Math 221: LINEAR ALGEBRA

Chapter 5. Vector Space \mathbb{R}^n §5-1. Subspaces and Spanning

 ${\bf Le} \ {\bf Chen}^1$ ${\bf Emory} \ {\bf University, 2020 \ Fall}$

(last updated on 10/26/2020)

Subspaces of \mathbb{R}^{n}

The null space and the image space

The Eigenspace

Linear Combinations and Spanning Sets

Spanning sets of null(A) and im(A)

Subspaces of \mathbb{R}^n

Subspaces of \mathbb{R}^n

Definitions

- 1. \mathbb{R} denotes the set of real numbers, and is an example of a set of scalars.
- 2. \mathbb{R}^{n} is the set of all n-tuples of real numbers, i.e.,

$$\mathbb{R}^n = \left\{ (x_1, x_2, \ldots, x_n) \mid x_i \in \mathbb{R}, 1 \leq i \leq n \right\}.$$

3. The vector space \mathbb{R}^n consists of the set \mathbb{R}^n written as column matrices, along with the (matrix) operations of addition and scalar multiplication. Unless stated otherwise, \mathbb{R}^n means the vector space \mathbb{R}^n .

Subspaces of \mathbb{R}^n

Definitions

- 1. \mathbb{R} denotes the set of real numbers, and is an example of a set of scalars.
- 2. \mathbb{R}^{n} is the set of all n-tuples of real numbers, i.e.,

$$\mathbb{R}^n = \left\{ (x_1, x_2, \ldots, x_n) \mid x_i \in \mathbb{R}, 1 \leq i \leq n \right\}.$$

3. The vector space \mathbb{R}^n consists of the set \mathbb{R}^n written as column matrices, along with the (matrix) operations of addition and scalar multiplication. Unless stated otherwise, \mathbb{R}^n means the vector space \mathbb{R}^n .

Remark

 \mathbb{R}^n is a concrete example of the abstract vector space will be studied in the next chapter.

A vectors is denoted by a lower case letter with an arrow written example, \vec{u} , \vec{v} , and \vec{x} denote vectors.	over it; for

A vectors is denoted by a lower case letter with an arrow written over it; for example, \vec{u} , \vec{v} , and \vec{x} denote vectors.

example,
$$\vec{u}$$
, \vec{v} , and \vec{x} denote vectors. Another example: $\vec{u} = \begin{bmatrix} -2 \\ 3 \\ 0.7 \\ 5 \\ \pi \end{bmatrix}$ is a vector in \mathbb{R}^5 , written $\vec{u} \in \mathbb{R}^5$.

A vectors is denoted by a lower case letter with an arrow written over it; for example, \vec{u} , \vec{v} , and \vec{x} denote vectors.

Another example:
$$\vec{\mathbf{u}} = \begin{bmatrix} -2\\3\\0.7\\5\\\pi \end{bmatrix}$$
 is a vector in \mathbb{R}^5 , written $\vec{\mathbf{u}} \in \mathbb{R}^5$.

To save space on the page, the same vector \vec{u} may be written instead as a row matrix by taking the transpose of the column:

$$\vec{\mathbf{u}} = \begin{bmatrix} -2, & 3, & 0.7, & 5, & \pi \end{bmatrix}$$

We are interested in nice subsets of \mathbb{R}^n , defined as follows.

Definition (Subspaces)

A subset U of \mathbb{R}^n is a subspace of \mathbb{R}^n if

- S1. The zero vector of \mathbb{R}^n , $\vec{0}_n$, is in U;
- S2. U is closed under addition, i.e., for all $\vec{u}, \vec{w} \in U, \vec{u} + \vec{w} \in U$;
- S3. U is closed under scalar multiplication, i.e., for all $\vec{u} \in U$ and $k \in \mathbb{R},$ $k\vec{u} \in U.$

We are interested in nice subsets of \mathbb{R}^n , defined as follows.

Definition (Subspaces)

A subset U of \mathbb{R}^n is a subspace of \mathbb{R}^n if

- S1. The zero vector of \mathbb{R}^n , $\vec{0}_n$, is in U;
- S2. U is closed under addition, i.e., for all $\vec{u}, \vec{w} \in U, \vec{u} + \vec{w} \in U$;
- S3. U is closed under scalar multiplication, i.e., for all $\vec{u} \in U$ and $k \in \mathbb{R}$, $k\vec{u} \in U$.

Both subset $U = \{\vec{0}_n\}$ and R^n itself are subspaces of \mathbb{R}^n . Any other subspace of \mathbb{R}^n is called a proper subspace of \mathbb{R}^n .

We are interested in nice subsets of \mathbb{R}^n , defined as follows.

Definition (Subspaces)

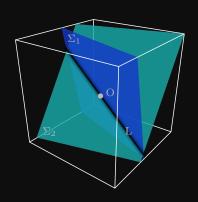
A subset U of \mathbb{R}^n is a subspace of \mathbb{R}^n if

- S1. The zero vector of \mathbb{R}^n , $\vec{0}_n$, is in U;
- S2. U is closed under addition, i.e., for all $\vec{u}, \vec{w} \in U, \vec{u} + \vec{w} \in U$;
- S3. U is closed under scalar multiplication, i.e., for all $\vec{u} \in U$ and $k \in \mathbb{R},$ $k\vec{u} \in U.$

Both subset $U = \{\vec{0}_n\}$ and R^n itself are subspaces of \mathbb{R}^n . Any other subspace of \mathbb{R}^n is called a proper subspace of \mathbb{R}^n .

Notation

If U is a subset of $\mathbb{R}^n,$ we write $U\subseteq\mathbb{R}^n.$



Example

In \mathbb{R}^3 , the line L through the origin that is parallel to the vector

$$\vec{d} = \begin{bmatrix} -5 \\ 1 \\ -4 \end{bmatrix} \text{ has (vector) equation } \begin{bmatrix} x \\ y \\ z \end{bmatrix} = t \begin{bmatrix} -5 \\ 1 \\ -4 \end{bmatrix}, t \in \mathbb{R}, \text{ so}$$

Claim. L is a subspace of
$$\mathbb{R}^3$$
.

- First: $\vec{0}_3 \in L \text{ since } 0\vec{d} = \vec{0}_3$.
- ▶ Suppose $\vec{u}, \vec{v} \in L$. Then by definition, $\vec{u} = s\vec{d}$ and $\vec{v} = t\vec{d}$, for some $s, t \in \mathbb{R}$. Thus

 $L = \left\{ t\vec{d} \mid t \in \mathbb{R} \right\}.$

$$\vec{u} + \vec{v} = s\vec{d} + t\vec{d} = (s+t)\vec{d}.$$

Since $s + t \in \mathbb{R}$, $\vec{u} + \vec{v} \in L$; i.e., L is closed under addition.

Example (continued)

▶ Suppose $\vec{u} \in L$ and $k \in \mathbb{R}$ (k is a scalar). Then $\vec{u} = t\vec{d}$, for some $t \in \mathbb{R}$, so

$$k\vec{u} = k(t\vec{d}) = (kt)\vec{d}.$$

Since kt $\in \mathbb{R}$, k $\vec{u} \in L$; i.e., L is closed under scalar multiplication.

▶ Therefore, L is a subspace of \mathbb{R}^3 .

Example (continued)

▶ Suppose $\vec{u} \in L$ and $k \in \mathbb{R}$ (k is a scalar). Then $\vec{u} = t\vec{d}$, for some $t \in \mathbb{R}$, so

$$k\vec{u} = k(t\vec{d}) = (kt)\vec{d}.$$

Since $kt \in \mathbb{R}$, $k\vec{u} \in L$; i.e., L is closed under scalar multiplication.

▶ Therefore, L is a subspace of \mathbb{R}^3 .

Remark

Note that there is nothing special about the vector \vec{d} used in this example; the same proof works for any nonzero vector $\vec{d} \in \mathbb{R}^3$, so any line through the origin is a subspace of \mathbb{R}^3 .

Example

In \mathbb{R}^3 , let M denote the plane through the origin having equation

$$3x - 2y + z = 0$$
; then M has normal vector $\vec{n} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$. If $\vec{u} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, then

$$M = \left\{ \vec{u} \in \mathbb{R}^3 \mid \vec{n} \cdot \vec{u} = 0 \right\},\,$$

where $\vec{n} \cdot \vec{u}$ is the dot product of vectors \vec{n} and \vec{u} .

Claim. M is a subspace of \mathbb{R}^3 .

- First: $\vec{0}_3 \in M$ since $\vec{n} \cdot \vec{0}_3 = 0$.
- ▶ Suppose $\vec{u}, \vec{v} \in M$. Then by definition, $\vec{n} \cdot \vec{u} = 0$ and $\vec{n} \cdot \vec{v} = 0$, so

$$\vec{n} \cdot (\vec{u} + \vec{v}) = \vec{n} \cdot \vec{u} + \vec{n} \cdot \vec{v} = 0 + 0 = 0,$$

and thus $(\vec{u} + \vec{v}) \in M$; i.e., M is closed under addition.

Example (continued)

▶ Suppose $\vec{u} \in M$ and $k \in \mathbb{R}$. Then $\vec{n} \cdot \vec{u} = 0$, so

$$\vec{n} \cdot (k\vec{u}) = k(\vec{n} \cdot \vec{u}) = k(0) = 0,$$

and thus $k\vec{u}\in M;$ i.e., M is closed under scalar multiplication.

▶ Therefore, M is a subspace of \mathbb{R}^3 .

Example (continued)

▶ Suppose $\vec{u} \in M$ and $k \in \mathbb{R}$. Then $\vec{n} \cdot \vec{u} = 0$, so

$$\vec{n}\cdot(k\vec{u})=k(\vec{n}\cdot\vec{u})=k(0)=0,$$

and thus $k\vec{u} \in M$; i.e., M is closed under scalar multiplication.

ightharpoonup Therefore, M is a subspace of \mathbb{R}^3 .

Remark

As in the previous example, there is nothing special about the plane chosen for this example; any plane through the origin is a subspace of \mathbb{R}^3 .

$$\text{Is } U = \left\{ \left[\begin{array}{c} a \\ b \\ c \\ d \end{array} \right] \; \middle| \; a,b,c,d \in \mathbb{R} \quad \text{and} \quad 2a-b=c+2d \right\} \text{ a subspace of } \mathbb{R}^4?$$

Justify your answer.

$$\text{Is } U = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \middle| \begin{array}{l} a,b,c,d \in \mathbb{R} \quad \text{and} \quad 2a-b=c+2d \\ \end{array} \right\} \text{ a subspace of } \mathbb{R}^4?$$
 Justify your answer.

Solution

The zero vector of
$$\mathbb{R}^4$$
 is the vector $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ with $a=b=c=d=0$.
In this case, $2a-b=2(0)+0=0$ and $c+2d=0+2(0)=0$, so

In this case, 2a - b = 2(0) + 0 = 0 and c + 2d = 0 + 2(0) = 02a - b = c + 2d. Therefore, $\vec{0}_4 \in U$.

Solution (continued)

Suppose

$$\vec{\mathbf{v}}_1 = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{b}_1 \\ \mathbf{c}_1 \\ \mathbf{d}_1 \end{bmatrix} \quad \text{and} \quad \vec{\mathbf{v}}_2 = \begin{bmatrix} \mathbf{a}_2 \\ \mathbf{b}_2 \\ \mathbf{c}_2 \\ \mathbf{d}_2 \end{bmatrix} \text{ are in U.}$$

Then $2a_1 - b_1 = c_1 + 2d_1$ and $2a_2 - b_2 = c_2 + 2d_2$. Now

$$\vec{v}_1 + \vec{v}_2 = \left[\begin{array}{c} a_1 \\ b_1 \\ c_1 \\ d_1 \end{array} \right] + \left[\begin{array}{c} a_2 \\ b_2 \\ c_2 \\ d_2 \end{array} \right] = \left[\begin{array}{c} a_1 + a_2 \\ b_1 + b_2 \\ c_1 + c_2 \\ d_1 + d_2 \end{array} \right],$$

and

$$\begin{array}{rcl} 2(a_1+a_2)-(b_1+b_2) & = & (2a_1-b_1)+(2a_2-b_2) \\ & = & (c_1+2d_1)+(c_2+2d_2) \\ & = & (c_1+c_2)+2(d_1+d_2). \end{array}$$

Therefore, $\vec{v}_1 + \vec{v}_2 \in U$.

Solution (continued)

Finally, suppose

$$\vec{\mathrm{v}} = \left| \begin{array}{c} \mathrm{a} \\ \mathrm{b} \\ \mathrm{c} \\ \mathrm{d} \end{array} \right| \in \mathrm{U} \quad \mathrm{and} \quad \mathrm{k} \in \mathbb{R}$$

Then 2a - b = c + 2d. Now

$$\mathbf{k}\vec{\mathbf{v}} = \mathbf{k} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} \mathbf{k}\mathbf{a} \\ \mathbf{k}\mathbf{b} \\ \mathbf{k}\mathbf{c} \\ \mathbf{k}\mathbf{d} \end{bmatrix},$$

and

$$2ka - kb = k(2a - b) = k(c + 2d) = kc + 2kd.$$

Therefore, $k\vec{v} \in U$.

It follows from the Subspace Test that U is a subspace of \mathbb{R}^4 .

Is
$$U = \left\{ \begin{bmatrix} 1 \\ s \\ t \end{bmatrix} \middle| s, t \in \mathbb{R} \right\}$$
 a subspace of \mathbb{R}^3 ? Justify your answer.

Is $U = \left\{ \begin{bmatrix} 1 \\ s \\ t \end{bmatrix} \middle| s, t \in \mathbb{R} \right\}$ a subspace of \mathbb{R}^3 ? Justify your answer.

Solution

Note that $\vec{0}_3 \notin U$, and thus U is not a subspace of \mathbb{R}^3 .

(You could also show that U is not closed under addition, or not closed under scalar multiplication.)

Is
$$U = \left\{ \begin{bmatrix} r \\ 0 \\ s \end{bmatrix} \middle| r, s \in \mathbb{R} \text{ and } r^2 + s^2 = 0 \right\}$$
 a subspace of \mathbb{R}^3 ?

Justify your answer.

Is
$$U = \left\{ \begin{bmatrix} r \\ 0 \\ s \end{bmatrix} \middle| r, s \in \mathbb{R} \text{ and } r^2 + s^2 = 0 \right\}$$
 a subspace of \mathbb{R}^3 ?

Justify your answer.

Solution

Since $r\in\mathbb{R},\ r^2\geq 0$ with equality if and only if r=0. Similarly, $s\in\mathbb{R}$ implies $s^2\geq 0,$ and $s^2=0$ if and only if s=0. This means $r^2+s^2=0$ if and only if $r^2=s^2=0;$ thus $r^2+s^2=0$ if and only if r=s=0. Therefore U contains only $\vec{0}_3,$ the zero vector, i.e., $U=\{\vec{0}_3\}.$ As we already observed, $\{\vec{0}_n\}$ is a subspace of $\mathbb{R}^n,$ and therefore U is a subspace of $\mathbb{R}^3.$

The null space and the image space

Definitions (Null Space and Image Space)

Let A be an $m \times n$ matrix. The null space of A is defined as

$$\mathrm{null}(A) = \{ \vec{x} \in \mathbb{R}^n \mid A\vec{x} = \vec{0}_m \},$$

and the image space of A is defined as

$$\operatorname{im}(A) = \{A\vec{x} \mid \vec{x} \in \mathbb{R}^n\}.$$

The null space and the image space

Definitions (Null Space and Image Space)

Let A be an $m \times n$ matrix. The null space of A is defined as

$$\mathrm{null}(A) = \{ \vec{x} \in \mathbb{R}^n \mid A\vec{x} = \vec{0}_m \},$$

and the image space of A is defined as

$$im(A) = \{A\vec{x} \mid \vec{x} \in \mathbb{R}^n\}.$$

Remark

- 1. Since A is $m \times n$ and $\vec{x} \in \mathbb{R}^n$, $A\vec{x} \in \mathbb{R}^m$, so $im(A) \subseteq \mathbb{R}^m$ while $null(A) \subseteq \mathbb{R}^n$.
- 2. Image space is also called column space of A, denoted as col(A):

$$col(A) = span(\vec{a}_1, \dots, \vec{a}_n) = im(A).$$

Prove that if A is an $m \times n$ matrix, then null(A) is a subspace of \mathbb{R}^n .

Prove that if A is an $m \times n$ matrix, then null(A) is a subspace of \mathbb{R}^n .

Proof.

S1. Since $A\vec{0}_n = \vec{0}_m, \, \vec{0}_n \in null(A)$.

Prove that if A is an $m \times n$ matrix, then null(A) is a subspace of \mathbb{R}^n .

Proof.

S1. Since $A\vec{0}_n = \overline{\vec{0}_m}, \vec{0}_n \in null(A)$.

S2. Let $\vec{x}, \vec{y} \in null(A)$. Then $A\vec{x} = \vec{0}_m$ and $A\vec{y} = \vec{0}_m$, so

$$A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y} = \vec{0}_m + \vec{0}_m = \vec{0}_m,$$

and thus $\vec{x} + \vec{y} \in \text{null}(A)$.

Prove that if A is an $m \times n$ matrix, then null(A) is a subspace of \mathbb{R}^n .

Proof.

- S1. Since $A\vec{0}_n = \vec{0}_m$, $\vec{0}_n \in null(A)$.
- S2. Let $\vec{x}, \vec{y} \in \text{null}(A)$. Then $A\vec{x} = \vec{0}_{\text{m}}$ and $A\vec{y} = \vec{0}_{\text{m}}$, so

$$A(\vec{x}+\vec{y}) = A\vec{x} + A\vec{y} = \vec{0}_m + \vec{0}_m = \vec{0}_m, \label{eq:alpha}$$

and thus $\vec{x} + \vec{y} \in \text{null}(A)$.

S3. Let $\vec{x} \in \text{null}(A)$ and $k \in \mathbb{R}$. Then $A\vec{x} = \vec{0}_m$, so

$$A(k\vec{x}) = k(A\vec{x}) = k\vec{0}_m = \vec{0}_m,$$

and thus $k\vec{x} \in \text{null}(A)$.

Therefore, null(A) is a subspace of \mathbb{R}^n .

Prove that if A is an $m \times n$ matrix, then im(A) is a subspace of \mathbb{R}^m .

Prove that if A is an $m \times n$ matrix, then im(A) is a subspace of \mathbb{R}^m .

Proof.

S1. Since $\vec{0}_n \in \mathbb{R}^n$ and $A\vec{0}_n = \vec{0}_m,\, \vec{0}_m \in \operatorname{im}(A).$

Prove that if A is an $m \times n$ matrix, then im(A) is a subspace of \mathbb{R}^m .

Proof.

- S1. Since $\vec{0}_n \in \mathbb{R}^n$ and $A\vec{0}_n = \vec{0}_m$, $\vec{0}_m \in im(A)$.
- S2. Let $\vec{x}, \vec{y} \in \text{im}(A)$. Then $\vec{x} = A\vec{u}$ and $\vec{y} = A\vec{v}$ for some $\vec{u}, \vec{v} \in \mathbb{R}^n$, so

$$\vec{x} + \vec{y} = A\vec{u} + A\vec{v} = A(\vec{u} + \vec{v}).$$

Since $\vec{u} + \vec{v} \in \mathbb{R}^n$, it follows that $\vec{x} + \vec{y} \in \text{im}(A)$.

Prove that if A is an $m \times n$ matrix, then im(A) is a subspace of \mathbb{R}^m .

Proof.

- S1. Since $\vec{0}_n \in \mathbb{R}^n$ and $A\vec{0}_n = \vec{0}_m$, $\vec{0}_m \in im(A)$.
- S2. Let $\vec{x}, \vec{y} \in \text{im}(A)$. Then $\vec{x} = A\vec{u}$ and $\vec{y} = A\vec{v}$ for some $\vec{u}, \vec{v} \in \mathbb{R}^n$, so

$$\vec{x} + \vec{y} = A\vec{u} + A\vec{v} = A(\vec{u} + \vec{v}).$$

Since $\vec{u} + \vec{v} \in \mathbb{R}^n$, it follows that $\vec{x} + \vec{y} \in \text{im}(A)$.

S3. Let $\vec{x} \in \text{im}(A)$ and $k \in \mathbb{R}$. Then $\vec{x} = A\vec{u}$ for some $\vec{u} \in \mathbb{R}^n$, and thus

$$k\vec{x} = k(A\vec{u}) = A(k\vec{u}).$$

Since $k\vec{u} \in \mathbb{R}^n$, it follows that $k\vec{x} \in im(A)$.

Therefore, im(A) is a subspace of \mathbb{R}^m .

The Eigenspace

Definition (Eigenspace)

Let A be an n × n matrix and $\lambda \in \mathbb{R}$. The eigenspace of A corresponding to λ is the set

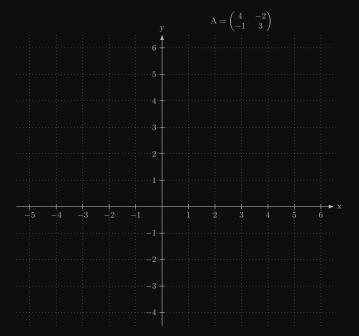
$$\mathrm{E}_{\lambda}(\mathrm{A}) = \{ \vec{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}} \mid \mathrm{A}\vec{\mathrm{x}} = \lambda \vec{\mathrm{x}} \}$$

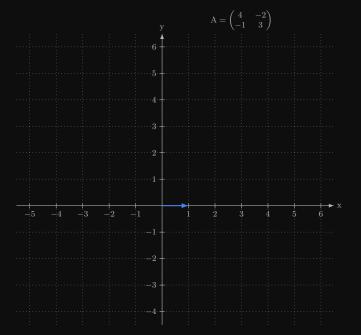
$$A = \begin{pmatrix} 4 & -2 \\ -1 & 3 \end{pmatrix}$$
 has two eigenvalues: $\lambda_1 = 2$ and $\lambda_2 = 5$ with corresponding eigenvectors

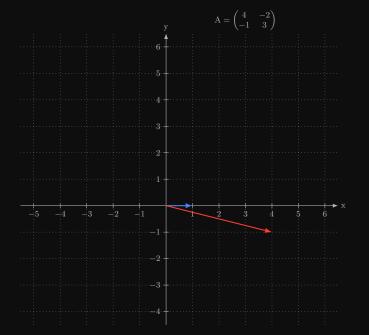
$$\vec{\mathrm{v}}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \mathrm{and} \quad \vec{\mathrm{v}}_2 = \begin{pmatrix} -1 \\ 1/2 \end{pmatrix}$$

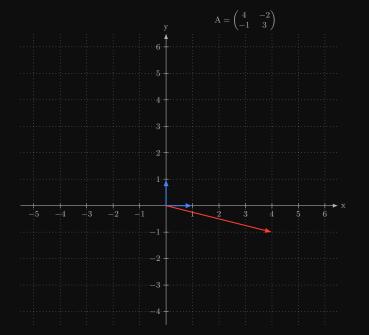
Hence,

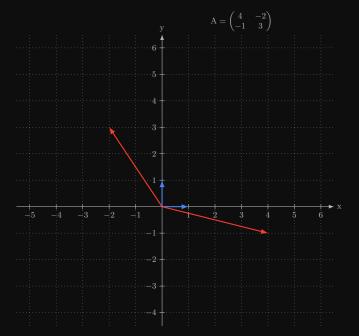
$$\begin{split} E_{\lambda_1}(A) &= E_2(A) = \{t\vec{v}_1|t \in \mathbb{R}\} \\ E_{\lambda_2}(A) &= E_5(A) = \{t\vec{v}_2|t \in \mathbb{R}\} \end{split}$$

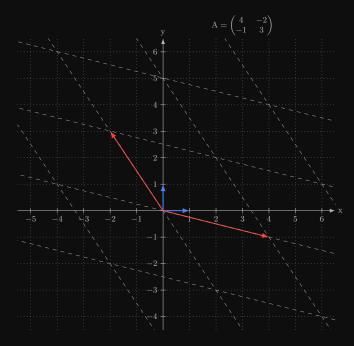


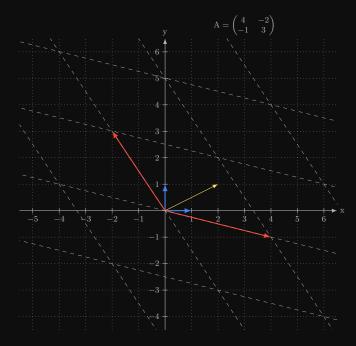


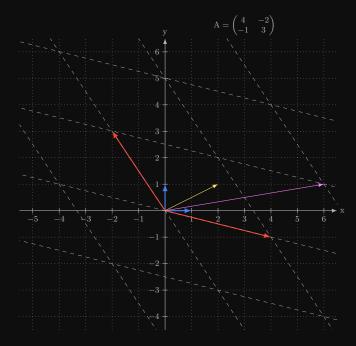


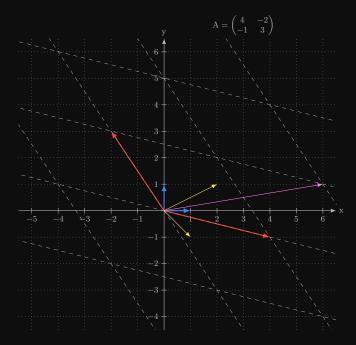


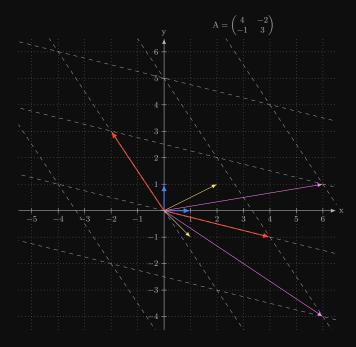


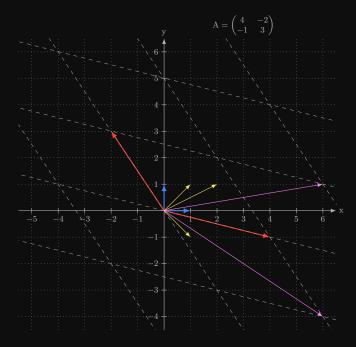


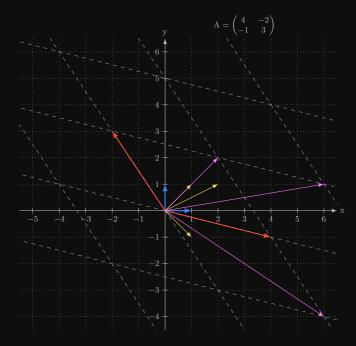


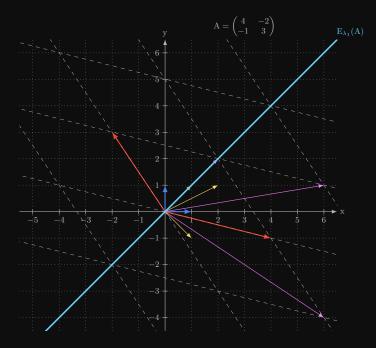


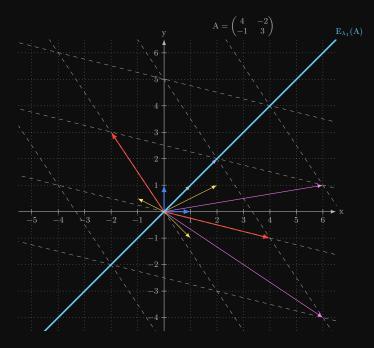


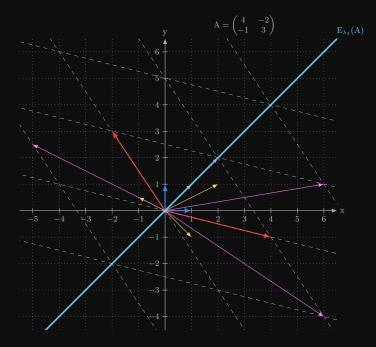


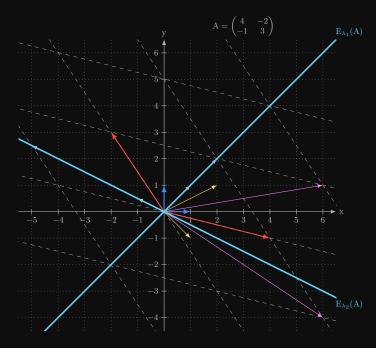


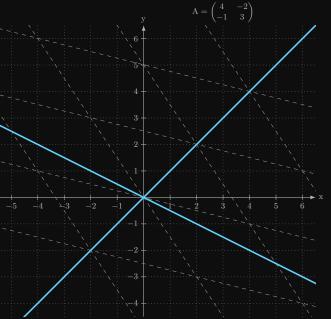












 $E_2(A) = \left\{ t \begin{pmatrix} 1 \\ 1 \end{pmatrix} \middle| t \in \mathbb{R} \right\}$

$$E_5(A) = \left\{ t \begin{pmatrix} -1 \\ 1/2 \end{pmatrix} \middle| t \in \mathbb{R} \right\}$$

Note that

$$\mathrm{E}_{\lambda}(\mathrm{A}) \quad = \quad \{ \vec{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}} \mid \mathrm{A}\vec{\mathrm{x}} = \lambda \vec{\mathrm{x}} \}$$

$$= \left\{ \vec{x} \in \mathbb{R}^n \mid \lambda \vec{x} - A \vec{x} = \vec{0}_n \right\}$$

$$= \ \left\{ \vec{x} \in \mathbb{R}^n \mid (\lambda I - A) \vec{x} = \vec{0}_n \right\}$$
 showing that

showing that

$$E_{\lambda}(A) = \text{null}(\lambda I - A).$$

Note that

$$\begin{split} E_{\lambda}(A) &= & \left\{ \vec{x} \in \mathbb{R}^n \mid A\vec{x} = \lambda \vec{x} \right\} \\ &= & \left\{ \vec{x} \in \mathbb{R}^n \mid \lambda \vec{x} - A\vec{x} = \vec{0}_n \right\} \\ &= & \left\{ \vec{x} \in \mathbb{R}^n \mid (\lambda I - A)\vec{x} = \vec{0}_n \right\} \end{split}$$

showing that

$$E_{\lambda}(A) = \text{null}(\lambda I - A).$$

It follows that

- ightharpoonup if λ is **not** an eigenvalue of A, then $E_{\lambda}(A) = \{\vec{0}_n\};$
- ▶ the nonzero vectors of $E_{\lambda}(A)$ are the eigenvectors of A corresponding to λ ;
- ▶ the eigenspace of A corresponding to λ is a subspace of \mathbb{R}^n .

Linear Combinations and Spanning Sets

Definition (Linear Combinations and Spanning)

Let $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k \in \mathbb{R}^n$ and $t_1, t_2, \dots, t_k \in \mathbb{R}$. Then the vector

$$\vec{x} = t_1\vec{x}_1 + t_2\vec{x}_2 + \cdots + t_k\vec{x}_k$$

is called a linear combination of the vectors $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$; the (scalars) $t_1, t_2, \ldots, t_k \in \mathbb{R}$ are the coefficients. The set of all linear combinations of $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ is called the span of $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$, and is written

$$\mathrm{span}\{\vec{x}_1,\vec{x}_2,\dots,\vec{x}_k\} = \{t_1\vec{x}_1 + t_2\vec{x}_2 + \dots + t_k\vec{x}_k \mid t_1,t_2,\dots,t_k \in \mathbb{R}\}\,.$$

Linear Combinations and Spanning Sets

Definition (Linear Combinations and Spanning)

Let $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k \in \mathbb{R}^n$ and $t_1, t_2, \dots, t_k \in \mathbb{R}$. Then the vector

$$\vec{x} = t_1 \vec{x}_1 + t_2 \vec{x}_2 + \dots + t_k \vec{x}_k$$

is called a linear combination of the vectors $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$; the (scalars) $t_1, t_2, \ldots, t_k \in \mathbb{R}$ are the coefficients. The set of all linear combinations of $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ is called the span of $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$, and is written

$$\mathrm{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\} = \{t_1\vec{x}_1 + t_2\vec{x}_2 + \dots + t_k\vec{x}_k \mid t_1, t_2, \dots, t_k \in \mathbb{R}\}\,.$$

Additional Terminology. If $U = \text{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$, then

- ightharpoonup U is spanned by the vectors $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$.
- ▶ the vectors $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k$ span U.
- \blacktriangleright the set of vectors $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is a spanning set for U.

Let $\vec{x} \in \mathbb{R}^3$ be a nonzero vector. Then span $\{\vec{x}\} = \{k\vec{x} \mid k \in \mathbb{R}\}$ is a line through the origin having direction vector \vec{x} .

Let $\vec{x} \in \mathbb{R}^3$ be a nonzero vector. Then span $\{\vec{x}\} = \{k\vec{x} \mid k \in \mathbb{R}\}$ is a line through the origin having direction vector \vec{x} .

Example

Let $\vec{x}, \vec{y} \in \mathbb{R}^3$ be nonzero vectors that are not parallel. Then

$$\mathrm{span}\{\vec{x},\vec{y}\} = \{k\vec{x} + t\vec{y} \mid k,t \in \mathbb{R}\}$$

is a plane through the origin containing \vec{x} and $\vec{y}.$

Let $\vec{x} \in \mathbb{R}^3$ be a nonzero vector. Then span $\{\vec{x}\} = \{k\vec{x} \mid k \in \mathbb{R}\}$ is a line through the origin having direction vector \vec{x} .

Example

Let $\vec{x}, \vec{y} \in \mathbb{R}^3$ be nonzero vectors that are not parallel. Then

$$\operatorname{span}\{\vec{x}, \vec{y}\} = \{k\vec{x} + t\vec{y} \mid k, t \in \mathbb{R}\}\$$

is a plane through the origin containing \vec{x} and \vec{y} .

How would you find the equation of this plane?

$$\text{Let } \vec{\mathbf{x}} = \begin{bmatrix} 8 \\ 3 \\ -13 \\ 20 \end{bmatrix}, \, \vec{\mathbf{y}} = \begin{bmatrix} 2 \\ 1 \\ -3 \\ 5 \end{bmatrix} \text{ and } \vec{\mathbf{z}} = \begin{bmatrix} -1 \\ 0 \\ 2 \\ -3 \end{bmatrix}. \text{ Is } \vec{\mathbf{x}} \in \text{span}\{\vec{\mathbf{y}}, \vec{\mathbf{z}}\}?$$

Let
$$\vec{\mathbf{x}} = \begin{bmatrix} 8 \\ 3 \\ -13 \\ 20 \end{bmatrix}$$
, $\vec{\mathbf{y}} = \begin{bmatrix} 2 \\ 1 \\ -3 \\ 5 \end{bmatrix}$ and $\vec{\mathbf{z}} = \begin{bmatrix} -1 \\ 0 \\ 2 \\ -3 \end{bmatrix}$. Is $\vec{\mathbf{x}} \in \operatorname{span}\{\vec{\mathbf{y}}, \vec{\mathbf{z}}\}$?

Solution

An equivalent question is: can \vec{x} be expressed as a linear combination of \vec{y} and \vec{z} ?

Suppose there exist $a, b \in \mathbb{R}$ so that $\vec{x} = a\vec{y} + b\vec{z}$. Then

$$\begin{bmatrix} 8 \\ 3 \\ -13 \\ 20 \end{bmatrix} = a \begin{bmatrix} 2 \\ 1 \\ -3 \\ 5 \end{bmatrix} + b \begin{bmatrix} -1 \\ 0 \\ 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 2 \\ 5 & -3 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}.$$

Solve this system of four linear equations in the two variables a and b.

Solution (continued)

$$\begin{bmatrix} 2 & -1 & 8 \\ 1 & 0 & 3 \\ -3 & 2 & -13 \\ 5 & -3 & 20 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Since the system has no solutions, $\vec{x} \notin \text{span}\{\vec{y}, \vec{z}\}$.

Let
$$\vec{\mathbf{w}} = \begin{bmatrix} 8 \\ 3 \\ -13 \\ 21 \end{bmatrix}$$
, $\vec{\mathbf{y}} = \begin{bmatrix} 2 \\ 1 \\ -3 \\ 5 \end{bmatrix}$ and $\vec{\mathbf{z}} = \begin{bmatrix} -1 \\ 0 \\ 2 \\ -3 \end{bmatrix}$. Is $\vec{\mathbf{w}} \in \text{span}\{\vec{\mathbf{y}}, \vec{\mathbf{z}}\}$?

This is almost identical to a previous problem, except that \vec{w} (above) has one entry that is different from the vector \vec{x} of that problem.

Let
$$\vec{\mathbf{w}} = \begin{bmatrix} 8 \\ 3 \\ -13 \\ 21 \end{bmatrix}$$
, $\vec{\mathbf{y}} = \begin{bmatrix} 2 \\ 1 \\ -3 \\ 5 \end{bmatrix}$ and $\vec{\mathbf{z}} = \begin{bmatrix} -1 \\ 0 \\ 2 \\ -3 \end{bmatrix}$. Is $\vec{\mathbf{w}} \in \text{span}\{\vec{\mathbf{y}}, \vec{\mathbf{z}}\}$?

This is almost identical to a previous problem, except that \vec{w} (above) has one entry that is different from the vector \vec{x} of that problem.

Solution

In this case, the system of linear equations is consistent, and gives us $\vec{w} = 3\vec{y} - 2\vec{z}$, so $\vec{w} \in \operatorname{span}\{\vec{y}, \vec{z}\}$.

Theorem

Let $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k \in \mathbb{R}^n$ and let $U = \text{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$. Then

- 1. U is a subspace of \mathbb{R}^n containing each \vec{x}_i , $1 \leq i \leq k$;
- 2. if W is a subspace of \mathbb{R}^n and $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k \in W$, then $U \subseteq W$.

Theorem

Let $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k \in \mathbb{R}^n$ and let $U = span\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$. Then

- 1. U is a subspace of \mathbb{R}^n containing each \vec{x}_i , $1 \leq i \leq k$;
- 2. if W is a subspace of \mathbb{R}^n and $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k \in W$, then $U \subseteq W$.

Remark

Property 2 is saying that U is the "smallest" subspace of \mathbb{R}^n that contains $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k$.

Proof. (Part 1 of Theorem)

Since $U = \operatorname{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ and $0\vec{x}_1 + 0\vec{x}_2 + \dots + 0\vec{x}_k = \vec{0}_n, \vec{0}_n \in U.$

Proof. (Part 1 of Theorem)

Since
$$U = \operatorname{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$$
 and $0\vec{x}_1 + 0\vec{x}_2 + \dots + 0\vec{x}_k = \vec{0}_n, \vec{0}_n \in U$.

Suppose $\vec{x}, \vec{y} \in U$. Then for some $s_i, t_i \in \mathbb{R}, 1 \leq i \leq k$,

$$\vec{x} = s_1 \vec{x}_1 + s_2 \vec{x}_2 + \dots + s_k \vec{x}_k$$

 $\vec{v} = t_1 \vec{x}_1 + t_2 \vec{x}_2 + \dots + t_k \vec{x}_k$

Thus

$$\begin{split} \vec{x} + \vec{y} &= (s_1 \vec{x}_1 + s_2 \vec{x}_2 + \dots + s_k \vec{x}_k) + (t_1 \vec{x}_1 + t_2 \vec{x}_2 + \dots + t_k \vec{x}_k) \\ &= (s_1 + t_1) \vec{x}_1 + (s_2 + t_2) \vec{x}_2 + \dots + (s_k + t_k) \vec{x}_k. \end{split}$$

Since $s_i+t_i\in\mathbb{R}$ for all $1\leq i\leq k,\, \vec{x}+\vec{y}\in U,\, i.e.,\, U$ is closed under addition.

Proof. (Part 1 of Theorem – continued)

Suppose $\vec{x} \in U$ and $a \in \mathbb{R}$. Then for some $s_i \in \mathbb{R}$, 1 < i < k,

$$\vec{x} = s_1 \vec{x}_1 + s_2 \vec{x}_2 + \dots + s_k \vec{x}_k$$

Thus

$$\begin{array}{rcl} a\vec{x} & = & a(s_1\vec{x}_1 + s_2\vec{x}_2 + \dots + s_k\vec{x}_k) \\ & = & (as_1)\vec{x}_1 + (as_2)\vec{x}_2 + \dots + (as_k)\vec{x}_k. \end{array}$$

Since $as_i \in \mathbb{R}$ for all $1 \leq i \leq k,$ $a\vec{x} \in U$. Hence, U is closed under scalar multiplication.

Proof. (Part 1 of Theorem – continued)

Suppose $\vec{x} \in U$ and $a \in \mathbb{R}$. Then for some $s_i \in \mathbb{R}$, $1 \le i \le k$,

$$\vec{x} = s_1\vec{x}_1 + s_2\vec{x}_2 + \cdots + s_k\vec{x}_k$$

Thus

$$\begin{array}{rcl} a\vec{x} & = & a(s_1\vec{x}_1 + s_2\vec{x}_2 + \dots + s_k\vec{x}_k) \\ & = & (as_1)\vec{x}_1 + (as_2)\vec{x}_2 + \dots + (as_k)\vec{x}_k. \end{array}$$

Since $as_i\in\mathbb{R}$ for all $1\leq i\leq k,$ $a\vec{x}\in U.$ Hence, U is closed under scalar multiplication.

Therefore, U is a subspace of \mathbb{R}^n . Furthermore, since

$$\vec{x}_i = \sum_{i=1}^{i-1} 0 \vec{x}_j + 1 \vec{x}_i + \sum_{i=i+1}^{k} 0 \vec{x}_j,$$

it follows that $\vec{x}_i \in U$ for all i, $1 \le i \le k$.

Proof. (Part 1 of Theorem – continued)

Suppose $\vec{x} \in U$ and $a \in \mathbb{R}$. Then for some $s_i \in \mathbb{R}$, $1 \le i \le k$,

$$\vec{x} = s_1\vec{x}_1 + s_2\vec{x}_2 + \dots + s_k\vec{x}_k$$

Thus

$$\begin{array}{rcl} a\vec{x} & = & a(s_1\vec{x}_1 + s_2\vec{x}_2 + \dots + s_k\vec{x}_k) \\ & = & (as_1)\vec{x}_1 + (as_2)\vec{x}_2 + \dots + (as_k)\vec{x}_k. \end{array}$$

Since $as_i\in\mathbb{R}$ for all $1\leq i\leq k,$ $a\vec{x}\in U.$ Hence, U is closed under scalar multiplication.

Therefore, U is a subspace of \mathbb{R}^n . Furthermore, since

$$\vec{x}_i = \sum_{i=1}^{i-1} 0 \vec{x}_j + 1 \vec{x}_i + \sum_{i=i+1}^{k} 0 \vec{x}_j,$$

it follows that $\vec{x}_i \in U$ for all i, $1 \le i \le k$.

Proof. (Part 2 of Theorem)

Let $W\subset \mathbb{R}^n$ be a subspace that contains $\vec{x}_1,\cdots,\vec{x}_n.$ We need to prove that $U\subseteq W.$

Proof. (Part 2 of Theorem)

Let $W \subset \mathbb{R}^n$ be a subspace that contains $\vec{x}_1, \cdots, \vec{x}_n$. We need to prove that $U \subseteq W$.

Suppose $\vec{x} \in U$. Then $\vec{x} = s_1\vec{x}_1 + s_2\vec{x}_2 + \dots + s_k\vec{x}_k$ for some $s_i \in \mathbb{R}$, $1 \le i \le k$. Since W contain each \vec{x}_i and W is closed under scalar multiplication, it follows that $s_i\vec{x}_i \in W$ for each $i, 1 \le i \le k$. Furthermore, since W is closed under addition, $\vec{x} = s_1\vec{x}_1 + s_2\vec{x}_2 + \dots + s_k\vec{x}_k \in W$. Therefore, $U \subseteq W$.

Problem (revisited)

Justify your answer.

Is $U = \left\{ \begin{array}{c|c} a \\ b \\ c \\ d \end{array} \right| a, b, c, d \in \mathbb{R} \text{ and } 2a - b = c + 2d \right\}$ a subspace of \mathbb{R}^4 ?

Problem (revisited)

$$\text{Is } U = \left\{ \left[\begin{array}{c} a \\ b \\ c \\ d \end{array} \right] \middle| \begin{array}{c} a,b,c,d \in \mathbb{R} \quad \text{and} \quad 2a-b=c+2d \\ \end{array} \right\} \text{ a subspace of } \mathbb{R}^4?$$

Justify your answer.

Solution (Another)

Let
$$\vec{v} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in U$$
. Since $2a - b = c + 2d$, $c = 2a - b - 2d$, and thus

$$U = \left\{ \left[\begin{array}{c} a \\ b \\ 2a - b - 2d \end{array} \right] \; \middle| \; a, b, d \in \mathbb{R} \right\} = \operatorname{span} \left\{ \left[\begin{array}{c} 1 \\ 0 \\ 2 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 1 \\ -1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ -2 \\ 1 \end{array} \right] \right\}.$$

By a previous Theorem, U is a subspace of \mathbb{R}^4 .

Let $\vec{x}, \vec{y} \in \mathbb{R}^n$, $U_1 = \operatorname{span}\{\vec{x}, \vec{y}\}$, and $U_2 = \operatorname{span}\{2\vec{x} - \vec{y}, 2\vec{y} + \vec{x}\}$. Prove that

Let $\vec{x}, \vec{y} \in \mathbb{R}^n$, $U_1 = \operatorname{span}\{\vec{x}, \vec{y}\}$, and $U_2 = \operatorname{span}\{2\vec{x} - \vec{y}, 2\vec{y} + \vec{x}\}$. Prove that $U_1 = U_2$.

Solution

To show that $U_1 = U_2$, prove that $U_1 \subseteq U_2$, and $U_2 \subseteq U_1$. We begin by noting that, by the first part of the previous Theorem, U_1 and U_2 are subspaces of \mathbb{R}^n .

Let $\vec{x}, \vec{y} \in \mathbb{R}^n$, $U_1 = \operatorname{span}\{\vec{x}, \vec{y}\}$, and $U_2 = \operatorname{span}\{2\vec{x} - \vec{y}, 2\vec{y} + \vec{x}\}$. Prove that $U_1 = U_2$.

Solution

To show that $U_1 = U_2$, prove that $U_1 \subseteq U_2$, and $U_2 \subseteq U_1$. We begin by noting that, by the first part of the previous Theorem, U_1 and U_2 are subspaces of \mathbb{R}^n .

Since $2\vec{x} - \vec{y}, 2\vec{y} + \vec{x} \in U_1$, it follows from the second part of the previous Theorem that span $\{2\vec{x} - \vec{y}, 2\vec{y} + \vec{x}\} \subseteq U_1$, i.e., $U_2 \subseteq U_1$.

Also, since

$$\begin{array}{rcl} \vec{x} & = & \frac{2}{5} \left(2 \vec{x} - \vec{y} \right) + \frac{1}{5} \left(2 \vec{y} + \vec{x} \right), \\ \\ \vec{y} & = & -\frac{1}{5} \left(2 \vec{x} - \vec{y} \right) + \frac{2}{5} \left(2 \vec{y} + \vec{x} \right), \\ \end{array}$$

 $\vec{x}, \vec{y} \in U_2$. Therefore, by the second part of the previous Theorem, span $\{\vec{x}, \vec{y}\} \subseteq U_2$, i.e., $U_1 \subseteq U_2$. The result now follows.

Show that $\mathbb{R}^n=\mathrm{span}\{\vec{e}_1,\vec{e}_2,\ldots,\vec{e}_n\},$ where \vec{e}_j denote the j^{th} column of $I_n.$

Show that $\mathbb{R}^n = \operatorname{span}\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$, where \vec{e}_j denote the j^{th} column of I_n .

Solution

Let
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
. Then $\vec{x} = x_1 \vec{e_1} + x_2 \vec{e_2} + \dots + x_n \vec{e_n}$, where $x_1, x_2, \dots, x_n \in \mathbb{R}$. Therefore, $\vec{x} \in \text{span}\{\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}\}$, and thus

 $\mathbb{R}^n \subseteq \operatorname{span}\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}.$

Show that $\mathbb{R}^n = span\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$, where \vec{e}_j denote the j^{th} column of I_n .

Solution

Let
$$\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} \in \mathbb{R}^n$$
. Then $\vec{\mathbf{x}} = \mathbf{x}_1 \vec{\mathbf{e}_1} + \mathbf{x}_2 \vec{\mathbf{e}_2} + \dots + \mathbf{x}_n \vec{\mathbf{e}_n}$, where

 $x_1, x_2, \ldots, x_n \in \mathbb{R}$. Therefore, $\vec{x} \in \operatorname{span}\{\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n\}$, and thus $\mathbb{R}^n \subset \operatorname{span}\{\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n\}$.

Conversely, since $\vec{e}_i \in \mathbb{R}^n$ for each $i, 1 \le i \le n$ (and \mathbb{R}^n is a vector space), it follows that $\operatorname{span}\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\} \subseteq \mathbb{R}^n$. The equality now follows.

$$\text{Let } \vec{\mathbf{x}}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \vec{\mathbf{x}}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \vec{\mathbf{x}}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \vec{\mathbf{x}}_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Does $\{\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4\}$ span \mathbb{R}^4 ? (Equivalently, is span $\{\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4\} = \mathbb{R}^4$?)

$$\text{Let } \vec{x}_1 = \left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right], \vec{x}_2 = \left[\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \end{array} \right], \vec{x}_3 = \left[\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array} \right], \vec{x}_4 = \left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right].$$

Does $\{\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2, \vec{\mathbf{x}}_3, \vec{\mathbf{x}}_4\}$ span \mathbb{R}^4 ? (Equivalently, is span $\{\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2, \vec{\mathbf{x}}_3, \vec{\mathbf{x}}_4\} = \mathbb{R}^4$?)

Solution

To prove span $\{\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4\} = \mathbb{R}^4$, we need to prove two directions:

$$\operatorname{span}\{\vec{x}_1,\vec{x}_2,\vec{x}_3,\vec{x}_4\}\subseteq \mathbb{R}^4\quad \text{and}\quad \mathbb{R}^4\subseteq \operatorname{span}\{\vec{x}_1,\vec{x}_2,\vec{x}_3,\vec{x}_4\}.$$

$$\mathrm{Let}\ \vec{x}_1 = \left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right], \vec{x}_2 = \left[\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \end{array} \right], \vec{x}_3 = \left[\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array} \right], \vec{x}_4 = \left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right].$$

Does $\{\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4\}$ span \mathbb{R}^4 ? (Equivalently, is span $\{\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4\} = \mathbb{R}^4$?)

Solution

To prove span $\{\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4\} = \mathbb{R}^4$, we need to prove two directions:

$$\operatorname{span}\{\vec{x}_1,\vec{x}_2,\vec{x}_3,\vec{x}_4\}\subseteq\mathbb{R}^4\quad \operatorname{and}\quad \mathbb{R}^4\subseteq\operatorname{span}\{\vec{x}_1,\vec{x}_2,\vec{x}_3,\vec{x}_4\}.$$

For the first relation, since $\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4 \in \mathbb{R}^4$ (and \mathbb{R}^4 is a vector space), span $\{\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4\} \subseteq \mathbb{R}^4$.

Solution (continued)

For the second relation, notice that

$$\begin{array}{rcl} \vec{e}_1 & = & \vec{x}_1 - \vec{x}_2 \\ \vec{e}_2 & = & \vec{x}_2 - \vec{x}_3 \\ \vec{e}_3 & = & \vec{x}_3 - \vec{x}_4 \\ \vec{e}_4 & = & \vec{x}_4, \end{array}$$

showing that $\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4 \in \text{span}\{\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4\}$. Therefore, since $\text{span}\{\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4\}$ is a vector space,

$$\mathbb{R}^4=\operatorname{span}\{\vec{e}_1,\vec{e}_2,\vec{e}_3,\vec{e}_4\}\subseteq\operatorname{span}\{\vec{x}_1,\vec{x}_2,\vec{x}_3,\vec{x}_4\},$$

and the equality follows.

Let
$$\vec{x}_{i} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

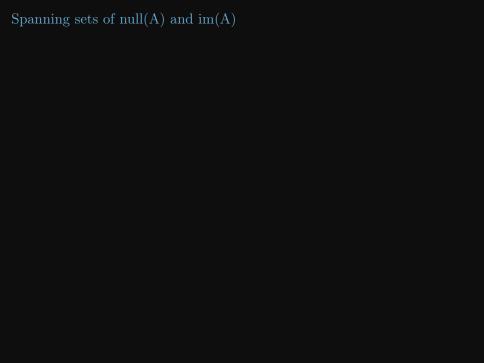
Show that span $\{\vec{\mathbf{u}}_1, \vec{\mathbf{u}}_2, \vec{\mathbf{u}}_3, \vec{\mathbf{u}}_4\} \neq \mathbb{R}^4$.

$$\text{Let } \vec{\mathrm{u}}_1 = \left[\begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \end{array} \right], \vec{\mathrm{u}}_2 = \left[\begin{array}{c} -1 \\ 1 \\ 1 \\ 1 \end{array} \right], \vec{\mathrm{u}}_3 = \left[\begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \end{array} \right], \vec{\mathrm{u}}_4 = \left[\begin{array}{c} 1 \\ -1 \\ 1 \\ 1 \end{array} \right]$$

Show that span $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\} \neq \mathbb{R}^4$.

Solution

If you check, you'll find that \vec{e}_2 can not be written as a linear combination of $\vec{u}_1, \vec{u}_2, \vec{u}_3$, and \vec{u}_4 .



Spanning sets of null(A) and im(A)

Lemma

Let A be an $m\times n$ matrix, and let $\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_k\}$ denote a set of basic solutions to $A\vec{x}=\vec{0}_m.$ Then

$$\mathrm{null}(A) = \mathrm{span}\{\vec{x}_1, \cdots, \vec{x}_k\}.$$

Lemma

Let A be an $m\times n$ matrix with columns $\vec{c}_1,\vec{c}_2,\ldots,\vec{c}_n.$ Then

$$\operatorname{im}(A) = \operatorname{span}\{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\}.$$

Proof. (of null(A) = span{ $\vec{x}_1, \cdots, \vec{x}_k$ })

" \geq :" Because $\vec{x}_i \in null(A)$ for each $i, 1 \leq i \leq k$, it follows that

 $\operatorname{span}\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_k\}\subseteq\operatorname{null}(A).$

Proof. (of null(A) = span $\{\vec{x}_1, \dots, \vec{x}_k\}$)

"]:" Because $\vec{x}_i \in null(A)$ for each $i,\, 1 \leq i \leq k,$ it follows that

$$\mathrm{span}\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_k\}\subseteq \mathrm{null}(A).$$

" \subseteq :" Every solution to $A\vec{x}=\vec{0}_m$ can be expressed as a linear combination of basic solutions, implying that

$$\operatorname{null}(A) \subseteq \operatorname{span}\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_k\}.$$

Therefore, $\operatorname{null}(A) = \operatorname{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}.$

Proof. (of im(A) = span{ $\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n$ })

" \subseteq :" Suppose $\vec{y} \in im(A)$. Then (by definition) there is a vector $\vec{x} \in \mathbb{R}^n$ so

that
$$\vec{y} = A\vec{x}$$
. Write $\vec{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$. Then
$$\vec{y} = A\vec{x} = \begin{bmatrix} \vec{c}_1 & \vec{c}_2 & \dots & \vec{c}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \end{bmatrix} = x_1\vec{c}_1 + x_2\vec{c}_2 + \dots + x_n\vec{c}_n$$

Therefore, $\vec{y} \in \text{span}\{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\}$, implying that

$$\operatorname{im}(A) \subseteq \operatorname{span}\{\vec{c}_1,\vec{c}_2,\ldots,\vec{c}_n\}.$$

Proof. (continued)

Notice that for each j, $1 \le j \le n$,

$$\begin{array}{lll} A\vec{e}_{j} & = & \left[\begin{array}{cccc} \vec{c}_{1} & \vec{c}_{2} & \dots & \vec{c}_{n} \end{array} \right] \left[\begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{array} \right] \leftarrow & \text{jth row} \\ & = & 0\vec{c}_{1} + 0\vec{c}_{2} + \dots + 0\vec{c}_{j-1} + 1\vec{c}_{j} + 0\vec{c}_{j+1} + \dots + 0\vec{c}_{r} \\ & = & \vec{c}_{j}. \end{array}$$

Thus $\vec{c_j} \in \text{im}(A)$ for each j, $1 \leq j \leq n$. It follows that

$$\operatorname{span}\{\vec{c}_1,\vec{c}_2,\ldots,\vec{c}_n\}\subseteq\operatorname{im}(A),$$

and therefore

$$\operatorname{im}(A) = \operatorname{span}\{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\}.$$