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Similar Matrices

Definition (Similar Matrices)
Let A and B be n × n matrices. A is similar to B, written A ∼ B, if there
exists an invertible matrix P such that B = P−1AP.

Lemma
Similarity is an equivalence relation, i.e., for n × n matrices A, B and C

1. A ∼ A (reflexive);
2. if A ∼ B, then B ∼ A (symmetric);
3. if A ∼ B and B ∼ C, then A ∼ C (transitive).

Proof.
1. Since A = InAIn and I−1

n = In, A = I−1
n AIn. Therefore, A ∼ A.

2. Suppose A ∼ B. Then there exists an invertible n × n matrix P such
that B = P−1AP. Multiplying both sides on the left by P, on the right
by P−1, and simplifying gives us PBP−1 = A. Therefore,
A = (P−1)−1A(P−1), so A ∼ B.
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Proof. (continued)
3. Since A ∼ B and B ∼ C, there exist invertible n × n matrices P and Q

such that
B = P−1AP and C = Q−1BQ.

Thus

C = Q−1BQ = Q−1(P−1AP)Q = (Q−1P−1)A(PQ) = (PQ)−1A(PQ),

where PQ is invertible, and hence A ∼ C.
�



Definition
If A = [aij] is an n × n matrix, then the trace of A is

tr(A) =
n∑

i=1

aii.

Lemma (Properties of trace)
For n × n matrices A and B, and any k ∈ R,

1. tr(A + B) = tr(A) + tr(B);
2. tr(kA) = k · tr(A);
3. tr(AB) = tr(BA).
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Proof.
The proofs of (1) and (2) are trivial. As for (3), ...



Recall that for any n × n matrix A, the characteristic polynomial of A is

cA(x) = det(xI − A),

and is a polynomial of degree n.

Theorem (Properties of Similar Matrices)
If A and B are n × n matrices and A ∼ B, then

1. det(A) = det(B);
2. rank (A) = rank (B);
3. tr(A) = tr(B);
4. cA(x) = cB(x);
5. A and B have the same eigenvalues.
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Proof.
Since A ∼ B, there exists an n× n invertible matrix P so that B = P−1AP.

1. det(B) = det(P−1AP) = det(P−1) · det(A) · det(P).
Since P is invertible, det(P−1) = 1

det(P)
, so

det(B) =
1

det(P) · det(A) · det(P) = 1

det(P) · det(P) · det(A) = det(A).

Therefore, det(B) = det(A).

2. rank (B) = rank (P−1AP).
Since P is invertible, rank (P−1AP) = rank (P−1A),
since P−1 is invertible, rank (P−1A) = rank (A).
Therefore, rank (B) = rank (A).

3. tr(B) = tr[(P−1A)P] = tr[P(P−1A)] = tr[(PP−1)A] = tr(IA) = tr(A).
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Proof. (continued)
4.

cB(x) = det(xI − B) = det(xI − P−1AP)
= det(xP−1P − P−1AP)
= det(P−1xP − P−1AP)
= det[P−1(xI − A)P]
= det(P−1) · det(xI − A) · det(P)
= det(P−1) · det(P) · det(xI − A)

Since P is invertible, det(P−1) = 1
det(P)

, so

cB(x) =
1

det(P) · det(P) · det(xI − A) = det(xI − A) = cA(x).

5. Since the eigenvalues of a matrix are the roots of the characteristic
polynomial, cB(x) = cA(x) implies that A and B have the same
eigenvalues. �
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Diagonalization Revisited

Recall that if λ is an eigenvalue of A, then A~x = λ~x for some nonzero vector
~x in Rn. Such a vector ~x is called a λ-eigenvector of A or an eigenvector of
A corresponding to λ.

Definition (Diagonalizable – rephrased)
An n × n matrix A is diagonalizable if A ∼ D for some diagonal matrix D.

Remark ( Diagonalizability )
Determining whether or not a square matrix A is diagonalizable is done by
checking whether

the number of linearly independent eigenvectors
– geometric multiplicity

||?

the multiplicity of each eigenvalue
– algebraic multiplicity
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Example

Let A =

[
−1 0
0 1

]
. Then λ = −1 is an eigenvalue of A, and ~x =

[
1
0

]
is

a (−1)-eigenvector of A since

A~x =

[
−1 0
0 1

] [
1
0

]
=

[
−1
0

]
= (−1)

[
1
0

]
.

Theorem
Suppose A is an n × n matrix.

1. The eigenvalues of A are the roots of cA(x).
2. The λ-eigenvectors of A are all the nonzero solutions to (λI−A)~x = ~0n.
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Problem

Determine all eigenvalues of A =


−2 0 0 0
3 6 0 0

−1 0 6 0
4 2 −1 1

.

Solution

det(xI−A) =

∣∣∣∣∣∣∣∣
x + 2 0 0 0
−3 x − 6 0 0
1 0 x − 6 0
−4 −2 1 x − 1

∣∣∣∣∣∣∣∣ = (x+2)(x−6)(x−6)(x−1).

Thus, the eigenvalues of A are −2, 6, 6 and 1, precisely the elements on the
main diagonal of A. �

Remark
In general, the eigenvalues of any triangular matrix are the entries on its
main diagonal.
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Theorem
Let A be an n × n matrix.

1. A is diagonalizable if and only if Rn has a basis {~x1,~x2, . . . ,~xn} of
eigenvectors of A.

2. If {~x1,~x2, . . . ,~xn} are eigenvectors of A and form a basis of Rn, then

P =
[
~x1 ~x2 · · · ~xn

]
is an invertible matrix such that

P−1AP = diag(λ1, λ2, . . . , λn),

where λi is the eigenvalue of A corresponding to ~xi.

This result was covered earlier, but without the use of term basis.



Theorem
Let A be an n × n matrix, and suppose that A has distinct eigenvalues
λ1, λ2, . . . , λk. For each i, let ~xi be a λi-eigenvector of A. Then
{~x1,~x2, . . . ,~xk} is linearly independent.

Proof.

We need to show that t1~x1 + t2~x2 + · · ·+ tk~xk = ~0 only has trivial solution
t1 = · · · = tk = 0. Notice that

t1A~x1 + t2A~x2 + · · ·+ tkA~xk = t1λ1~x1 + t2λ2~x2 + · · ·+ tkλk~xk = ~0

t1A2~x1 + t2A2~x2 + · · ·+ tkA2~xk = t1λ2
1~x1 + t2λ2

2~x2 + · · ·+ tkλ2
k~xk = ~0

...
...

t1Ak−1~x1 + · · · · · ·+ tkAk−1~xk = t1λk−1
1 ~x1 + · · · · · ·+ tkλk−1

k ~xk = ~0
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Proof.

t1λ1~x1 + t2λ2~x2 + · · · + tkλk~xk = ~0

t1λ2
1~x1 + t2λ2

2~x2 + · · · + tkλ2
k~xk = ~0

...
...

...
...

...
t1λk−1

1 ~x1 + t2λk−1
2 ~x2 + · · · + tkλk−1

k ~xk = ~0

m

(
~x1 ~x2 · · · ~xk

)


t1 0 0 0
0 t2 0 0

0 0
. . . 0

0 0 0 tk



λ0
1 λ1

1 · · · λk−1
1

λ0
2 λ1

2 · · · λk−1
2

...
...

...
...

λ0
k λ1

k · · · λk−1
k

 = Ok×k.



Proof.
Since λi are distinct, the Vandermonde matrix is invertible, hence,

(
~x1 ~x2 · · · ~xk

)


t1 0 0 0
0 t2 0 0

0 0
. . . 0

0 0 0 tk

 = Ok×k.

m

ti~xi = 0 for all i = 1, · · · , k

⇓

ti = 0 for all i = 1, · · · , k

Only trivial solution is found. Hence, {~x1,~x2, . . . ,~xk} is independent. �



Proof. ( Another proof left for you to study )
The proof is by induction on k, the number of distinct eigenvalues.
Basis. If k = 1, then {~x1} is an independent set because ~x1 6= ~0n.
Suppose that for some k ≥ 1, {~x1,~x2, . . . ,~xk} is independent, where ~xi is an
eigenvector of A corresponding to λi, 1 ≤ i ≤ k, and λ1, λ2, . . . , λk are
distinct. (This is the Inductive Hypothesis.) Now suppose λ1, λ2, . . . , λk+1

are distinct eigenvalues of A that have corresponding eigenvectors
~x1,~x2, . . . ,~xk+1, respectively. Consider

t1~x1 + t2~x2 + · · ·+ tk+1~xk+1 = ~0n, for t1, t2, . . . , tk+1 ∈ R. (1)

Multiplying equation (1) by A (on the left) gives us



Proof. (continued)

t1A~x1 + t2A~x2 + · · ·+ tk+1A~xk+1 = ~0n,

⇓

t1λ1~x1 + t2λ2~x2 + · · ·+ tk+1λk+1~xk+1 = ~0n. (2)

Also, multiplying (1) by λk+1 gives us

t1λk+1~x1 + t2λk+1~x2 + · · ·+ tk+1λk+1~xk+1 = ~0n, (3)

and subtracting (3) from (2) results in

t1(λ1 − λk+1)~x1 + t2(λ2 − λk+1)~x2 + · · ·+ tk(λk − λk+1)~xk = ~0n.



Proof. (continued)

By the inductive hypothesis, {~x1,~x2, . . . ,~xk} is independent, so

ti(λi − λk+1) = 0 for i = 1, 2, . . . k.

Since λ1, λ2, . . . , λk are distinct, (λi − λk+1) 6= 0 for i = 1, 2, . . . , k, and thus
ti = 0 for i = 1, 2, . . . , k. Substituting these values into (1) yields

tk+1~xk+1 = ~0n,

implying that tk+1 = 0, since ~xk+1 6= ~0n.
Therefore, {~x1,~x2, . . . ,~xk+1} is an independent set, and the result follows
by induction. �



The next result is an easy consequence of the previous Theorem.

Theorem (Covered earlier, but now with a proof)
If A is an n× n matrix with n distinct eigenvalues, then A is diagonalizable.

Proof.
Let {λ1, λ2, . . . , λn} denote the n (distinct) eigenvalues of A, and let ~xi be
an eigenvector of A corresponding to λi, 1 ≤ i ≤ n. By the previous
Theorem, {~x1,~x2, . . . ,~xn} is an independent set. A subset of n linearly
independent vectors of Rn also spans Rn, and thus {~x1,~x2, . . . ,~xn} is a basis
of Rn. Thus A is diagonalizable. �
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Problem
Is the matrix

A =

 0 −1 1
8 6 −2
0 0 −3


diagonalizable?

Solution
Because A has characteristic polynomial

cA(x) = (x + 3)(x − 2)(x − 4),

A has distinct eigenvalues −3, 2 and 4.

Since A has three distinct eigenvalues, A is diagonalizable. �
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Problem (Covered earlier, but with different wording)

Is A =

 0 1 1
1 0 1
1 1 0

 diagonalizable? Explain.

Solution
First, cA(x) = (x − 2)(x + 1)2, so the eigenvalues of A are λ1 = 2,λ2 = −1,
and λ3 = −1. Since the eigenvalues are not distinct, it isn’t immediately
obvious that A is diagonalizable. The general solution to (−I − A)~x = ~03: −1 −1 −1 0

−1 −1 −1 0
−1 −1 −1 0

 →

 1 1 1 0
0 0 0 0
0 0 0 0


is x1 = −s − t, x2 = s, and x3 = t for s, t ∈ R, leading to basic solutions −1

1
0

 and

 −1
0
1


that are linearly independent. Therefore, there is a basis of R3 consisting of
eigenvectors of A, so A is diagonalizable. �
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Algebraic and Geometric Multiplicities

Lemma (Technical but useful)

Let A be an n × n matrix, with independent eigenvectors {~x1,~x2, . . . ,~xk}.
Extend {~x1,~x2, . . . ,~xk} to a basis {~x1,~x2, . . . ,~xk, . . . ,~xn} of Rn, and let
P =

[
~x1 ~x2 · · · ~xn

]
. If λ1, λ2, . . . , λk are the (not necessarily

distinct) eigenvalues corresponding to ~x1,~x2, . . . ,~xk, then

P−1AP =

[
diag(λ1, . . . , λk) B

0(n−k)×k A1

]
,

where B is an k × (n − k) matrix and A1 is an (n − k)× (n − k) matrix.
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Proof.
[

A~x1 · · · A~xk A~xk+1 · · · A~xn
]

=
[

λ1~x1 · · · λk~xk A~xk+1 · · · A~xn
]

||
A

[
~x1 ~x2 · · · ~xn

]
||

[
~x1 · · · ~xk ~xk+1 · · · ~xn

]


λ1 a1,k+1 · · · a1,k+1

. . .
...

...
...

λk ak,k+1 · · · ak,k+1

ak+1,k+1 · · · ak+1,k+1

0
...

...
...

an,k+1 · · · an,k+1


↑ · · · ↑

P−1A~xk+1 · · · P−1A~xn

m

AP = P
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diag(λ1, . . . , λk) B
0(n−k)×k A1

]
m
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0(n−k)×k A1

]
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Proof. (Another proof)

Recall that {~e1,~e2, . . . ,~en} is the standard basis of Rn. Since In = P−1P,[
~e1 ~e2 · · · ~en

]
= P−1P = P−1 [ ~x1 ~x2 · · · ~xn

]
=

[
P−1~x1 P−1~x2 · · · P−1~xn

]
Thus for each j, 1 ≤ j ≤ n, P−1~xj = ~ej. Also,

P−1AP = P−1A
[
~x1 ~x2 · · · ~xn

]
=

[
P−1A~x1 P−1A~x2 · · · P−1A~xn

]
,

so the jth column of P−1AP, 1 ≤ j ≤ k, is equal to

P−1(A~xj) = P−1(λj~xj) = λj(P−1~xj) = λj~ej.

This gives us the first k columns of P−1AP, and the result follows. �



Definition
Let A be an n × n matrix and λ ∈ R. The eigenspace of A corresponding to
λ is the set

Eλ(A) = {~x ∈ Rn | A~x = λ~x}.

Remark
1. The eigenspace Eλ(A) is indeed a subspace of Rn because

Eλ(A) = {~x ∈ Rn | A~x = λ~x} = {~x ∈ Rn | (λI − A)~x = ~0n} = null(λI − A).

2. If λ is not an eigenvalue of A, then Eλ(A) = {0}.
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Definition
1. If A is an n× n matrix and λ is an eigenvalue of A, then the (algebraic)

multiplicity of λ is the largest value of m for which

cA(x) = (x − λ)mg(x)

for some polynomial g(x), i.e., the multiplicity of λ is the number of
times that λ occurs as a root of cA(x).

2. dim(Eλ(A)) is called the geometric multiplicity of λ.

Lemma
If A is an n × n matrix, and λ is an eigenvalue of A of multiplicity m, then

dim(Eλ(A)) ≤ m,

that is,

Geometric multiplicity ≤ Algebraic multiplicity.
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Definition
1. If A is an n× n matrix and λ is an eigenvalue of A, then the (algebraic)

multiplicity of λ is the largest value of m for which

cA(x) = (x − λ)mg(x)

for some polynomial g(x), i.e., the multiplicity of λ is the number of
times that λ occurs as a root of cA(x).
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Lemma
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that is,
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Proof.
Let d = dim(Eλ(A)), and let {~x1,~x2, . . . ,~xd} be a basis of Eλ(A). As a
consequence, we know that there exists an invertible n × n matrix P so that

P−1AP =

[
diag(λ, . . . , λ) B

0(n−d)×d A1

]
=

[
λId B

0(n−d)×d A1

]
where B is d × (n − d) and A1 is (n − d)× (n − d).

Define A′ = P−1AP. Then A ∼ A′, so A and A′ have the same
characteristic polynomial. Thus

cA(x) = cA′(x) = det(xI − A′) = det
[

(x − λ)Id −B
0(n−d)×d xIn−d − A1

]
= det[(x − λ)Id] det(xIn−d − A1)

= (x − λ)dcA1(x)
= (x − λ)dg(x).

Since λ has multiplicity m, d ≤ m, and therefore dim(Eλ(A)) ≤ m as
required. �



Characterizing Diagonalizable Matrices

The crucial consequence of this Lemma is the characterization of matrices
that are diagonalizable.

Theorem (Covered earlier, here with new terminology)
For an n × n matrix A, the following two conditions are equivalent.

1. A is diagonalizable.
2. For each eigenvalue λ of A, dim(Eλ(A)) is equal to the multiplicity of

λ, i.e.,

Diagonalizable

m

Geometric multiplicity = Algebraic multiplicity, for all λ.
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Characterizing Diagonalizable Matrices

The crucial consequence of this Lemma is the characterization of matrices
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Problem (Covered earlier, here with new terminology)

If possible, diagonalize the matrix A =

 3 1 6
2 1 0

−1 0 −3

. Otherwise,

explain why A is not diagonalizable.

Solution
cA(x) = (x − 3)(x + 1)2, so A has eigenvalues λ1 = 3, λ2 = λ3 = −1. Find
the dimension of E−1(A) by solving the linear system (−I − A)~x = ~03. 4 −1 −6 0

−2 −2 0 0
1 0 2 0

 →

 1 0 2 0
0 1 −2 0
0 0 0 0

 .

From this, we see that dim(E−1(A)) = 1. Since −1 is an eigenvalue of
multiplicity two, A is not diagonalizable. �
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Problem (Covered earlier, here with new terminology)
Let

A =

 1 0 1
0 1 0
0 0 2

 and B =

 1 1 0
0 1 0
0 0 2

 .

Show that A is diagonalizable, and that B is not diagonalizable.

Solution
Both A and B are triangular matrices, so we immediately see that A and B
have the same eigenvalues: λ1 = λ2 = 1 and λ3 = 2. Thus for each matrix,
1 is an eigenvalue of multiplicity two.

Solving the system (I − A)~x = ~03: 0 0 1
0 0 0
0 0 −1

 →

 0 0 1
0 0 0
0 0 0

 ,

we see that there are two parameters in the general solution, so
dim(E1(A)) = 2. Therefore, A is diagonalizable.



Problem (Covered earlier, here with new terminology)
Let

A =

 1 0 1
0 1 0
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 and B =
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have the same eigenvalues: λ1 = λ2 = 1 and λ3 = 2. Thus for each matrix,
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we see that there are two parameters in the general solution, so
dim(E1(A)) = 2. Therefore, A is diagonalizable.



Solution (continued)

Solving the system (I − B)~x = ~03: 0 −1 0
0 0 0
0 0 −1

 →

 0 1 0
0 0 1
0 0 0

 ,

we see that the general solution has only one parameter, so
dim(E1(B)) = 1. However, the algebraic multiplicity of λ = 1 is 2.
Therefore, B is not diagonalizable. �



Complex Eigenvalues

If a matrix has eigenvalues that have imaginary parts (and aren’t simply
real numbers), we can still find eigenvectors and possibly diagonalize the
matrix.

Problem

Diagonalize, if possible, the matrix A =

[
1 1

−1 1

]
.

Solution

cA(x) = det(xI − A) =

∣∣∣∣ x − 1 −1
1 x − 1

∣∣∣∣ = x2 − 2x + 2.

The roots of cA(x) are distinct complex numbers: λ1 = 1+ i and λ2 = 1− i,
so A is diagonalizable. Corresponding eigenvectors are

~x1 =

[
−i
1

]
and ~x2 =

[
i
1

]
,

respectively.
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Solution (continued)
A diagonalizing matrix for A is

P =

[
−i i
1 1

]
,

and

P−1AP =

[
1 + i 0
0 1− i

]
.

�

Remark
Notice that A is a real matrix, but has complex eigenvalues (and
eigenvectors).



Solution (continued)
A diagonalizing matrix for A is

P =

[
−i i
1 1

]
,

and

P−1AP =

[
1 + i 0
0 1− i

]
.

�

Remark
Notice that A is a real matrix, but has complex eigenvalues (and
eigenvectors).



Eigenvalues of Real Symmetric Matrices

Theorem
The eigenvalues of any real symmetric matrix are real.

Proof.
Let A be an n × n real symmetric matrix, and let λ be an eigenvalue of A.
To prove that λ is real, it is enough to prove that λ = λ, i.e., λ is equal to
its (complex) conjugate.

We use A to denote the matrix obtained from A by replacing each entry by
its conjugate. Since A is real, A = A.

Suppose

~x =


z1
z2
...
zn


is a λ-eigenvector of A. Then A~x = λ~x.
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Theorem
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Let A be an n × n real symmetric matrix, and let λ be an eigenvalue of A.
To prove that λ is real, it is enough to prove that λ = λ, i.e., λ is equal to
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Proof. (continued)

Let c = ~xT~x =
[

z1 z2 · · · zn
]


z1
z2
...
zn

.

Then c = z1z1 + z2z2 + · · ·+ znzn = |z1|2 + |z2|2 + · · ·+ |zn|2; since ~x 6= ~0, c
is a positive real number. Now

λc = λ(~xT~x) = (λ~xT)~x = (λ~x)T~x
= (A~x)T~x = ~xTAT~x
= ~xTA~x (since A is symmetric)
= ~xT A ~x (since A is real)
= ~xT(A~x) = ~xT(λ~x) = ~xT λ ~x
= λ(~xT~x)
= λc.

Thus, λc = λc. Since c 6= 0, it follows that λ = λ, and therefore λ is real. �
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