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Row Space and Column Spaces

Definitions
Let A be an m × n matrix.
I The column space of A, denoted col(A) is the subspace of Rm spanned

by the columns of A.

I The row space of A, denoted row(A) is the subspace of Rn spanned by
the rows of A (or the columns of AT).
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Definitions
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I The column space of A, denoted col(A) is the subspace of Rm spanned

by the columns of A.

I The row space of A, denoted row(A) is the subspace of Rn spanned by
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We saw earlier that col(A) = im(A).

Remark ( Notation )
Let A and B be m× n matrices. We write A → B if B can be obtained from
A by a sequence of elementary row (column) operations. Note that A → B
if and only if B → A.
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Remark ( Notation )
Let A and B be m× n matrices. We write A → B if B can be obtained from
A by a sequence of elementary row (column) operations. Note that A → B
if and only if B → A.



Lemma
Let A and B be m × n matrices.

1. If A → B by elementary row operations, then row(A) = row(B).
2. If A → B by elementary column operations, then col(A) = col(B).

Proof.
It suffices to prove only part one, and only for a single row operation.
(Why?)
Thus let ~r1,~r2, . . . ,~rm denote the rows of A.
I If B is obtained from A by interchanging two rows of A, then A and B

have exactly the same rows, so row(B) = row(A).
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Proof. (continued)
I Suppose p 6= 0, and suppose that for some j, 1 ≤ j ≤ m, B is obtained

from A by multiplying row j by p. Then

row(B) = span{~r1, . . . , p~rj, . . . ,~rm}.

Since
{~r1, . . . , p~rj, . . . ,~rm} ⊆ row(A),

it follows that row(B) ⊆ row(A).

Conversely, since

{~r1, . . . ,~rm} ⊆ row(B),

it follows that row(A) ⊆ row(B). Therefore, row(B) = row(A).
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Proof. (continued)
I Suppose p 6= 0, and suppose that for some i and j, 1 ≤ i, j ≤ m, B is

obtained from A by adding p time row j to row i. Without loss of
generality, we may assume i < j.

Then

row(B) = span{~r1, . . . ,~ri−1,~ri + p~rj, . . . ,~rj, . . . ,~rm}.

Since
{~r1, . . . ,~ri−1,~ri + p~rj, . . . ,~rm} ⊆ row(A),

it follows that row(B) ⊆ row(A). Conversely, since

{~r1, . . . ,~rm} ⊆ row(B),

it follows that row(A) ⊆ row(B). Therefore, row(B) = row(A).
�
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Corollary
Let A be an m × n matrix, U an invertible m × m matrix, and V an
invertible n × n matrix. Then row(UA) = row(A) and col(AV) = col(A),

Proof.
Since U is invertible, U is a product of elementary matrices, implying that
A → UA by a sequence of elementary row operations. By Lemma 2,
row(UA) = row(A).

Now consider AV: col(AV) = row((AV)T) = row(VTAT) and VT is
invertible (a matrix is invertible if and only if its transpose is invertible). It
follows from the first part of this Corollary that

row(VTAT) = row(AT).

But row(AT) = col(A), and therefore col(AV) = col(A). �
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Lemma
If R is a row-echelon matrix then

1. the nonzero rows of R are a basis of row(R);
2. the columns of R containing the leading ones are a basis of col(R).



Example
Let

R =


1 2 2 −2 0 0
0 1 3 1 −1 2
0 0 0 1 −2 5
0 0 0 0 0 1
0 0 0 0 0 0

 .

1. Since the nonzero rows of R are linearly independent, they form a basis
of row(R).

2. Let B = {~e1,~e2,~e3,~e4} ⊆ R5. Then B is linearly independent and spans
col(R), and thus is a basis of col(R). This tells us that
dim(col(R)) = 4. Now let X denote the set of columns of R that
contain the leading ones. Then X is a linearly independent subset of
col(R) with 4 = dim(col(R)) vectors. It follows that X spans col(R),
and therefore is a basis of col(R).
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Problem

Find a basis of U = span




1
−1
0
3

 ,


2
1
5
1

 ,


4

−1
5
7


 and find dim(U).

Solution
Let A the the 3× 4 matrix whose rows are the three columns listed. Then
U = row(A), so it suffices to find a basis of row(A).

A =

 1 −1 0 3
2 1 5 1
4 −1 5 7

 .

Find R, a row-echelon form of A. Then the nonzero rows of R are a basis of
row(R). Since row(A) = row(R), the nonzero rows of R are a basis of
row(A).
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Solution (continued) 1 −1 0 3
2 1 5 1
4 −1 5 7

 →

 1 −1 0 3
0 1 5/3 −5/3
0 0 0 0

 .

Therefore, B =




1
−1
0
3

 ,


0
3
5

−5


 is a basis of U and dim(U) = 2.

Solution (Another solution – usually more work.)

Take a linear combination of the three given vectors and set it equal to ~04.
If the vectors are independent, then they form a basis of U. Otherwise,
delete vectors to cut the given set of vectors down to a basis.
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The Rank Theorem

dim(row(A)) = dim(col(A)) = rank (A)



The Rank Theorem

dim(row(A)) = dim(col(A)) = rank (A)



Remark
Recall that rank (A) is defined to be the nonzero rows in the row echelon
form of A. From what we just learned, the rank of A can be equivalently
defined as rank (A) = dim(row(A)).

Theorem (Rank Theorem)

Let A =
[

~A1
~A2 · · · ~An

]
be an m × n matrix with columns

{ ~A1, ~A2, . . . , ~An}, and suppose that rank (A) = r. Then

dim(row(A)) = dim(col(A)) = r.

Furthermore, if R is a row-echelon form of A then
1. the r nonzero rows of R are a basis of row(A);

2. if S = {~Aj1 , ~Aj2 , . . . , ~Ajr} are the r columns of A corresponding to the
columns of R containing leading ones, then S is basis of col(A).
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Problem
For the following matrix A, find rank (A) and bases for row(A) and col(A).

A =


2 −4 6 8
2 −1 3 2
4 −5 9 10
0 −1 1 2

 .

Solution 
2 −4 6 8
2 −1 3 2
4 −5 9 10
0 −1 1 2

 →


1 −2 3 4
0 1 −1 −2
0 0 0 0
0 0 0 0


I rank (A) = 2.
I {

[
1 −2 3 4

]
,
[
0 −1 −1 2

]
} is a basis of row(A).

I




2
2
4
0

 ,


−4
−1
−5
−1


 is a basis of col(A). �
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Problem (revisited)

Find a basis of U = span


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1
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
2
1
5
1

 ,
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4

−1
5
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Solution
Let A denote the matrix whose columns are the three vectors listed, and let
R denote a row-echelon form of A. Then

A =


1 2 4

−1 1 −1
0 5 5
3 1 7

 →


1 2 4
0 1 1
0 0 0
0 0 0

 = R.

By the Rank Theorem,




1
−1
0
3

 ,
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2
1
5
1


 is a basis of U = col(A), so

dim(U) = 2. �

Compare this to the basis found earlier.
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Corollary

1. For any matrix A, rank (A) = rank (AT).
2. For any m × n matrix A, rank (A) ≤ m and rank (A) ≤ n.
3. Let A be an m × n matrix. If U and V are invertible matrices (of sizes

m × m and n × n, respectively), then

rank (A) = rank (UA) = rank (AV).



Lemma
Let A be an m × n matrix, U a p × m matrix, and V an n × q matrix.

1. col(AV) ⊆ col(A) with equality if VV′ = In for some V′.
2. row(UA) ⊆ row(A) with equality if U′U = Im for some U′.

Proof.

(1) Write V =
[
~v1 ~v2 · · · ~vq

]
, where ~vj denotes column j of V,

1 ≤ j ≤ q. Then AV =
[

A~v1 A~v2 · · · A~vq
]
, where A~vj is column j of

AV. By the definition of matrix-vector multiplication, A~vj is a linear
combination of the columns of A, and thus A~vj ∈ col(A) for each j. Since
A~v1,A~v2, . . . ,A~vq ∈ col(A),

span{A~v1,A~v2, . . . ,A~vq} ⊆ col(A),

i.e., col(AV) ⊆ col(A). If for some V′ we have VV′ = In, then

col(A) = col(AVV′) ⊆ col(AV) ⊆ col(A).

(2) This can be proved by part (1) and the fact that row(A) = col(AT). �
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Theorem (Rank-Nullity Theorem)
Let A denote an m × n matrix of rank r. Then

1. The n − r basic solutions to the system A~x = ~0m provided by the
Gaussian algorithm are a basis of null(A), so

dim(null(A)) = n − r.

2. The rank theorem provides a basis of im(A) = col(A), and
dim(im(A)) = r.

Remark (Common notation)

The nullspace A is also called kernel space of A, written as ker(A), i.e.,
ker(A) = null(A). Usually, the nullity of A is defined to be

Nullity(A) = dim(null(A)) = dim(ker(A))
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Let T : V 7→ W be the linear map from space V to W. Suppose V = Rn and
W = Rm and let A be the induced matrix.

Rank(T) + Nullity(T) = dim(V)

|| || ||

Rank(A) Nullity(A) dim(Rn)

|| || ||

dim(im(A)) dim(null(A)) n

|| ||

r dim(ker(A))





Proof. (Outline)
I We have already seen that null(A) is spanned by any set of basic

solutions to A~x = ~0m, so it is enough to prove that
dim(null(A)) = n − r, which will implies that the set of basic solutions
is independent, hence this set forms a basis.

I Suppose {~x1,~x2, . . . ,~xk} is a basis of null(A)

I Extend {~x1,~x2, . . . ,~xk} to a basis {~x1,~x2, . . . ,~xk, . . .~xn} of Rn.
I Consider the set {A~x1,A~x2, . . . ,A~xk, . . .A~xn} ⊆ Rm

I Then A~xj = ~0m for 1 ≤ j ≤ k since ~x1, . . . ,~xk ∈ null(A).
I To complete the proof, show S = {A~xk+1, . . .A~xn} is a basis of im(A),

by showing that (exercise!)
(1) S is independent
(2) S spans im(A)

I Since im(A) = col(A), dim(im(A)) = r, implying n − k = r. Hence
k = n − r. �



Problem
For the following matrix A, find bases for null(A) and im(A), and find their
dimensions.

A =


2 −4 6 8
2 −1 3 2
4 −5 9 10
0 −1 1 2

 .



Solution

Find the basic solutions to A~x = ~04.
2 −4 6 8 0
2 −1 3 2 0
4 −5 9 10 0
0 −1 1 2 0

 →


1 −2 3 4 0
0 1 −1 −2 0
0 0 0 0 0
0 0 0 0 0

 .

Hence,

~x =


−s

s + 2t
s
t

 s, t ∈ R.

Therefore, 


−1
1
1
0

 ,


0
2
0
1


 and




2
2
4
0

 ,


−4
−1
−5
−1




are bases of null(A) and im(A), respectively, so

dim(null(A)) = 2 and dim(im(A)) = 2.
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Problem
Can a 5× 6 matrix have independent columns? Independent rows? Justify
your answer.

Solution
The rank of the matrix is at most five; since there are six columns, the
columns can not be independent. However, the rows could be independent:
take a 5× 6 matrix whose first five columns are the columns of the 5× 5
identity matrix.
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your answer.
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Problem
Let A be an m × n matrix with rank (A) = m. Prove that m ≤ n.

Proof.
As a consequence of the Rank Theorem, we have

rank (A) ≤ m and rank (A) ≤ n.

Since rank (A) = m, it follows that m ≤ n. �
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Problem
Let A be an 5× 9 matrix. Is it possible that dim(null(A)) = 3? Justify your
answer.

Solution
As a consequence of the Rank Theorem, we have rank (A) ≤ 5, so
dim(im(A)) ≤ 5. Since dim(null(A)) = 9− dim(im(A)), it follows that

dim(null(A)) ≥ 9− 5 = 4.

Therefore, it is not possible that dim(null(A)) = 3. �
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Full Rank Cases

Theorem
Let A be an m × n matrix. The following are equivalent.

1. rank (A) = n.
2. row(A) = Rn, i.e., the rows of A span Rn.
3. The columns of A are independent in Rm.
4. The n × n matrix ATA is invertible.
5. There exists and n × m matrix C so that CA = In.
6. If A~x = ~0m for some ~x ∈ Rn, then ~x = ~0n.
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5. There exists and n × m matrix C so that AC = Im.
6. The system A~x = ~b is consistent for every ~b ∈ Rm.
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Problem

Let ~x = (x1, · · · , xk)
T ∈ Rk. Show that the following matrix is invertible if

and only if {xi, i = 1, · · · , k} are not all equal:(
k x1 + · · ·+ xk

x1 + · · ·+ xk ||x||2
)

Solution
Notice that (

k x1 + · · ·+ xk

x1 + · · ·+ xk ||x||2
)

= ATA

with

A =


1 x1

1 x2

...
...

1 xk

 .

Now ATA is invertible iff the two columns of A are independent iff
{xi, i = 1, · · · , k} are not all equal. �
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