
Another example: @ = | 0.7 | is a vector in R®, written @ € R®.
5
0

To save space on the page, the same vector i may be written instead as a
row matrix by taking the transpose of the column:

i=[ -2 3 07, 5 =] .



We are interested in nice subsets of R", defined as follows.



We are interested in nice subsets of R", defined as follows.

Definition (Subspaces)

A subset U of R" is a subspace of R" if

S1. The zero vector of R*, 0y, is in U;

S2. U is closed under addition, i.e., for all 4,w € U, i +w € U;

S3. U is closed under scalar multiplication, i.e., for all @ € U and k € R,
ki e U.



We are interested in nice subsets of R", defined as follows.

Definition (Subspaces)

A subset U of R" is a subspace of R" if

S1. The zero vector of R*, 0y, is in U;

S2. U is closed under addition, i.e., for all 4,w € U, i +w € U;

S3. U is closed under scalar multiplication, i.e., for all @ € U and k € R,
ki e U.

Both subset U = {()},} and R" itself are subspaces of R". Any other
subspace of R" is called a proper subspace of R".



We are interested in nice subsets of R", defined as follows.

Definition (Subspaces)

A subset U of R" is a subspace of R" if

S1. The zero vector of R*, 0y, is in U;

S2. U is closed under addition, i.e., for all 4,w € U, i +w € U;

S3. U is closed under scalar multiplication, i.e., for all @ € U and k € R,
ki e U.

Both subset U = {()},} and R" itself are subspaces of R". Any other
subspace of R" is called a proper subspace of R".

Notation
If U is a subset of R*, we write U C R".






Example

In R3, the line L through the origin that is parallel to the vector

—5 X )
d= 1 | has (vector) equation | y | =t 1 |,teR, so0
—4 z —4

L:{t&|teR}.

Claim. L is a subspace of R®.
» First: 63 € L since 0d = 63.

» Suppose U,V € L. Then by definition, 4 = sd and ¥ = t&, for some
s,t € R. Thus
i+ vV =sd+td=(s+t)d.

Since s+t € R, i+ Vv € L; i.e., L is closed under addition.



Example (continued)

» Suppose U € L and k € R (k is a scalar). Then U = td, for some t € R,
SO . B
ki = k(td) = (kt)d.
Since kt € R, ki € L; i.e., L is closed under scalar multiplication.

» Therefore, L is a subspace of R?.



Example (continued)

» Suppose U € L and k € R (k is a scalar). Then U = td, for some t € R,

SO . .
kit = k(td) = (kt)d.

Since kt € R, ki € L; i.e., L is closed under scalar multiplication.

» Therefore, L is a subspace of R?.

Remark

Note that there is nothing special about the vector d used in this example;
the same proof works for any nonzero vector d € R?, so any line through
the origin is a subspace of R®.



Example

In R3, let M denote the plane through the origin having equation

X
3x — 2y +z = 0; then M has normal vectori = | —2 |. Ifu= | y |, then
1 7

M={ieR®|fi id=0},
where 1 - U is the dot product of vectors il and .

Claim. M is a subspace of R®.
> First: 03 € M since 1 - 03 = 0.
» Suppose U,V € M. Then by definition, - @ =0 and 1 - Vv = 0, so

n-(d+vV)=n-d+n-v=0+0=0,

and thus (U + V) € M; i.e., M is closed under addition.



Example (continued)

» Suppose i € M and k € R. Then -4 = 0, so
o - (ki) = k(a - o) = k(0) =0,
and thus ki € M; i.e., M is closed under scalar multiplication.

» Therefore, M is a subspace of R?.



Example (continued)
» Suppose i € M and k € R. Then -4 = 0, so
o - (ki) = k(a - o) = k(0) =0,
and thus ki € M; i.e., M is closed under scalar multiplication.

» Therefore, M is a subspace of R?.

Remark

As in the previous example, there is nothing special about the plane chosen
for this example; any plane through the origin is a subspace of R3.



Problem

IsU= a,b,c,d€R and 2a—b=c+2d ; asubspace of R*?

Qo T

Justify your answer.



Problem

IsU= a,b,c,d€R and 2a—b=c+2d ; asubspace of R*?

Qo T

Justify your answer.

Solution

The zero vector of R* is the vector witha=b=c=d=0.

a0 oo

In this case, 2a —b = 2(0) + 0 =0 and ¢+ 2d = 0+ 2(0) = 0, so
2a — b = ¢ + 2d. Therefore, 04 € U.



Solution (continued)

Suppose
aj a2
Vi = b and Vo = bs are in U.
@i C2
d1 d2
Then 2a; — b1 = ¢1 4+ 2d; and 2as — bs = ¢c3 + 2ds. Now
a1 ag a1 + ag
N bz [ | bi1+b2
T = (Gl u () a c1 + c2 ’
d1 dQ dl aF d2
and
2(a1 +a2) — (b1 +ba) = (2a1 —b1) + (2a2 — ba)

(c1 +2d1) + (c2 + 2d2)
= (c1+c2)+2(di +d2).

Therefore, V1 + v € U.



Solution (continued)

Finally, suppose

a
V= E €U and keR
d
Then 2a — b = ¢+ 2d. Now
a ka
d kd

and
2ka — kb = k(2a — b) = k(c + 2d) = ke + 2kd.

Therefore, kv € U.

It follows from the Subspace Test that U is a subspace of R*.



Problem

IsU= S s,t € R § a subspace of R®? Justify your answer.



Problem

IsU= S s,t € R § a subspace of R®? Justify your answer.

Solution

Note that Os ¢ U, and thus U is not a subspace of R3.

(You could also show that U is not closed under addition, or not closed
under scalar multiplication.)



Problem

r

IsU= 0 r,se€R and r?+s2=0) asubspace of R3?
s

Justify your answer.



Problem

r
IsU= 0 r,se€R and r?+s2=0) asubspace of R3?
s
Justify your answer.

Solution

Since r € R, 1> > 0 with equality if and only if r = 0. Similarly, s € R
implies s? > 0, and s? = 0 if and only if s = 0. This means 1> +s% = 0 if and
only if r? = s? = 0; thus r? 4+ s = 0 if and only if r = s = 0. Therefore U
contains only 0s, the zero vector, ie., U= {63} As we already observed,
{6n} is a subspace of R", and therefore U is a subspace of R?.



The null space and the image space



The null space and the image space

Definitions (Null Space and Image Space)

Let A be an m X n matrix. The null space of A is defined as
null(A) = {K € R" | AX = O},
and the image space of A is defined as

im(A) = {A% | ¥ € R"}.



The null space and the image space

Definitions (Null Space and Image Space)

Let A be an m X n matrix. The null space of A is defined as
null(A) = {K € R" | AX = O},

and the image space of A is defined as

im(A) = {A% | ¥ € R"}.

Remark

1. Since A is m X n and X € R", AX € R™, so im(A) C R™ while
null(A) C R™.

2. Image space is also called column space of A, denoted as col(A):

-

col(A) = span (81, - ,an) = im(A).



Problem

Prove that if A is an m X n matrix, then null(A) is a subspace of R™.



Problem

Prove that if A is an m X n matrix, then null(A) is a subspace of R™.

Proof.
S1. Since A0y = Om, 0n € null(A).



Problem

Prove that if A is an m X n matrix, then null(A) is a subspace of R™.

Proof.
S1. Since A0y = Om, 0n € null(A).
S2. Let %, ¥ € null(A). Then AX = 0,y and A§ = O, s0
AR+Y) = AR+ Ay = O + O = Orm,
and thus X + ¥ € null(A).



Problem

Prove that if A is an m X n matrix, then null(A) is a subspace of R™.

Proof.
S1. Since A0y = Om, 0n € null(A).
S2. Let X,¥ € null(A). Then AX = Om and A7 = Om, so
A(R+7) = A%+ A7 = O + O = O,
and thus X + ¥ € null(A).
S3. Let % € null(A) and k € R. Then AR = 0y, 0

A(kR) = k(AR) = kOm = Om,

and thus kX € null(A).
Therefore, null(A) is a subspace of R".



Problem

Prove that if A is an m X n matrix, then im(A) is a subspace of R™.



Problem

Prove that if A is an m X n matrix, then im(A) is a subspace of R™.

Proof.
S1. Since 0, € R™ and A0, = Om, Om € im(A).



Problem

Prove that if A is an m X n matrix, then im(A) is a subspace of R™.

Proof.

S1. Since 0, € R™ and A0, = Om, Om € im(A).

S2. Let X,¥ € im(A). Then X = At and ¥ = AV for some 4,V € R", so
X+y=Ad+Av=Al+V).

Since U + v € R”, it follows that X + § € im(A).



Problem

Prove that if A is an m X n matrix, then im(A) is a subspace of R™.

Proof.
S1. Since 0, € R™ and A0, = Om, Om € im(A).
S2. Let X,¥ € im(A). Then X = At and ¥ = AV for some 4,V € R", so
X+y=Ad+AV=A(U+V).
Since U + v € R”, it follows that X + § € im(A).
S3. Let X € im(A) and k € R. Then X = Ad for some @ € R", and thus

k= = k(Afl) = A(ki).

Since ki € R", it follows that kX € im(A).

Therefore, im(A) is a subspace of R™.



The Eigenspace



The Eigenspace

Definition (Eigenspace)

Let A be an n X n matrix and A € R. The eigenspace of A corresponding to
A is the set
Ex(A) ={XeR" | AX= )%}



Example

A= < 41 _32) has two eigenvalues: A\ = 2 and A2 = 5 with

corresponding eigenvectors

= G) il = (1_/12>

Hence,

Ex, (A) = EQ(A) = {t\_/"1|t S R}
Ex, (A) = E5(A) = {t\_/"glt S R}
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Note that

5!

>

=
I

(R ER™ | A% = A%}
{ieR” ! A)Z—A)Z:G,,}

{x’eR“ ! (AI—A)i:ﬁn}

showing that
Ex(A) = null(AI — A).



Note that

5!

>

=
I

(R ER™ | A% = A%}
{ieR” ! Ai—Ai:ﬁn}

{55 ER" | (M — A)R = 6n}
showing that
Ex(A) = null(AI — A).
It follows that
» if )\ is not an eigenvalue of A, then Ex(A) = {6,,};

» the nonzero vectors of Ex(A) are the eigenvectors of A corresponding
to A;

» the eigenspace of A corresponding to A is a subspace of R".



Linear Combinations and Spanning Sets



Linear Combinations and Spanning Sets

Definition (Linear Combinations and Spanning)

Let X1,X2,...,Xx € R" and t1,t2,...,tk € R. Then the vector

X = t1X1 + toXo + - - + Xk

is called a linear combination of the vectors X1,Xa, ..., Xx; the (scalars)
t1,t2,...,tx € R are the coefficients. The set of all linear combinations of
X1,X2,...,Xxk is called the span of X1,Xs, ..., Xk, and is written

span{i1,§27...,§k} = {tlil +t2§2+~~-+tk§k | tl,tz,...,tk GR}



Linear Combinations and Spanning Sets

Definition (Linear Combinations and Spanning)

Let X1,X2,...,Xx € R" and t1,t2,...,tk € R. Then the vector

X = t1X1 + toXo + - - + Xk

is called a linear combination of the vectors X1,Xa, ..., Xx; the (scalars)
t1,t2,...,tx € R are the coefficients. The set of all linear combinations of
X1,X2,...,Xxk is called the span of X1,Xs, ..., Xk, and is written

span{i1,§27...,§k} = {tlil +t2§2+~~-+tk§k | tl,tz,...,tk GR}

Additional Terminology. If U = span{X;,Xa,...,Xx}, then
» U is spanned by the vectors X1,X2, ..., Xk.
» the vectors X1,X2,...,Xk span U.

» the set of vectors {X1,Xo2,...,Xk} is a spanning set for U.



Example

Let X € R® be a nonzero vector. Then span{X} = {kX | k € R} is a line
through the origin having direction vector X.



Example

Let X € R® be a nonzero vector. Then span{X} = {kX | k € R} is a line
through the origin having direction vector X.

Example
Let X,¥ € R® be nonzero vectors that are not parallel. Then
span{X,y} = {kX + ty | k,t € R}

is a plane through the origin containing X and .



Example

Let X € R® be a nonzero vector. Then span{X} = {kX | k € R} is a line

through the origin having direction vector X.

Example

Let X,¥ € R® be nonzero vectors that are not parallel. Then
span{X,y} = {kx + ty | k,t € R}

is a plane through the origin containing X and .

How would you find the equation of this plane?



Problem

8 2 —1

3 1 (0]
L L S - = 0
Let X = 13 'Y= 3 and Z = M Is X € span{y, Z}7



Problem

8 —1
3 1 0
— T A X AN
Let X 13 0¥ _3 and Z M Is X € span{y, Z}7
20 5 =)
Solution

An equivalent question is: can X be expressed as a linear combination of y
and 77
Suppose there exist a,b € R so that X = ay + bZ. Then

8 2 -1 2 -1
3 1 0 1 0 |[a
3 [T s [ TP 2| T s 2 { b } '
20 5 3 5 -3

Solve this system of four linear equations in the two variables a and b.



Solution (continued)

2 -1 8 1 0
1 0 3 . 0 1
-3 2| —-13 0 0
5 =3 20 0 0

Since the system has no solutions, X ¢ span{y, z}.

=2

=1



Problem

8 2 -1
e T B O Ve FE O B - e e
13 | -3 2 ’
21 5 3

This is almost identical to a previous problem, except that w (above) has
one entry that is different from the vector X of that problem.



Problem

8 2 -1
e T B O Ve FE O B - e e
13 | -3 2 ’
21 5 3

This is almost identical to a previous problem, except that w (above) has
one entry that is different from the vector X of that problem.

Solution

In this case, the system of linear equations is consistent, and gives us
w =3y — 27, so w € span{y,z}.



Theorem
Let %1,X2,...,%Xk € R" and let U = span{X1,Xa,...,Xx}. Then
1. U is a subspace of R" containing each X;, 1 <i < k;
2. if W is a subspace of R* and X1,X2,...,Xx € W, then U C W.



Theorem
Let %1,X2,...,%Xk € R" and let U = span{X1,Xa,...,Xx}. Then
1. U is a subspace of R" containing each X;, 1 <i < k;
2. if W is a subspace of R* and X1,X2,...,Xx € W, then U C W.

Remark

Property 2 is saying that U is the “smallest” subspace of R" that contains
X1,X2, . .., Xk.



Proof. ( Part 1 of Theorem )

Since U = span{Xi,Xa, ..., Xk} and 0X; + 0% + - - - + 0Xk = On, On € U.



Proof. ( Part 1 of Theorem )
Since U = span{Xi,Xa, ..., Xk} and 0X; + 0% + - - - + 0Xk = On, On € U.
Suppose X,y € U. Then for some si, t; € R, 1 <i <k,
X = 81X1 + 82X2 + -+ - + skXk
¥ =t1X1 + toXo + -+ - + tx Xk
Thus

R+ 7= (s1%1 +82%2 + - - + s%) + (81%1 + to¥e + -+ - + taRy)
= (514 t1)%1 + (s2 + t2)X2 + - - 4 (5K + ti)Xx.

Since si +t; € R for all 1 <i<k,X+§ € U, ie., U is closed under addition.



Proof. ( Part 1 of Theorem — continued)

Suppose X € U and a € R. Then for some s; € R, 1 <i <Kk,
X = 81X1 + S2X2 + - - - + SkXk
Thus

aX = a(si1X1 +s2X2 + -+ + skXxk)

(as1)X1 + (as2)X2 + - - - + (asik)Xk.

Since as; € R for all 1 <i <k, aX € U. Hence, U is closed under scalar
multiplication.



Proof. ( Part 1 of Theorem — continued)

Suppose X € U and a € R. Then for some s; € R, 1 <i <Kk,
= 81X + s2Xa + - - + siXk
Thus

aX = a(si1X1 +s2X2 + -+ + skXxk)
(as1)%1 + (as2)X2 + - - - + (ask)Xk.

Since as; € R for all 1 <i <k, aX € U. Hence, U is closed under scalar
multiplication.

Therefore, U is a subspace of R". Furthermore, since

ZOXJ + 1% + Z 0%;,

j=i+1

it follows that X; € U for all i, 1 <i < k.



Proof. ( Part 1 of Theorem — continued)

Suppose X € U and a € R. Then for some s; € R, 1 <i <Kk,
= 81X + s2Xa + - - + siXk
Thus

aX = a(si1X1 +s2X2 + -+ + skXxk)
(as1)%1 + (as2)X2 + - - - + (ask)Xk.

Since as; € R for all 1 <i <k, aX € U. Hence, U is closed under scalar
multiplication.

Therefore, U is a subspace of R". Furthermore, since

ZOXJ + 1% + Z 0%;,

j=i+1

it follows that X; € U for all i, 1 <i < k.



Proof. (Part 2 of Theorem)

Let W C R" be a subspace that contains X1, --- ,X,. We need to prove that
UCW.



Proof. (Part 2 of Theorem)

Let W C R" be a subspace that contains X1, --- ,X,. We need to prove that
UCW.

Suppose X € U. Then X = s1X; +82X2 + - - - + skXk for some s; € R, 1 <i <k.
Since W contain each X; and W is closed under scalar multiplication, it
follows that s;X; € W for each i, 1 <i < k. Furthermore, since W is closed
under addition, X = s1X1 + saX2 + - - - + skXx € W. Therefore, U C W.



Problem (revisited)

IsU= a,b,c,de€R and 2a—b=c+2d y asubspace of R*?

Qo T o

Justify your answer.



Problem (revisited)

IsU= a,b,c,d€R and 2a—b=c+2d » a subspace of R*?

Qo T o

Justify your answer.

Solution (Another)

a
Let vV = l; € U. Since 2a —b =c+ 2d, ¢ = 2a — b — 2d, and thus
d
a 1 0 0
b 0 1 0
U= % — b — 2d a,b,d € R } = span o || =1 ] 2o
el 0 0 1

By a previous Theorem, U is a subspace of R*.



Problem

Let X,y € R*, U; = span{X,y}, and Uy = span{2X — y, 2y + X}. Prove that
U; = Us.



Problem

Let X,y € R*, U; = span{X,y}, and Uy = span{2X — y, 2y + X}. Prove that
U; = Us.

Solution

To show that U; = Us, prove that U; C Uz, and Uy C U;. We begin by
noting that, by the first part of the previous Theorem, U; and U, are
subspaces of R".



Problem
Let X,y € R*, U; = span{X,y}, and Uy = span{2X — y, 2y + X}. Prove that
U; = Us.

Solution

To show that U; = Us, prove that U; C Uz, and Uy C U;. We begin by
noting that, by the first part of the previous Theorem, U; and U, are
subspaces of R".

Since 2X — ¥, 2y + X € Uy, it follows from the second part of the previous
Theorem that span{2X — ¥, 2y + X} C Uy, i.e., Uy C U;.

Also, since
X = Z(R-5)+3 Q5+,
- | I
v o= —p@&=9)+-025+%),

X,¥ € Ua. Therefore, by the second part of the previous Theorem,
span{X,y} C Us, i.e.,, Uy C Us. The result now follows.



Problem

Show that R™ = span{&}, &, ...,&}, where & denote the j®® column of I,.



Problem

Show that R™ = span{&}, &, ...,&}, where & denote the j®® column of I,.
Solution
X1
X2
Let X = . € R". Then X = x1€67 + X263 + - - + Xn€n, where
Xn
X1,X2,...,Xn € R. Therefore, X € span{€1,6s,...,&y}, and thus

@ 5 = =
R* C span{&1,62,...,6n}.



Problem

Show that R™ = span{&}, &, ...,&}, where & denote the j®® column of I,.
Solution
X1
X2
Let X = . € R". Then X = x1€67 + X263 + - - + Xn€n, where
Xn
X1,X2,...,Xn € R. Therefore, X € span{€1,6s,...,&y}, and thus
R* C span{&1,62,...,6n}.

Conversely, since & € R" for each i, 1 <i < n (and R" is a vector space), it
follows that span{€i,€s,...,€n} C R". The equality now follows.



Problem
1
- 1

Let X1 = 1 [ X2=
1

Does {X1,X2,X3,X4} span R*? (Equivalently, is span{Xi,X2,X3,%4} = R4?)



Problem

1 0 0 0

= 1 . 1 = 0 = 0
Let X1 = 1 ,Xo = 1 Xa— 1 , X4 = 0
1 1 1 1

Does {X1,X2,X3,X4} span R*? (Equivalently, is span{Xi,X2,X3,%4} = R4?)

Solution

To prove span{%i, X2, %3,%1} = R*, we need to prove two directions:

5 5 oS 4 4 5 = o o
span{X1,X2,X3, X4} CR® and R" C span{Xi,X2,X3,%4}.



Problem

Let X1 = , X3 =

e
1

—_ == O

—

—

Does {X1,X2,X3,X4} span R*? (Equivalently, is span{Xi,X2,X3,%4} = R4?)

Solution

To prove span{%i, X2, %3,%1} = R*, we need to prove two directions:

5 5 oS 4 4 5 = o o
span{X1,X2,X3, X4} CR® and R" C span{Xi,X2,X3,%4}.

For the first relation, since X, Xa,X3,%Xs € R? (and R* is a vector space),
o o = o 4
span{Xi, X2,X3,Xs} C R*.



Solution (continued)

For the second relation, notice that

e

kel

€1

- -
X1 — X2
- =
X9 — X3
- =
X3 — X4
X4,

showing that €1, €2, €3, €4 € span{Xi,X2,Xs,X4}. Therefore, since

span{X1, X2,X3,X4} is a vector space,

R* = span{&, &, 3,81} C span{x;,Xa,X3,%4},

and the equality follows.



Problem

1
Let U7 = 7} ,Ug =
—1

Show that span{is, lle, i3, @4} # R*.



Problem

1 —1 1
Let U4 = 7} ,ﬁzz i ,ﬁ3: :1 ,ﬁ4: n
—1 1 1 1

Show that span{is, lle, i3, @4} # R*.

Solution

If you check, you’ll find that €2 can not be written as a linear combination
Of ff1, ﬁg, 1_1:3, and ﬁ4.
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Spanning sets of null(A) and im(A)

Lemma

Let A be an m X n matrix, and let {Xi,X2,...,Xk} denote a set of basic
solutions to AX = 0,. Then

null(A) = span{Xy, - -+ ,Xx}.

Lemma

Let A be an m X n matrix with columns ¢1,Ca,...,C,. Then

im(A) = span{ci, Ca,...,Cn}.



Proof. (of null(A) = span{Xy,--- ,Xx})
"D:" Because X; € null(A) for each i, 1 <i <k, it follows that

span{Xi,Xa,...,Xx} C null(A).



Proof. (of null(A) = span{Xy,--- ,Xx})
"D:" Because X; € null(A) for each i, 1 <i <k, it follows that

span{Xi,Xa,...,Xx} C null(A).

"C:" Every solution to AX = Om can be expressed as a linear combination of
basic solutions, implying that

null(A) C span{X1,Xa2,...,Xk}.

Therefore, null(A) = span{X1,Xa, ..., Xk }. [ ]



Proof. (of im(A) = span{¢;,Ca,...,Cn})
"C:" Suppose ¥ € im(A). Then (by definition) there is a vector X € R" so

that ¥ = AX. Write X = [ X;1 X2 ... Xp ]T. Then
X1
X2
}_f':A}_(’:[(_l‘l 62 6n] . :X161+X262—|—"'+Xn6n.
Xn

Therefore, § € span{Ci, C2,...,Cn}, implying that

im(A) C span{¢i,C2,...,Cn}.



Proof. (continued)
Notice that for each j, 1 <j <n,

0
0
I .o
Ag = [a & & | 1 + jth row
0
_0_
= 0T 403 + -+ 081 + 1& + 041 + - - + 0Ca
= g.

Thus ¢ € im(A) for each j, 1 <j < n. It follows that
span{Ci, C2,...,Cn} C im(A),

and therefore
im(A) = span{Ci, Ca,...,Cn}.
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