Math 221: LINEAR ALGEBRA

Chapter 5. Vector Space \mathbb{R}^n §5-5. Similarity and Diagonalization

Le Chen¹

Emory University, 2020 Fall

(last updated on 10/27/2020)

Similar Matrices

Diagonalization Revisited

Algebraic and Geometric Multiplicities

Characterizing Diagonalizable Matrices

Complex Eigenvalues

Eigenvalues of Real Symmetric Matrices

Similar Matrices

Definition (Similar Matrices)

Let A and B be $n \times n$ matrices. A is similar to B, written $A \sim B$, if there exists an invertible matrix P such that $B = P^{-1}AP$.

Lemma

Similarity is an equivalence relation, i.e., for $n \times n$ matrices A, B and C

- 1. A \sim A (reflexive);
- 2. if $A \sim B$, then $B \sim A$ (symmetric);
- 3. if $A \sim B$ and $B \sim C$, then $A \sim C$ (transitive).

Proof.

- 1. Since $A = I_n A I_n$ and $I_n^{-1} = I_n$, $A = I_n^{-1} A I_n$. Therefore, $A \sim A$.
- Suppose A ~ B. Then there exists an invertible n × n matrix P such that B = P⁻¹AP. Multiplying both sides on the left by P, on the right by P⁻¹, and simplifying gives us PBP⁻¹ = A. Therefore, A = (P⁻¹)⁻¹A(P⁻¹), so A ~ B.

Proof. (continued)

3. Since A \sim B and B \sim C, there exist invertible n \times n matrices P and Q such that

$$\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P} \quad \text{and} \quad \mathbf{C} = \mathbf{Q}^{-1}\mathbf{B}\mathbf{Q}.$$

Thus

$$C = Q^{-1}BQ = Q^{-1}(P^{-1}AP)Q = (Q^{-1}P^{-1})A(PQ) = (PQ)^{-1}A(PQ),$$

where PQ is invertible, and hence A \sim C.

Definition

If $A = [a_{ij}]$ is an $n \times n$ matrix, then the trace of A is

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

Lemma (Properties of trace)

For $n \times n$ matrices A and B, and any $k \in \mathbb{R}$,

1.
$$tr(A + B) = tr(A) + tr(B);$$

2.
$$tr(kA) = k \cdot tr(A);$$

3. tr(AB) = tr(BA).

Proof.

The proofs of (1) and (2) are trivial. As for (3), ...

Recall that for any $n \times n$ matrix A, the characteristic polynomial of A is

$$c_A(x) = \det(xI - A),$$

and is a polynomial of degree n.

Theorem (Properties of Similar Matrices)

If A and B are $n \times n$ matrices and A \sim B, then

- 1. det(A) = det(B);
- 2. rank (A) = rank (B);
- 3. tr(A) = tr(B);
- ${\rm 4.} \ c_{\rm A}(x) = c_{\rm B}(x);$
- 5. A and B have the same eigenvalues.

Proof.

Since $A \sim B$, there exists an $n \times n$ invertible matrix P so that $B = P^{-1}AP$.

- 1. $\det(B) = \det(P^{-1}AP) = \det(P^{-1}) \cdot \det(A) \cdot \det(P).$ Since P is invertible, $\det(P^{-1}) = \frac{1}{\det(P)}$, so $\det(B) = \frac{1}{\det(P)} \cdot \det(A) \cdot \det(P) = \frac{1}{\det(P)} \cdot \det(P) \cdot \det(A) = \det(A).$ Therefore, $\det(B) = \det(A).$
- 2. rank (B) = rank (P⁻¹AP).
 Since P is invertible, rank (P⁻¹AP) = rank (P⁻¹A), since P⁻¹ is invertible, rank (P⁻¹A) = rank (A).
 Therefore, rank (B) = rank (A).
- 3. $tr(B) = tr[(P^{-1}A)P] = tr[P(P^{-1}A)] = tr[(PP^{-1})A] = tr(IA) = tr(A).$

Proof. (continued) 4.

Since P is invertible, $det(P^{-1}) = \frac{1}{det(P)}$, so

$$c_B(x) = \frac{1}{\det(P)} \cdot \det(P) \cdot \det(xI - A) = \det(xI - A) = c_A(x).$$

5. Since the eigenvalues of a matrix are the roots of the characteristic polynomial, $c_B(x) = c_A(x)$ implies that A and B have the same eigenvalues.

Diagonalization Revisited

Recall that if λ is an eigenvalue of A, then $A\vec{x} = \lambda \vec{x}$ for some nonzero vector \vec{x} in \mathbb{R}^n . Such a vector \vec{x} is called a λ -eigenvector of A or an eigenvector of A corresponding to λ .

Definition (Diagonalizable – rephrased)

An n \times n matrix A is diagonalizable if A \sim D for some diagonal matrix D.

Remark (Diagonalizability)

Determining whether or not a square matrix A is diagonalizable is done by checking whether

the number of linearly independent eigenvectors – geometric multiplicity ||? the multiplicity of each eigenvalue

- algebraic multiplicity

Example

Let $A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$. Then $\lambda = -1$ is an eigenvalue of A, and $\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is a (-1)-eigenvector of A since

$$A\vec{x} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} = (-1) \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Theorem

Suppose A is an $n \times n$ matrix.

- 1. The eigenvalues of A are the roots of $c_A(x)$.
- 2. The λ -eigenvectors of A are all the nonzero solutions to $(\lambda I A)\vec{x} = \vec{0}_n$.

Problem

Determine all eigenvalues of A =

$$\begin{bmatrix} -2 & 0 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ -1 & 0 & 6 & 0 \\ 4 & 2 & -1 & 1 \end{bmatrix}.$$

Solution

$$det(xI - A) = \begin{vmatrix} x + 2 & 0 & 0 & 0 \\ -3 & x - 6 & 0 & 0 \\ 1 & 0 & x - 6 & 0 \\ -4 & -2 & 1 & x - 1 \end{vmatrix} = (x + 2)(x - 6)(x - 6)(x - 1).$$

Thus, the eigenvalues of A are -2, 6, 6 and 1, precisely the elements on the main diagonal of A.

Remark

In general, the eigenvalues of any triangular matrix are the entries on its main diagonal.

Theorem

Let A be an $n \times n$ matrix.

- 1. A is diagonalizable if and only if \mathbb{R}^n has a basis $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$ of eigenvectors of A.
- 2. If $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$ are eigenvectors of A and form a basis of \mathbb{R}^n , then

$$\mathbf{P} = \left[\begin{array}{ccc} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \end{array} \right]$$

is an invertible matrix such that

$$P^{-1}AP = diag(\lambda_1, \lambda_2, \dots, \lambda_n),$$

where λ_i is the eigenvalue of A corresponding to \vec{x}_i .

This result was covered earlier, but without the use of term basis.

Theorem

Let A be an $n \times n$ matrix, and suppose that A has distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. For each i, let \vec{x}_i be a λ_i -eigenvector of A. Then $\{\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k\}$ is linearly independent.

Proof.

We need to show that $t_1\vec{x}_1 + t_2\vec{x}_2 + \cdots + t_k\vec{x}_k = \vec{0}$ only has trivial solution $t_1 = \cdots = t_k = 0$. Notice that

$$\begin{aligned} t_1 A \vec{x}_1 + t_2 A \vec{x}_2 + \dots + t_k A \vec{x}_k &= t_1 \lambda_1 \vec{x}_1 + t_2 \lambda_2 \vec{x}_2 + \dots + t_k \lambda_k \vec{x}_k = \vec{0} \\ t_1 A^2 \vec{x}_1 + t_2 A^2 \vec{x}_2 + \dots + t_k A^2 \vec{x}_k &= t_1 \lambda_1^2 \vec{x}_1 + t_2 \lambda_2^2 \vec{x}_2 + \dots + t_k \lambda_k^2 \vec{x}_k = \vec{0} \\ &\vdots &\vdots \end{aligned}$$

 $t_1 A^{k-1} \vec{x}_1 + \dots + t_k A^{k-1} \vec{x}_k = t_1 \lambda_1^{k-1} \vec{x}_1 + \dots + t_k \lambda_k^{k-1} \vec{x}_k = \vec{0}$

Proof.

$$\begin{pmatrix} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_k \end{pmatrix} \begin{pmatrix} t_1 & 0 & 0 & 0 \\ 0 & t_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & t_k \end{pmatrix} \begin{pmatrix} \lambda_1^0 & \lambda_1^1 & \cdots & \lambda_1^{k-1} \\ \lambda_2^0 & \lambda_2^1 & \cdots & \lambda_2^{k-1} \\ \vdots & \vdots & \vdots & \vdots \\ \lambda_k^0 & \lambda_k^1 & \cdots & \lambda_k^{k-1} \end{pmatrix} = O_{k \times k}.$$

Proof.

Since λ_i are distinct, the Vandermonde matrix is invertible, hence,

Only trivial solution is found. Hence, $\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_k\}$ is independent.

Proof. (Another proof left for you to study)

The proof is by induction on k, the number of distinct eigenvalues. Basis. If k = 1, then $\{\vec{x}_1\}$ is an independent set because $\vec{x}_1 \neq \vec{0}_n$. Suppose that for some $k \ge 1$, $\{\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k\}$ is independent, where \vec{x}_i is an eigenvector of A corresponding to λ_i , $1 \le i \le k$, and $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct. (This is the Inductive Hypothesis.) Now suppose $\lambda_1, \lambda_2, \ldots, \lambda_{k+1}$ are distinct eigenvalues of A that have corresponding eigenvectors $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_{k+1}$, respectively. Consider

$$t_1 \vec{x}_1 + t_2 \vec{x}_2 + \dots + t_{k+1} \vec{x}_{k+1} = \vec{0}_n, \text{ for } t_1, t_2, \dots, t_{k+1} \in \mathbb{R}.$$
 (1)

Multiplying equation (1) by A (on the left) gives us

Proof. (continued)

$$t_{1}A\vec{x}_{1} + t_{2}A\vec{x}_{2} + \dots + t_{k+1}A\vec{x}_{k+1} = \vec{0}_{n},$$

$$\downarrow$$

$$t_{1}\lambda_{1}\vec{x}_{1} + t_{2}\lambda_{2}\vec{x}_{2} + \dots + t_{k+1}\lambda_{k+1}\vec{x}_{k+1} = \vec{0}_{n}.$$
(2)

Also, multiplying (1) by λ_{k+1} gives us

$$t_1\lambda_{k+1}\vec{x}_1 + t_2\lambda_{k+1}\vec{x}_2 + \dots + t_{k+1}\lambda_{k+1}\vec{x}_{k+1} = \vec{0}_n, \qquad (3)$$

and subtracting (3) from (2) results in

$$t_1(\lambda_1 - \lambda_{k+1})\vec{x}_1 + t_2(\lambda_2 - \lambda_{k+1})\vec{x}_2 + \dots + t_k(\lambda_k - \lambda_{k+1})\vec{x}_k = \vec{0}_n.$$

Proof. (continued)

By the inductive hypothesis, $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is independent, so

$$t_i(\lambda_i - \lambda_{k+1}) = 0 \text{ for } i = 1, 2, \dots k.$$

Since $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct, $(\lambda_i - \lambda_{k+1}) \neq 0$ for $i = 1, 2, \ldots, k$, and thus $t_i = 0$ for $i = 1, 2, \ldots, k$. Substituting these values into (1) yields

$$t_{k+1}\vec{x}_{k+1}=\vec{0}_n$$

implying that $t_{k+1} = 0$, since $\vec{x}_{k+1} \neq \vec{0}_n$.

Therefore, $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_{k+1}\}$ is an independent set, and the result follows by induction.

The next result is an easy consequence of the previous Theorem.

Theorem (Covered earlier, but now with a proof)

If A is an $n\times n$ matrix with n distinct eigenvalues, then A is diagonalizable.

Proof.

Let $\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$ denote the n (distinct) eigenvalues of A, and let \vec{x}_i be an eigenvector of A corresponding to λ_i , $1 \leq i \leq n$. By the previous Theorem, $\{\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n\}$ is an independent set. A subset of n linearly independent vectors of \mathbb{R}^n also spans \mathbb{R}^n , and thus $\{\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n\}$ is a basis of \mathbb{R}^n . Thus A is diagonalizable.

Problem

Is the matrix

$$\mathbf{A} = \begin{bmatrix} 0 & -1 & 1 \\ 8 & 6 & -2 \\ 0 & 0 & -3 \end{bmatrix}$$

diagonalizable?

Solution

Because A has characteristic polynomial

$$c_A(x) = (x+3)(x-2)(x-4),$$

A has distinct eigenvalues -3, 2 and 4.

Since A has three distinct eigenvalues, A is diagonalizable.

Problem (Covered earlier, but with different wording)

Is
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 diagonalizable? Explain.

Solution

First, $c_A(x) = (x - 2)(x + 1)^2$, so the eigenvalues of A are $\lambda_1 = 2, \lambda_2 = -1$, and $\lambda_3 = -1$. Since the eigenvalues are not distinct, it isn't immediately obvious that A is diagonalizable. The general solution to $(-I - A)\vec{x} = \vec{0}_3$:

$$\begin{bmatrix} -1 & -1 & -1 & | & 0 \\ -1 & -1 & -1 & | & 0 \\ -1 & -1 & -1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

is $x_1 = -s - t, x_2 = s$, and $x_3 = t$ for $s, t \in \mathbb{R}$, leading to basic solutions

$$\begin{bmatrix} -1\\1\\0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

that are linearly independent. Therefore, there is a basis of \mathbb{R}^3 consisting of eigenvectors of A, so A is diagonalizable.

Lemma (Technical but useful)

Let A be an $n \times n$ matrix, with independent eigenvectors $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$. Extend $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ to a basis $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k, \dots, \vec{x}_n\}$ of \mathbb{R}^n , and let $P = \begin{bmatrix} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \end{bmatrix}$. If $\lambda_1, \lambda_2, \dots, \lambda_k$ are the (not necessarily distinct) eigenvalues corresponding to $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k$, then

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \left[\begin{array}{cc} \mathrm{diag}(\lambda_1, \dots, \lambda_k) & \mathbf{B} \\ \mathbf{0}_{(n-k) \times k} & \mathbf{A}_1 \end{array} \right],$$

where B is an $k \times (n-k)$ matrix and A₁ is an $(n-k) \times (n-k)$ matrix.

Proof.

$$\begin{bmatrix} \vec{x}_{1} & \cdots & \vec{x}_{k} & \vec{x}_{k+1} & \cdots & \vec{x}_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & & a_{1,k+1} & \cdots & a_{1,k+1} \\ \ddots & & \vdots & \vdots & \vdots \\ & \lambda_{k} & a_{k,k+1} & \cdots & a_{k,k+1} \\ & & a_{k,k+1} & \cdots & a_{k+1,k+1} \\ & & & \vdots & \vdots & \vdots \\ & & a_{n,k+1} & \cdots & a_{n,k+1} \end{bmatrix} \\ \uparrow & & & \uparrow \\ P^{-1}A\vec{x}_{k+1} & \cdots & P^{-1}A\vec{x}_{n} \\ \uparrow \\ P^{-1}A\vec{x}_{k+1} & \cdots & P^{-1}A\vec{x}_{n} \end{bmatrix}$$

$$\begin{aligned} \mathbf{AP} &= \mathbf{P} \begin{bmatrix} \operatorname{diag}(\lambda_1, \dots, \lambda_k) & \mathbf{B} \\ \mathbf{0}_{(n-k) \times k} & \mathbf{A}_1 \end{bmatrix} \\ & & & \\ \mathbf{P}^{-1} \mathbf{AP} &= \begin{bmatrix} \operatorname{diag}(\lambda_1, \dots, \lambda_k) & \mathbf{B} \\ \mathbf{0}_{(n-k) \times k} & \mathbf{A}_1 \end{bmatrix} \end{aligned}$$

Proof. (Another proof)

Recall that $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ is the standard basis of R_n . Since $I_n = P^{-1}P$,

$$\begin{bmatrix} \vec{e}_1 & \vec{e}_2 & \cdots & \vec{e}_n \end{bmatrix} = P^{-1}P = P^{-1}\begin{bmatrix} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \end{bmatrix}$$
$$= \begin{bmatrix} P^{-1}\vec{x}_1 & P^{-1}\vec{x}_2 & \cdots & P^{-1}\vec{x}_n \end{bmatrix}$$

Thus for each j, $1 \le j \le n$, $P^{-1}\vec{x_j} = \vec{e_j}$. Also,

$$\begin{array}{rcl} P^{-1}AP &=& P^{-1}A\left[\begin{array}{ccc} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \end{array}\right] \\ &=& \left[\begin{array}{ccc} P^{-1}A\vec{x}_1 & P^{-1}A\vec{x}_2 & \cdots & P^{-1}A\vec{x}_n \end{array}\right], \end{array}$$

so the j^th column of $P^{-1}AP$, $1 \le j \le k$, is equal to

$$P^{-1}(A\vec{x}_j) = P^{-1}(\lambda_j \vec{x}_j) = \lambda_j (P^{-1} \vec{x}_j) = \lambda_j \vec{e}_j.$$

This gives us the first k columns of $P^{-1}AP$, and the result follows.

Definition

Let A be an $n \times n$ matrix and $\lambda \in \mathbb{R}$. The eigenspace of A corresponding to λ is the set

$$E_{\lambda}(A) = \{ \vec{x} \in \mathbb{R}^n \mid A\vec{x} = \lambda \vec{x} \}.$$

Remark

1. The eigenspace $E_{\lambda}(A)$ is indeed a subspace of \mathbb{R}^n because

 $E_{\lambda}(A) = \{ \vec{x} \in \mathbb{R}^n \mid A\vec{x} = \lambda \vec{x} \} = \{ \vec{x} \in \mathbb{R}^n \mid (\lambda I - A)\vec{x} = \vec{0}_n \} = \text{null}(\lambda I - A).$

2. If λ is not an eigenvalue of A, then $E_{\lambda}(A) = \{0\}$.

Definition

1. If A is an $n \times n$ matrix and λ is an eigenvalue of A, then the (algebraic) multiplicity of λ is the largest value of m for which

$$c_A(x) = \left(x - \lambda\right)^m g(x)$$

for some polynomial g(x), i.e., the multiplicity of λ is the number of times that λ occurs as a root of $c_A(x)$.

2. dim($E_{\lambda}(A)$) is called the geometric multiplicity of λ .

Lemma

If A is an $n \times n$ matrix, and λ is an eigenvalue of A of multiplicity m, then

 $\dim(\mathrm{E}_{\lambda}(\mathrm{A})) \leq \mathbf{m},$

that is,

Geometric multiplicity \leq Algebraic multiplicity.

Proof.

Let $d = \dim(E_{\lambda}(A))$, and let $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_d\}$ be a basis of $E_{\lambda}(A)$. As a consequence, we know that there exists an invertible $n \times n$ matrix P so that

$$P^{-1}AP = \begin{bmatrix} \operatorname{diag}(\lambda, \dots, \lambda) & B\\ 0_{(n-d)\times d} & A_1 \end{bmatrix} = \begin{bmatrix} \lambda I_d & B\\ 0_{(n-d)\times d} & A_1 \end{bmatrix}$$

where B is $d \times (n - d)$ and A_1 is $(n - d) \times (n - d)$.

Define $A' = P^{-1}AP$. Then $A \sim A'$, so A and A' have the same characteristic polynomial. Thus

$$\begin{split} c_A(x) &= c_{A'}(x) = \det(xI - A') &= \det \begin{bmatrix} (x - \lambda)I_d & -B \\ 0_{(n-d)\times d} & xI_{n-d} - A_1 \end{bmatrix} \\ &= \det[(x - \lambda)I_d] \det(xI_{n-d} - A_1) \\ &= (x - \lambda)^d c_{A_1}(x) \\ &= (x - \lambda)^d g(x). \end{split}$$

Since λ has multiplicity m, d \leq m, and therefore dim(E_{λ}(A)) \leq m as required.

Characterizing Diagonalizable Matrices

The crucial consequence of this Lemma is the characterization of matrices that are diagonalizable.

Theorem (Covered earlier, here with new terminology)

For an $n \times n$ matrix A, the following two conditions are equivalent.

- 1. A is diagonalizable.
- For each eigenvalue λ of A, dim(E_λ(A)) is equal to the multiplicity of λ, i.e.,

Diagonalizable

 \updownarrow

Geometric multiplicity = Algebraic multiplicity, for all λ .

Problem (Covered earlier, here with new terminology)

If possible, diagonalize the matrix $A = \begin{bmatrix} 3 & 1 & 6 \\ 2 & 1 & 0 \\ -1 & 0 & -3 \end{bmatrix}$. Otherwise, explain why A is not diagonalizable.

Solution

 $c_A(x) = (x - 3)(x + 1)^2$, so A has eigenvalues $\lambda_1 = 3$, $\lambda_2 = \lambda_3 = -1$. Find the dimension of $E_{-1}(A)$ by solving the linear system $(-I - A)\vec{x} = \vec{0}_3$.

$$\left[\begin{array}{cccc|c} 4 & -1 & -6 & 0 \\ -2 & -2 & 0 & 0 \\ 1 & 0 & 2 & 0 \end{array} \right] \rightarrow \left[\begin{array}{cccc|c} 1 & 0 & 2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

From this, we see that $\dim(E_{-1}(A)) = 1$. Since -1 is an eigenvalue of multiplicity two, A is not diagonalizable.

Problem (Covered earlier, here with new terminology) Let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

Show that A is diagonalizable, and that B is not diagonalizable.

Solution

Both A and B are triangular matrices, so we immediately see that A and B have the same eigenvalues: $\lambda_1 = \lambda_2 = 1$ and $\lambda_3 = 2$. Thus for each matrix, 1 is an eigenvalue of multiplicity two.

Solving the system $(I - A)\vec{x} = \vec{0}_3$:

Γ	0	0	1	0	0	1 -]
	0	0	0	0	0	0	,
L	0	0	-1	0	0	0	

we see that there are two parameters in the general solution, so $\dim(E_1(A)) = 2$. Therefore, A is diagonalizable.

Solution (continued)

Solving the system $(I - B)\vec{x} = \vec{0}_3$:

$$\left[\begin{array}{ccc} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{array} \right] \rightarrow \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right],$$

we see that the general solution has only one parameter, so $\dim(E_1(B)) = 1$. However, the algebraic multiplicity of $\lambda = 1$ is 2. Therefore, B is not diagonalizable.

Complex Eigenvalues

If a matrix has eigenvalues that have imaginary parts (and aren't simply real numbers), we can still find eigenvectors and possibly diagonalize the matrix.

Problem

Diagonalize, if possible, the matrix
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
.

Solution

$$c_A(x) = det(xI - A) = \begin{vmatrix} x - 1 & -1 \\ 1 & x - 1 \end{vmatrix} = x^2 - 2x + 2.$$

The roots of $c_A(x)$ are distinct complex numbers: $\lambda_1 = 1 + i$ and $\lambda_2 = 1 - i$, so A is diagonalizable. Corresponding eigenvectors are

$$ec{\mathbf{x}}_1 = \left[egin{array}{c} -\mathrm{i} \ 1 \end{array}
ight] \quad ext{and} \quad ec{\mathbf{x}}_2 = \left[egin{array}{c} \mathrm{i} \ 1 \end{array}
ight],$$

respectively.

Solution (continued)

A diagonalizing matrix for A is

$$\mathbf{P} = \left[\begin{array}{cc} -\mathbf{i} & \mathbf{i} \\ 1 & 1 \end{array} \right],$$

and

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 1+\mathbf{i} & 0\\ 0 & 1-\mathbf{i} \end{bmatrix}.$$

Remark

Notice that A is a real matrix, but has complex eigenvalues (and eigenvectors).

Eigenvalues of Real Symmetric Matrices

Theorem

The eigenvalues of any real symmetric matrix are real.

Proof.

Let A be an $n \times n$ real symmetric matrix, and let λ be an eigenvalue of A. To prove that λ is real, it is enough to prove that $\overline{\lambda} = \lambda$, i.e., λ is equal to its (complex) conjugate.

We use \overline{A} to denote the matrix obtained from A by replacing each entry by its conjugate. Since A is real, $\overline{A} = A$.

Suppose

$$\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \\ \vdots \\ \mathbf{z}_n \end{bmatrix}$$

is a λ -eigenvector of A. Then $A\vec{x} = \lambda \vec{x}$.

Proof. (continued)

Let
$$\mathbf{c} = \vec{\mathbf{x}}^T \vec{\mathbf{x}} = \begin{bmatrix} \mathbf{z}_1 & \mathbf{z}_2 & \cdots & \mathbf{z}_n \end{bmatrix} \begin{bmatrix} \overline{z}_1 \\ \overline{z}_2 \\ \vdots \\ \overline{z}_n \end{bmatrix}$$
.

Then $c = z_1\overline{z}_1 + z_2\overline{z}_2 + \cdots + z_n\overline{z}_n = |z_1|^2 + |z_2|^2 + \cdots + |z_n|^2$; since $\vec{x} \neq \vec{0}$, c is a positive real number. Now

$$\begin{aligned} \mathbf{A}\mathbf{c} &= \lambda(\vec{\mathbf{x}}^{\mathrm{T}}\vec{\overline{\mathbf{x}}}) = (\lambda\vec{\mathbf{x}}^{\mathrm{T}})\vec{\overline{\mathbf{x}}} = (\lambda\vec{\mathbf{x}})^{\mathrm{T}}\vec{\overline{\mathbf{x}}} \\ &= (\mathbf{A}\vec{\mathbf{x}})^{\mathrm{T}}\vec{\overline{\mathbf{x}}} = \vec{\mathbf{x}}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\vec{\overline{\mathbf{x}}} \\ &= \vec{\mathbf{x}}^{\mathrm{T}}\mathbf{A}\vec{\overline{\mathbf{x}}} \quad (\text{since A is symmetric}) \\ &= \vec{\mathbf{x}}^{\mathrm{T}}\mathbf{A}\vec{\overline{\mathbf{x}}} \quad (\text{since A is real}) \\ &= \vec{\mathbf{x}}^{\mathrm{T}}(\overline{\mathbf{A}}\vec{\mathbf{x}}) = \vec{\mathbf{x}}^{\mathrm{T}}(\overline{\lambda}\vec{\overline{\mathbf{x}}}) = \vec{\mathbf{x}}^{\mathrm{T}}\ \overline{\lambda}\ \vec{\overline{\mathbf{x}}} \\ &= \overline{\lambda}(\vec{\mathbf{x}}^{\mathrm{T}}\vec{\overline{\mathbf{x}}}) \\ &= \overline{\lambda}\mathbf{c}. \end{aligned}$$

Thus, $\lambda c = \overline{\lambda}c$. Since $c \neq 0$, it follows that $\lambda = \overline{\lambda}$, and therefore λ is real.