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2. Polynomials of order at most n:
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c" ([0, 1)).



What is a vector space?

1. R

2. Polynomials of order at most n:
{ap +aix+---+anx'|a; €ER,i=1,--- ,n}

3. The set of m X n matrices.
4. The set of continuous functions on [0, 1], i.e., C([0, 1]).

5. The set of functions on [0, 1] having nth continuous derivatives, i.e.,

c" ([0, 1)).

Definition (Vector Space)

Let V be a nonempty set of objects with two operations: vector addition
and scalar multiplication. Then V is called a vector space if it satisfies the
following Axioms of Addition and the Axioms of Scalar Multiplication.
The elements of V are called vectors.



Definition ( continued — Axioms of ADDITION )

Al. V is closed under addition.
vwvweV — u+veVvV

A2. Addition is commutative.
u+v=v+uforall uveV.

A3. Addition is associative.
(u+v)+w=u+ (v+w) for all u,v,w € V.

A4. Existence of an additive identity.
There exists an element 0 in V so that u+ 0 =u for all u € V.

A5. Existence of an additive inverse.
For each u € V there exists an element —u € V so that u+ (—u) = 0.



Definition (continued — Axioms of SCALAR MULTIPLICATION)

S1.

S2.

S3.

S4.

S5.

V is closed under scalar multiplication.
veVand ke R, = kve V.

Scalar multiplication distributes over vector addition.
a(u+v)=au+av for all a € R and u,v € V.

Scalar multiplication distributes over scalar addition.
(a+b)u=au+ bu for all a,b € R and u € V.

Scalar multiplication is associative.
a(bu) = (ab)u for all a,b € R and u € V.

Existence of a multiplicative identity for scalar multiplication.
lu=uforalueV.
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Let V be a vector space and u,v € V. The difference of u and v is defined as
u—v=u+(—v)

(where —v is the additive inverse of v).
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1. fu+v=u+w, then v=w.
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Definition (Vector Difference)

Let V be a vector space and u,v € V. The difference of u and v is defined as
u—v=u+(—v)

(where —v is the additive inverse of v).

Theorem
Let V be a vector space, u,v,w € V, and a € R.
1. fu+v=u+w, then v=w.

2. The equation x + v = u, has a unique solution x € V given by
X=u-—v.

3. av=0if and only if a =0 or v = 0.
4. (—1)v=—v.

5. (—a)v = —(av) = a(—v).
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and scalar multiplication is a vector space. It is left as an exercise to verify
the ten vector space axioms.



Example One — Matrices

Example

R"™ with matrix addition and scalar multiplication is a vector space.

Example

Minn, the set of all m x n matrices (of real numbers) with matrix addition
and scalar multiplication is a vector space. It is left as an exercise to verify
the ten vector space axioms.

Remark

1. Notation: the m X n matrix of all zeros is written 0 or, when the size of
the matrix needs to be emphasized, Omy-

2. The vector space My, “is the same as” the vector space R™". We will
make this notion more precise later on. For now, notice that an m x n
matrix has mn entries arranged in m rows and n columns, while a
vector in R™" has mn entries arranged in mn rows and 1 column.



Problem

Let V be the set of all 2 x 2 matrices of real numbers whose entries sum to
zero. We use the usual addition and scalar multiplication of Ma2. Show
that V is a vector space.



Problem

Let V be the set of all 2 x 2 matrices of real numbers whose entries sum to
zero. We use the usual addition and scalar multiplication of Ma2. Show
that V is a vector space.

Solution

The matrices in V may be described as follows:

b
o{[2 b]em

a—i—b—i—c—i—d:O}.
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Let V be the set of all 2 x 2 matrices of real numbers whose entries sum to
zero. We use the usual addition and scalar multiplication of Ma2. Show
that V is a vector space.

Solution

The matrices in V may be described as follows:

b
([ t]em

Since we are using the matrix addition and scalar multiplication of Mas, it
is automatic that addition is commutative and associative, and that scalar
multiplication satisfies the two distributive properties, the associative
property, and has 1 as an identity element.

a—i—b—i—c—i—d:O}.



Problem

Let V be the set of all 2 x 2 matrices of real numbers whose entries sum to
zero. We use the usual addition and scalar multiplication of Ma2. Show
that V is a vector space.

Solution

The matrices in V may be described as follows:

b
([ t]em

Since we are using the matrix addition and scalar multiplication of Mas, it
is automatic that addition is commutative and associative, and that scalar
multiplication satisfies the two distributive properties, the associative
property, and has 1 as an identity element.

a—l—b—i—c—i—d:O}.

What needs to be shown is closure under addition (for all v,w € V,

v+ w € V), and closure under scalar multiplication (for all v € V and

k € R, kv € V), as well as showing the existence of an additive identity and
additive inverses in the set V.



Solution (continued)
» Closure under addition: Suppose
A:{Wl Xl} and B:[W2 XQ]
yr z Y2 o X2
are in V. Then w1 +x1 +y1 +21 = 0,w2 + X2 + y2 + z2 = 0, and

A+B= W1 X1 T W2 X2 | W1+ W2 X1 + X2
y1i  Z1 Y2 o Z2 vi+ye z1+z2 |

Since

(w1 +w2) + (x1 +x2) + (y1 +y2) + (21 + 22)
= (w1 +=x1+y1+2z1)+ (w2 +x2 +y2 +22)
=0+0=0,

A+ Bisin V, so V is closed under addition.



Solution (continued)

w

» Closure under scalar multiplication: Suppose A = { )z( } isin V

and k € R. Then w+x+y +2z =0, and
WX kw kx
kA,k[y Z],[ky kz].

Since
kw + kx + ky + kz = k(w +x+y +z) = k(0) = 0,

kA is in V, so V is closed under scalar multiplication.



Solution (continued)

» Existence of an additive identity: The additive identity of Mas2 is the
2 X 2 matrix of zeros,
0 0
=13 5

Since 0+ 0+ 0+ 0= 0, 0 is in V, and has the required property (as it
does in May).



Solution (continued)

» Existence of an additive inverse: Let A = ;V )z{ } be in V.

Then w + x + y 4+ z = 0, and its additive inverse in Ma2 is
—-W —X
e [ -y -z } '
Since

(=%) + (=) + (=¥) + (-2) = =W+ x+y +%) = =0 =0,

—A is in V and has the required property (as it does in Ma2).



Problem

RIINY

We use the usual addition and scalar multiplication of Mss. Show that V is
NOT a vector space.

a,b,c,deR and det{a b}:().}.
c d




Problem

RIINY

We use the usual addition and scalar multiplication of Mss. Show that V is
NOT a vector space.

a,b,c,deR and det{a b}:().}.
c d

Solution

We need to find a counter example that violates some axioms. Indeed, if

1 1 1 0
A_[00:| and B_|:10:|,

then det(A) = 0 and det(B) =0, s0 A,B € V.



Problem

RIINY

We use the usual addition and scalar multiplication of Mss. Show that V is
NOT a vector space.

a,b,c,deR and det{a b}:().}.
c d

Solution

We need to find a counter example that violates some axioms. Indeed, if

1 1 1 0
A_[00:| and B_|:10:|,

then det(A) = 0 and det(B) =0, so A, B € V. However,

2 1
AJ“B_L 0}’

and det(A + B) = —1,s0 A+ B ¢V, i.e.,, V is not closed under addition. W
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Example Two — Polynomials

Definition

Let P be the set of all polynomials in x, with real coefficients, and let

p € P. Then
b9 = 3"
i=0

for some integer n.



Example Two — Polynomials

Definition

Let P be the set of all polynomials in x, with real coefficients, and let
p € P. Then
p(x) = Z aix'
i=0
for some integer n.

» The degree of p is the highest power of x with a nonzero coefficient.
Note that p(x) = 0 has undefined degree.



Definition (continued)

» Addition. Suppose p,q € P. Then

p(x) = iaixi and q(x) = ibixi.
i=0 i=0

We may assume, without loss of generality, that n > m; for
j=m+1,m+2,...,n—1,n, we define b; = 0. Then

n n

(p+a)(x) = p(x) +a(x) = D (ax’ +bix') = D (ai + bi)x".

i=0 i=0



Definition (continued)

» Addition. Suppose p,q € P. Then

p(x) = Zaixi and q(x) = Zbixi.
i=0 i=0
We may assume, without loss of generality, that n > m; for
j=m+1,m+2,...,n—1,n, we define b; = 0. Then

n n

(p+a)(x) = p(x) +a(x) = D (ax’ +bix') = D (ai + bi)x".

i=0 i=0

Remark

Note that this definition ensures that P is closed under addition.



Definition ( continued )

» Scalar Multiplication. Suppose p € P and k € R. Then

n
i
= E ajx ,
i=0
and

(kp)(x) = k(p(x Zk ) = > (han)x

i=0



Definition ( continued )

» Scalar Multiplication. Suppose p € P and k € R. Then

n
i
= E ajx ,
i=0
and

(kp)(x) = k(p(x Zk aix') = Z( )X’

i=0

» The zero polynomial is denoted 0. Note that 0 = 0, but we use 0 to
emphasize that it is the zero vector of P.



Definition ( continued )

» Scalar Multiplication. Suppose p € P and k € R. Then

p(x) = Z aix,
i=0

and
n

(kp)(x) = k(p(x)) = D k(aix') = Y (kai)x"
i=0

i=0

» The zero polynomial is denoted 0. Note that 0 = 0, but we use 0 to
emphasize that it is the zero vector of P.

Remark

Note that this definition ensures that P is closed under scalar
multiplication.



Example

The set of polynomials P, with addition and scalar multiplication as
defined, is a vector space. It is left as an exercise to verify the ten vector
space axioms.



Example

The set of polynomials P, with addition and scalar multiplication as
defined, is a vector space. It is left as an exercise to verify the ten vector
space axioms.

Example

For n > 1, let P, denote the set of all polynomials of degree at most n,
along with the zero polynomial, with addition and scalar multiplication as
in P, ie.,

2 n—1 n
Pn:{ao—i—alx—i—agx +---+ap 1x + anx |ao,al,ag,...,anfl,aneR}.

Then P, is a vector space, and it is left as an exercise to verify the Py is
closed under addition and scalar multiplication, and satisfies the ten vector
space axioms.
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Let V={(x,y) | x,y € R}, with addition & and scalar multiplication ®
defined as follows:
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More Examples

Problem

Let V = {(x,y) | x,y € R}, with addition @ and scalar multiplication ®
defined as follows:

For (x1,y1), (x2,y2) € V, and a,b € R:
1. Addition. (x1,y1) @ (x2,y2) = (X1 + X2,y1 +y2 + 1).
2. Scalar Multiplication. a ® (x1,y1) = (ax1,ay1 +a— 1).

Show that V, with addition and scalar multiplication as defined, is a vector
space.



Proof.

1. It is clear that V is closed under @& and ®, since both operations
produce ordered pairs of real numbers.
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Proof.

1.

T o W N

It is clear that V is closed under @ and ®, since both operations
produce ordered pairs of real numbers.

. It is routine to verify that & is commutative and associative.
. What is the additive identity?

. What is the additive inverse of (x,y) € V?

. Verify that (a+b) ® (x1,y1) = (2 ® (x1,¥1)) ® (b © (x1,y1)).
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Proof.

1.

N O Ot s W N

It is clear that V is closed under @ and ®, since both operations
produce ordered pairs of real numbers.

. It is routine to verify that & is commutative and associative.

. What is the additive identity?

. What is the additive inverse of (x,y) € V?

. Verify that (a+b) ® (x1,y1) = (2 ® (x1,¥1)) ® (b © (x1,y1)).

. Verify that a ® ((x1,y1) ® (x2,¥2)) = (a® (x1,¥1)) ® (a ® (x2,y2))-
. Verify that a® (b ® (x1,y1)) = (ab) ® (x1,y1).



Proof.

1.

o J O Ut = W N

It is clear that V is closed under @ and ®, since both operations
produce ordered pairs of real numbers.

. It is routine to verify that & is commutative and associative.

. What is the additive identity?

. What is the additive inverse of (x,y) € V?

. Verify that (a+b) ® (x1,y1) = (2 ® (x1,¥1)) ® (b © (x1,y1)).

. Verify that a ® ((x1,y1) ® (x2,¥2)) = (a® (x1,¥1)) ® (a ® (x2,y2))-
. Verify that a® (b ® (x1,y1)) = (ab) ® (x1,y1).

. Verify that 1 ® (x,y) = (x,y).
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For x,y € R4, and a € R:
1. Addition. x @y = xy.
2. Scalar Multiplication. a ® x = x*.

Prove that R4 equipped with ¢ and ® is a vector space.

Proof.

Verify ten properties in the Axioms!



Problem

1. Let C([0, 1]) be the set of continuous functions defined on [0, 1]
equipped with usual addition and scalar multiplication. Prove that
C([0,1]) is a vector space.

2. Let C"([0,1]) be the set of functions that have continuous nth
derivatives (n > 0) defined on [0, 1], equipped with usual addition and
scalar multiplication. Prove that C"([0, 1]) is a vector space.



Problem

1. Let C([0, 1]) be the set of continuous functions defined on [0, 1]
equipped with usual addition and scalar multiplication. Prove that
C([0,1]) is a vector space.

2. Let C"([0,1]) be the set of functions that have continuous nth
derivatives (n > 0) defined on [0, 1], equipped with usual addition and
scalar multiplication. Prove that C"([0, 1]) is a vector space.

Proof.
Verify ten properties in the Axioms! [ |



	What is a vector space?
	Example one – Matrices
	Example Two – Polynomials
	More Examples

