Math 221: LINEAR ALGEBRA

 $\begin{array}{c} \textbf{Chapter 5. Vector Space} \ \mathbb{R}^n \\ \textbf{\$5-2. Independence and Dimension} \end{array}$

Le Chen¹
Emory University, 2020 Fall

(last updated on 10/26/2020)

Linear Independence

Geometric Examples

Independence, spanning, and matrices

Bases and Dimension

Finding Bases and Dimension

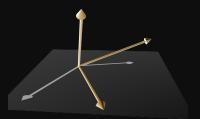
Linear Independence

Definition

Let $S = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ be a subset of \mathbb{R}^n . The set S is linearly independent (or simply independent) if the following condition is satisfied:

$$t_1 \vec{x}_1 + t_2 \vec{x}_2 + \dots + t_k \vec{x}_k = \vec{0}_n \quad \Rightarrow \quad t_1 = t_2 = \dots = t_k = 0$$

i.e., the only linear combination of vectors of S that vanishes (is equal to the zero vector) is the trivial one (all coefficients equal to zero). A set that is not linearly independent is called dependent.



$\{\vec{x}_1,\vec{x}_2,\cdots,\vec{x}_k\}$

 $t_1\vec{x}_1+t_2\vec{x}_2+\cdots+t_k\vec{x}_k=\vec{0}_n$

 Example

Is
$$S = \left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \right\}$$
 linearly independent?

Suppose that a linear combination of these vectors vanishes, i.e., there exist a, b, $c \in \mathbb{R}$ so that

$$\mathbf{a} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + \mathbf{b} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \mathbf{c} \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Example (continued)

Solve the homogeneous system of three equation in three variables:

$$\left[\begin{array}{ccc|c} -1 & 1 & 1 & 0 \\ 0 & 1 & 3 & 0 \\ 1 & 1 & 5 & 0 \end{array}\right] \to \cdots \to \left[\begin{array}{ccc|c} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right].$$

The system has solutions a=-2r, b=-3r, c=r for $r\in\mathbb{R}$, so it has nontrivial solutions. Therefore S is dependent. In particular, when r=1 we see that

$$-2\begin{bmatrix} -1\\0\\1 \end{bmatrix} - 3\begin{bmatrix} 1\\1\\1 \end{bmatrix} + \begin{bmatrix} 1\\3\\5 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix},$$

i.e., this is a nontrivial linear combination that vanishes.

Example

Consider the set $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\} \subseteq \mathbb{R}^n$, and suppose $t_1, t_2, \dots, t_n \in \mathbb{R}$ are such that

$$t_1\vec{e}_1 + t_2\vec{e}_2 + \cdots t_n\vec{e}_n = \vec{0}_n.$$

Since

$$\mathbf{t}_1 \vec{\mathbf{e}}_1 + \mathbf{t}_2 \vec{\mathbf{e}}_2 + \cdots \mathbf{t}_n \vec{\mathbf{e}}_n = \left[egin{array}{c} \mathbf{t}_1 \\ \mathbf{t}_2 \\ \vdots \\ \mathbf{t}_n \end{array}
ight]$$

the only linear combination that vanishes is the trivial one, i.e., the one with $t_1 = t_2 = \dots = t_n = 0$. Therefore, $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ is linearly independent.

Let $\{\vec{u}, \vec{v}, \vec{w}\}$ be an independent subset of \mathbb{R}^n . Is $\{u \vec{+} v, 2u \vec{+} w, \vec{v} - 5\vec{w}\}$ linearly independent?

Solution

In order to show the $\{u \vec + v, 2u \vec + w, \vec v - 5\vec w\}$ is linearly independent, we need to show that

$$\begin{split} a(\vec{u}+\vec{v})+b(2\vec{u}+\vec{w})+c(\vec{v}-5\vec{w})&=\vec{0}_n \quad \Rightarrow \quad a=b=c=0. \end{split}$$

$$\updownarrow (a+2b)\vec{u}+(a+c)\vec{v}+(b-5c)\vec{w}=\vec{0}_n.$$

because $\{\vec{u}, \vec{v}, \vec{w}\}$ is independent

$$a + 2b = 0$$

$$a + c = 0$$

$$b - 5c = 0$$

$$\label{eq:abc} \begin{array}{l} & \downarrow \\ \\ \mathbf{a} = \mathbf{b} = \mathbf{c} = \mathbf{0} \end{array}$$

Let $X \subseteq \mathbb{R}^n$ and suppose that $\vec{0}_n \in X$. Show that X linearly dependent.

Solution

Let $X = \{\vec{x_1}, \vec{x_2}, \dots, \vec{x_k}\}$ for some $k \ge 1$, and suppose $\vec{x_1} = \vec{0_n}$. Then $1\vec{x_1} + 0\vec{x_2} + \dots + 0\vec{x_k} = 1\vec{0} + 0\vec{x_2} + \dots + 0\vec{x_k} = \vec{0}$.

i.e., we have found a nontrivial linear combination of the vectors of X that vanishes. Therefore, X is dependent.

Example

Let $\vec{u} \in \mathbb{R}^n$ and let $S = {\vec{u}}$.

- 1. If $\vec{u} = \vec{0}_n$, then S is dependent (see the previous Problem).
 - 2. If $\vec{u} \neq \vec{0}_n$, then S is independent: if $t\vec{u} = \vec{0}_n$ for some $t \in \mathbb{R}$, then t = 0.

As a consequence,

$$S = \{\vec{u}\} \text{ is independent } \qquad \Longleftrightarrow \qquad \vec{u} \neq \vec{0}_n$$

Example

$$\mathbf{A} = \left[\begin{array}{cccccc} 0 & 1 & -1 & 2 & 5 & 1 \\ 0 & 0 & 1 & -3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right] \text{ is a row-echelon matrix. Treat the}$$

nonzero rows of A as transposes of vectors in \mathbb{R}^6 :

$$ec{\mathrm{u}}_1 = \left[egin{array}{c} 0 \ 1 \ -1 \ 2 \ 5 \ 1 \end{array}
ight], \quad ec{\mathrm{u}}_2 = \left[egin{array}{c} 0 \ 0 \ 1 \ -3 \ 0 \ 1 \end{array}
ight], \quad ec{\mathrm{u}}_3 = \left[egin{array}{c} 0 \ 0 \ 0 \ 0 \ 1 \ -2 \end{array}
ight],$$

and suppose that $a\vec{u}_1 + b\vec{u}_2 + c\vec{u}_3 = \vec{0}_6$ for some $a,b,c \in \mathbb{R}$.

Example (continued)

This results in a system of six equations in three variables, whose augmented matrix is

$$\left[\begin{array}{ccc|c} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & -3 & 0 & 0 \\ 5 & 0 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{array}\right]$$

The solution to the system is easily determined to be a = b = c = 0, so the set $\{\vec{u}_1, \vec{u_2}, \vec{u_3}\}$ is independent. Hence, nonzero rows of A are independent.

Remark

In general, the nonzero rows of any row-echelon matrix form an independent set of (row) vectors.

Theorem

Let $U = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\} \subseteq \mathbb{R}^n$ be an independent set. Then any vector $\vec{x} \in \operatorname{span}(U)$ has a unique representation as a linear combination of vectors of U.

Proof.

Suppose that there is a vector $\vec{x} \in \text{span}(U)$ such that

$$\begin{split} \vec{x} &= s_1 \vec{v}_1 + s_2 \vec{v}_2 + \dots + s_k \vec{v}_k, \text{ for some } s_1, s_2, \dots, s_k \in \mathbb{R}, \text{ and } \\ \vec{x} &= t_1 \vec{v}_1 + t_2 \vec{v}_2 + \dots + t_k \vec{v}_k, \text{ for some } t_1, t_2, \dots, t_k \in \mathbb{R}. \end{split}$$

$$\Downarrow$$

$$\begin{split} \vec{0}_n &= \vec{x} - \vec{x} &= (s_1 \vec{v}_1 + s_2 \vec{v}_2 + \dots + s_k \vec{v}_k) - (t_1 \vec{v}_1 + t_2 \vec{v}_2 + \dots + t_k \vec{v}_k) \\ &= (s_1 - t_1) \vec{v}_1 + (s_2 - t_2) \vec{v}_2 + \dots + (s_k - t_k) \vec{v}_k. \end{split}$$

U is independent \downarrow

$$\begin{aligned} s_1-t_1&=0,\quad s_2-t_2=0,\quad \cdots,s_k-t_k=0\\ & & & \updownarrow\\ & & s_1=t_1,\quad s_2=t_2,\quad \cdots,s_k=t_k. \end{aligned}$$

Two Geometric Examples

Problem

Suppose that \vec{u} and \vec{v} are nonzero vectors in \mathbb{R}^3 . Prove that $\{\vec{u}, \vec{v}\}$ is dependent if and only if \vec{u} and \vec{v} are parallel.

Solution

(⇒) If $\{\vec{u}, \vec{v}\}$ is dependent, then there exist $a, b \in \mathbb{R}$ so that $a\vec{u} + b\vec{v} = \vec{0}_3$ with a and b not both zero. By symmetry, we may assume that $a \neq 0$. Then $\vec{u} = -\frac{b}{a}\vec{v}$, so \vec{u} and \vec{v} are scalar multiples of each other, i.e., \vec{u} and \vec{v} are parallel.

(\Leftarrow) Conversely, if \vec{u} and \vec{v} are parallel, then there exists a $t \in \mathbb{R}$, $t \neq 0$, so that $\vec{u} = t\vec{v}$. Thus $\vec{u} - t\vec{v} = \vec{0}_3$, so we have a nontrivial linear combination of \vec{u} and \vec{v} that vanishes. Therefore, $\{\vec{u}, \vec{v}\}$ is dependent.

Suppose that \vec{u}, \vec{v} and \vec{w} are nonzero vectors in \mathbb{R}^3 , and that $\{\vec{v}, \vec{w}\}$ is independent. Prove that $\{\vec{u}, \vec{v}, \vec{w}\}$ is independent if and only if $\vec{u} \not\in \operatorname{span}\{\vec{v}, \vec{w}\}$.

Solution

- (⇒) If $\vec{u} \in \text{span}\{\vec{v}, \vec{w}\}$, then there exist $a, b \in \mathbb{R}$ so that $\vec{u} = a\vec{v} + b\vec{w}$. This implies that $\vec{u} a\vec{v} b\vec{w} = \vec{0}_3$, so $\vec{u} a\vec{v} b\vec{w}$ is a nontrivial linear combination of $\{\vec{u}, \vec{v}, \vec{w}\}$ that vanishes, and thus $\{\vec{u}, \vec{v}, \vec{w}\}$ is dependent.
- (⇐) Now suppose that $\vec{u} \not\in \text{span}\{\vec{v},\vec{w}\}$, and suppose that there exist $a,b,c\in\mathbb{R}$ such that $a\vec{u}+b\vec{v}+c\vec{w}=\vec{0}_3$. If $a\neq 0$, then $\vec{u}=-\frac{b}{a}\vec{v}-\frac{c}{a}\vec{w}$, and $\vec{u}\in \text{span}\{\vec{v},\vec{w}\}$, a contradiction. Therefore, a=0, implying that $b\vec{v}+c\vec{w}=\vec{0}_3$. Since $\{\vec{v},\vec{w}\}$ is independent, b=c=0, and thus a=b=c=0, i.e., the only linear combination of \vec{u},\vec{v} and \vec{w} that vanishes is the trivial one. Therefore, $\{\vec{u},\vec{v},\vec{w}\}$ is independent.

Independence, spanning, and matrices

Theorem

Suppose A is an $m \times n$ matrix with columns $\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n \in \mathbb{R}^m$. Then

- 1. $\{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\}$ is independent if and only if $A\vec{x} = \vec{0}_m$ with $\vec{x} \in \mathbb{R}^{nl}$ implies $\vec{x} = \vec{0}_n$.
- 2. $\mathbb{R}^m = \operatorname{span}\{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\}$ if and only if $A\vec{x} = \vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^m$.

Let $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k \in \mathbb{R}^n$.

- 1. Are $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k$ linearly independent?
- 2. Do $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ span \mathbb{R}^n ?

Solution

To answer both question, simply let A be a matrix whose columns are the vectors $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k \in \mathbb{R}^n$. Find R, a row-echelon form of A.

- 1. "yes" if and only if each column of R has a leading one.
- 2. "yes" if and only if each row of R has a leading one.

Problem (first seen earlier)

$$\text{Let } \vec{\mathbf{u}}_1 = \left[\begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \end{array} \right], \vec{\mathbf{u}}_2 = \left[\begin{array}{c} -1 \\ 1 \\ 1 \\ 1 \end{array} \right], \vec{\mathbf{u}}_3 = \left[\begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \end{array} \right], \vec{\mathbf{u}}_4 = \left[\begin{array}{c} 1 \\ -1 \\ 1 \\ 1 \end{array} \right]$$

Show that span $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\} \neq \mathbb{R}^4$.

Solution

Let $A = [\vec{u}_1 \ \vec{u}_2 \ \vec{u}_3 \ \vec{u}_4]$. Apply row operations to get R, a row-echelon form of A:

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ -1 & 1 & -1 & -1 \\ 1 & 1 & -1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the last row of R consists only of zeros, $R\vec{x} = \vec{e}_4$ has no solution $\vec{x} \in \mathbb{R}^4$, implying that there is a $\vec{b} \in \mathbb{R}^4$ so that $A\vec{x} = \vec{b}$ has no solution $\vec{x} \in \mathbb{R}^4$. By previous Theorem, $\mathbb{R}^4 \neq \mathrm{span}\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$.

Theorem

Let A be an $n \times n$ matrix. The following are equivalent.

- 1. A is invertible.
- 2. The columns of A are independent.
- 3. The columns of A span \mathbb{R}^n .
- 4. The rows of A are independent, i.e., the columns of \mathbf{A}^{T} are independent.
- 5. The rows of A span the set of all $1 \times n$ rows, i.e., the columns of A^T span \mathbb{R}^n .

Problem (revisited)

$$\text{Let } \vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, \vec{\mathbf{u}}_2 = \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \vec{\mathbf{u}}_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \vec{\mathbf{u}}_4 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$

Show that span $\{\vec{\mathbf{u}}_1, \vec{\mathbf{u}}_2, \vec{\mathbf{u}}_3, \vec{\mathbf{u}}_4\} \neq \mathbb{R}^4$.

Solution

$$\operatorname{Let} A = \left[egin{array}{cccc} ec{\mathrm{u}}_1 & ec{\mathrm{u}}_2 & ec{\mathrm{u}}_3 & ec{\mathrm{u}}_4 \end{array}
ight] = \left[egin{array}{ccccc} 1 & -1 & 1 & 1 \ -1 & 1 & -1 & -1 \ 1 & 1 & -1 & 1 \ -1 & 1 & 1 & 1 \end{array}
ight]$$

By the previous Theorem, the columns of A span \mathbb{R}^4 if and only if A is invertible. Since $\det(A) = 0$ (row 2 is (-1) times row 1), A is not invertible, and thus $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ does not span \mathbb{R}^4 .

Let

$$\vec{\mathbf{u}} = \left[\begin{array}{c} 1 \\ -1 \\ 0 \end{array} \right], \vec{\mathbf{v}} = \left[\begin{array}{c} 3 \\ 2 \\ -1 \end{array} \right], \vec{\mathbf{w}} = \left[\begin{array}{c} 3 \\ 5 \\ -2 \end{array} \right].$$

Is $\{\vec{u}, \vec{v}, \vec{w}\}$ independent?

Solution

Let $A = [\vec{u} \ \vec{v} \ \vec{w}]$. From the previous Theorem, $\{\vec{u}, \vec{v}, \vec{w}\}$ is independent if and only if A is invertible.

Since

$$\det(A) = \det \begin{bmatrix} 1 & 3 & 3 \\ -1 & 2 & 5 \\ 0 & -1 & -2 \end{bmatrix} = -2,$$

and $-2 \neq 0$, A is invertible, and therefore $\{\vec{u}, \vec{v}, \vec{w}\}$ is an independent subset of \mathbb{R}^3 .

Remark

Notice that $\{\vec{u}, \vec{v}, \vec{w}\}$ also spans \mathbb{R}^3 .

Bases and Dimension

Theorem (Fundamental Theorem)

Let U be a subspace of \mathbb{R}^n that is spanned by m vectors. If U contains a subset of k linearly independent vectors, then $k \leq m$.

Definition

Let U be a subspace of \mathbb{R}^n . A set $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}$ is a basis of U if

- 1. $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}$ is linearly independent;
- 2. $U = \text{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}.$

As a consequence of all this, if $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}$ is a basis of a subspace U, then every $\vec{u} \in U$ has a unique representation as a linear combination of the vectors \vec{x}_i , $1 \le i \le m$.

Example

The subset $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ is a basis of \mathbb{R}^n , called the standard basis of \mathbb{R}^n . (We've already seen that $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ is linearly independent and that $\mathbb{R}^n = \text{span}\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$.)

Example

In a previous problem, we saw that $\mathbb{R}^4 = \text{span}(S)$ where

$$S = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}.$$

S is also linearly independent (prove this). Therefore, S is a basis of \mathbb{R}^4 .

Theorem (Invariance Theorem)

If $\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_m\}$ and $\{\vec{y}_1,\vec{y}_2,\ldots,\vec{y}_k\}$ are bases of a subspace U of \mathbb{R}^n , then m=k.

Proof.

Let $S = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}$ and $T = \{\vec{y}_1, \vec{y}_2, \dots, \vec{y}_k\}$. Since S spans U and T is independent, it follows from the Fundamental Theorem that $k \leq m$. Also, since T spans U and S is independent, it follows from the Fundamental Theorem that $m \leq k$. Since $k \leq m$ and $m \leq k$, k = m.

Definition

The dimension of a subspace U of \mathbb{R}^n is the number of vectors in any basis of U, and is denoted $\dim(U)$.

In \mathbb{R}^n , what is the dimension of the subspace $\{\vec{0}_n\}$?

Solution

The only basis of the zero subspace is the empty set, \emptyset :

- (i) the empty set is (trivially) independent, and
- (ii) any linear combination of no vectors is the zero vector.

Therefore, the zero subspace has dimension zero.

Example

Since $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ is a basis of \mathbb{R}^n , \mathbb{R}^n has dimension n. This is why the Cartesian plane, \mathbb{R}^2 , is called 2-dimensional, and \mathbb{R}^3 is called 3-dimensional.

Let

$$U = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in \mathbb{R}^4 \mid a - b = d - c \right\}.$$

Show that U is a subspace of \mathbb{R}^4 , find a basis of U, and find dim(U).

Solution

The condition a - b = d - c is equivalent to the condition a = b - c + d, so we may write

$$U = \left\{ \begin{bmatrix} b-c+d \\ b \\ c \\ d \end{bmatrix} \in \mathbb{R}^4 \right\} = \left\{ b \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + d \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \middle| b, c, d \in \mathbb{R} \right\}$$

This shows that U is a subspace of \mathbb{R}^4 , since $U = \text{span}\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ where

$$egin{array}{lclcrcl} ec{\mathbf{x}}_1 & = & \left[egin{array}{lclcrcl} 1 & 1 & 0 & 0 \end{array}
ight]^{\mathrm{T}} \ ec{\mathbf{x}}_2 & = & \left[egin{array}{lclcrcl} -1 & 0 & 1 & 0 \end{array}
ight]^{\mathrm{T}} \ ec{\mathbf{x}}_3 & = & \left[egin{array}{lclcrcl} 1 & 0 & 0 & 1 \end{array}
ight]^{\mathrm{T}} . \end{array}$$

Solution (continued)

Furthermore,

$$\left\{ \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix} \right\}$$

is linearly independent, as can be seen by taking the reduced row-echelon (RRE) form of the matrix whose columns are \vec{x}_1, \vec{x}_2 and \vec{x}_3 .

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Since every column of the RRE matrix has a leading one, the columns are linearly independent.

Therefore $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ is linearly independent and spans U, so is a basis of U, and hence U has dimension three.

Example (Important!)

Suppose that $B = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$ is a basis of \mathbb{R}^n and that A is an $n \times n$ invertible matrix. Let $D = \{A\vec{x}_1, A\vec{x}_2, \dots, A\vec{x}_n\}$, and let

$$\mathbf{X} = \left[egin{array}{cccc} ec{\mathbf{x}}_1 & ec{\mathbf{x}}_2 & \cdots & ec{\mathbf{x}}_{\mathrm{n}} \end{array}
ight].$$

Since B is a basis of \mathbb{R}^n , B is independent (also a spanning set of \mathbb{R}^n); thus X is invertible. Now, because A and X are invertible, so is

$$AX = \left[\begin{array}{ccc} A\vec{x}_1 & A\vec{x}_2 & \cdots & A\vec{x}_n \end{array} \right].$$

Therefore, the columns of AX are independent and span \mathbb{R}^n . Since the columns of AX are the vectors of D, D is a basis of \mathbb{R}^n .

Finding Bases and Dimension

Theorem

Let U be a subspace of \mathbb{R}^n . Then

- 1. U has a basis, and $\dim(U) \leq n$.
- 2. Any independent set of U can be extended (by adding vectors) to a basis of U.
- 3. Any spanning set of U can be cut down (by deleting vectors) to a basis of U.

Example

Previously, we showed that

$$\mathbf{U} = \left\{ \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} \in \mathbb{R}^4 \ \middle| \ \mathbf{a} - \mathbf{b} = \mathbf{d} - \mathbf{c} \right\}$$

is a subspace of \mathbb{R}^4 , and that $\dim(U) = 3$. Also, it is easy to verify that

$$S = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\3\\3\\2 \end{bmatrix} \right\},$$

is an independent subset of U.

By a previous Theorem, S can be extended to a basis of U. To do so, find a vector in U that is not in span(S).

Example (continued)

$$\left[\begin{array}{ccc}
1 & 2 & ? \\
1 & 3 & ? \\
1 & 3 & ? \\
1 & 2 & ?
\end{array}\right]$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 0 \\ 1 & 3 & -1 \\ 1 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore, S can be extended to the basis

$$\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\3\\3\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix} \right\} \text{ of U.}$$

Let

$$\vec{\mathbf{u}}_1 = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \quad \vec{\mathbf{u}}_2 = \begin{bmatrix} 2 \\ 0 \\ 3 \\ -1 \end{bmatrix}, \quad \vec{\mathbf{u}}_3 = \begin{bmatrix} 4 \\ 4 \\ 11 \\ -3 \end{bmatrix}, \quad \vec{\mathbf{u}}_4 = \begin{bmatrix} 3 \\ -2 \\ 2 \\ -1 \end{bmatrix},$$

and let $U=\mathrm{span}\{\vec{u}_1,\vec{u}_2,\vec{u}_3,\vec{u}_4\}$. Find a basis of U that is a subset of $\{\vec{u}_1,\vec{u}_2,\vec{u}_3,\vec{u}_4\}$, and find $\dim(U)$.

Solution

Suppose $a_1\vec{u}_1 + a_2\vec{u}_2 + a_3\vec{u}_3 + a_4\vec{u}_4 = \vec{0}$. Solve for a_1, a_2, a_3, a_4 ; if some $a_i \neq 0, \ 1 \leq i \leq 4$, then \vec{u}_i can be removed from the set $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$, and the resulting set still spans U. Repeat this on the resulting set until a linearly independent set is obtained.

One solution is $B = \{\vec{u}_1, \vec{u}_2\}$. Then $U = \operatorname{span}(B)$ and B is linearly independent. Therefore B is a basis of U, and thus $\dim(U) = 2$.

Remark

In the next section, we will learn an efficient technique for solving this type of problem.

Theorem

Let U be a subspace of \mathbb{R}^n with $\dim(U) = m$, and let $B = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}$ be a subset of U. Then B is linearly independent if and only if B spans U.

Proof.

- (⇒) Suppose B is linearly independent. If $\operatorname{span}(B) \neq U$, then extend B to a basis B' of U by adding appropriate vectors from U. Then B' is a basis of size more than $m = \dim(U)$, which is impossible. Therefore, $\operatorname{span}(B) = U$, and hence B is a basis of U.
- (\Leftarrow) Conversely, suppose span(B) = U. If B is not linearly independent, then cut B down to a basis B' of U by deleting appropriate vectors. But then B' is a basis of size less than $m = \dim(U)$, which is impossible. Therefore, B is linearly independent, and hence B is a basis of U.

Remark

Let U be a subspace of \mathbb{R}^n and suppose $B \subseteq U$.

- ▶ If B spans U and $|B| = \dim(U)$, then B is also independent, and hence B is a basis of U.
- ► If B is independent and |B| = dim(U), then B also spans U, and hence B is a basis of U.

Therefore, if $|B| = \dim(U)$, in order to prove that B is a basis, it is sufficient to prove either of the following two statements:

- 1. B is independent
- 2. B spans U

Theorem

Let U and W be subspace of \mathbb{R}^n , and suppose that $U \subseteq W$. Then

- $1. \ \dim(U) \leq \dim(W).$
- 2. If dim(U) = dim(W), then U = W.

Proof.

Let dim(W) = k, and let B be a basis of U.

- 1. If $\dim(U) > k$, then B is a subset of independent vectors of W with $|B| = \dim(U) > k$, which contradicts the Fundamental Theorem.
- 2. If $\dim(U) = \dim(W)$, then B is an independent subset of W containing $k = \dim(W)$ vectors. Therefore, B spans W, so B is a basis of W, and $U = \operatorname{span}(B) = W$.

Example

Any subspace U of \mathbb{R}^2 , other than $\{\vec{0}_2\}$ and \mathbb{R}^2 itself, must have dimension one, and thus has a basis consisting of one nonzero vector, say \vec{u} . Thus $U = \operatorname{span}\{\vec{u}\}$, and hence is a line through the origin.

Example

Any subspace U of \mathbb{R}^3 , other than $\{\vec{0}_3\}$ and \mathbb{R}^3 itself, must have dimension one or two. If $\dim(U)=1$, then, as in the previous example, U is a line through the origin. Otherwise $\dim(U)=2$, and U has a basis consisting of two linearly independent vectors, say \vec{u} and \vec{v} . Thus $U=\operatorname{span}\{\vec{u},\vec{v}\}$, and hence is a plane through the origin.