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What is a vector space?

1. Rn

2. Polynomials of order at most n:

{a0 + a1x + · · ·+ anxn|ai ∈ R, i = 1, · · · ,n}

3. The set of m × n matrices.
4. The set of continuous functions on [0, 1], i.e., C([0, 1]).
5. The set of functions on [0, 1] having nth continuous derivatives, i.e.,

Cn([0, 1]).
...

...

Definition (Vector Space)
Let V be a nonempty set of objects with two operations: vector addition
and scalar multiplication. Then V is called a vector space if it satisfies the
following Axioms of Addition and the Axioms of Scalar Multiplication.
The elements of V are called vectors.
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Definition ( continued – Axioms of ADDITION )
A1. V is closed under addition.

v,w ∈ V =⇒ u + v ∈ V

A2. Addition is commutative.
u + v = v + u for all u, v ∈ V.

A3. Addition is associative.
(u + v) + w = u + (v + w) for all u, v,w ∈ V.

A4. Existence of an additive identity.
There exists an element 0 in V so that u + 0 = u for all u ∈ V.

A5. Existence of an additive inverse.
For each u ∈ V there exists an element −u ∈ V so that u + (−u) = 0.



Definition (continued – Axioms of SCALAR MULTIPLICATION)
S1. V is closed under scalar multiplication.

v ∈ V and k ∈ R, =⇒ kv ∈ V.

S2. Scalar multiplication distributes over vector addition.
a(u + v) = au + av for all a ∈ R and u, v ∈ V.

S3. Scalar multiplication distributes over scalar addition.
(a + b)u = au + bu for all a,b ∈ R and u ∈ V.

S4. Scalar multiplication is associative.
a(bu) = (ab)u for all a, b ∈ R and u ∈ V.

S5. Existence of a multiplicative identity for scalar multiplication.
1u = u for all u ∈ V.



Definition (Vector Difference)
Let V be a vector space and u, v ∈ V. The difference of u and v is defined as

u − v = u + (−v)

(where −v is the additive inverse of v).

Theorem
Let V be a vector space, u, v,w ∈ V, and a ∈ R.

1. If u + v = u + w, then v = w.
2. The equation x + v = u, has a unique solution x ∈ V given by

x = u − v.
3. av = 0 if and only if a = 0 or v = 0.
4. (−1)v = −v.
5. (−a)v = −(av) = a(−v).
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Example One – Matrices

Example
Rn with matrix addition and scalar multiplication is a vector space.

Example
Mmn, the set of all m × n matrices (of real numbers) with matrix addition
and scalar multiplication is a vector space. It is left as an exercise to verify
the ten vector space axioms.

Remark
1. Notation: the m × n matrix of all zeros is written 0 or, when the size of

the matrix needs to be emphasized, 0mn.
2. The vector space Mmn “is the same as” the vector space Rmn. We will

make this notion more precise later on. For now, notice that an m × n
matrix has mn entries arranged in m rows and n columns, while a
vector in Rmn has mn entries arranged in mn rows and 1 column.
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Problem
Let V be the set of all 2× 2 matrices of real numbers whose entries sum to
zero. We use the usual addition and scalar multiplication of M22. Show
that V is a vector space.

Solution
The matrices in V may be described as follows:

V =

{[
a b
c d

]
∈ M22

∣∣∣∣ a + b + c + d = 0

}
.

Since we are using the matrix addition and scalar multiplication of M22, it
is automatic that addition is commutative and associative, and that scalar
multiplication satisfies the two distributive properties, the associative
property, and has 1 as an identity element.

What needs to be shown is closure under addition (for all v,w ∈ V,
v + w ∈ V), and closure under scalar multiplication (for all v ∈ V and
k ∈ R, kv ∈ V), as well as showing the existence of an additive identity and
additive inverses in the set V.
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Solution (continued)
I Closure under addition: Suppose

A =

[
w1 x1

y1 z1

]
and B =

[
w2 x2

y2 x2

]
are in V. Then w1 + x1 + y1 + z1 = 0,w2 + x2 + y2 + z2 = 0, and

A + B =

[
w1 x1

y1 z1

]
+

[
w2 x2

y2 z2

]
=

[
w1 + w2 x1 + x2

y1 + y2 z1 + z2

]
.

Since

(w1 + w2) + (x1 + x2) + (y1 + y2) + (z1 + z2)
= (w1 + x1 + y1 + z1) + (w2 + x2 + y2 + z2)
= 0 + 0 = 0,

A + B is in V, so V is closed under addition.



Solution (continued)

I Closure under scalar multiplication: Suppose A =

[
w x
y z

]
is in V

and k ∈ R. Then w + x + y + z = 0, and

kA = k
[

w x
y z

]
=

[
kw kx
ky kz

]
.

Since
kw + kx + ky + kz = k(w + x + y + z) = k(0) = 0,

kA is in V, so V is closed under scalar multiplication.



Solution (continued)
I Existence of an additive identity: The additive identity of M22 is the

2× 2 matrix of zeros,

0 =

[
0 0
0 0

]
;

Since 0 + 0 + 0 + 0 = 0, 0 is in V, and has the required property (as it
does in M22).



Solution (continued)

I Existence of an additive inverse: Let A =

[
w x
y z

]
be in V.

Then w + x + y + z = 0, and its additive inverse in M22 is

−A =

[
−w −x
−y −z

]
.

Since

(−w) + (−x) + (−y) + (−z) = −(w + x + y + x) = −0 = 0,

−A is in V and has the required property (as it does in M22). �



Problem
Let

V =

{[
a b
c d

] ∣∣∣∣ a, b, c, d ∈ R and det
[

a b
c d

]
= 0.

}
.

We use the usual addition and scalar multiplication of M22. Show that V is
NOT a vector space.

Solution
We need to find a counter example that violates some axioms. Indeed, if

A =

[
1 1
0 0

]
and B =

[
1 0
1 0

]
,

then det(A) = 0 and det(B) = 0, so A,B ∈ V. However,

A + B =

[
2 1
1 0

]
,

and det(A + B) = −1, so A + B 6∈ V, i.e., V is not closed under addition. �
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Example Two – Polynomials

Definition
Let P be the set of all polynomials in x, with real coefficients, and let
p ∈ P. Then

p(x) =
n∑

i=0

aixi

for some integer n.

I The degree of p is the highest power of x with a nonzero coefficient.
Note that p(x) = 0 has undefined degree.
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Definition (continued)
I Addition. Suppose p, q ∈ P. Then

p(x) =
n∑

i=0

aixi and q(x) =
m∑

i=0

bixi.

We may assume, without loss of generality, that n ≥ m; for
j = m + 1,m + 2, . . . , n − 1, n, we define bj = 0. Then

(p + q)(x) = p(x) + q(x) =
n∑

i=0

(aixi + bixi) =

n∑
i=0

(ai + bi)xi.

Remark
Note that this definition ensures that P is closed under addition.
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Definition ( continued )
I Scalar Multiplication. Suppose p ∈ P and k ∈ R. Then

p(x) =
n∑

i=0

aixi,

and

(kp)(x) = k(p(x)) =
n∑

i=0

k(aixi) =

n∑
i=0

(kai)xi.

I The zero polynomial is denoted 0. Note that 0 = 0, but we use 0 to
emphasize that it is the zero vector of P.

Remark
Note that this definition ensures that P is closed under scalar
multiplication.
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Example
The set of polynomials P, with addition and scalar multiplication as
defined, is a vector space. It is left as an exercise to verify the ten vector
space axioms.

Example
For n ≥ 1, let Pn denote the set of all polynomials of degree at most n,
along with the zero polynomial, with addition and scalar multiplication as
in P, i.e.,

Pn =
{
a0 + a1x + a2x2 + · · ·+ an−1xn−1 + anxn | a0, a1, a2, . . . , an−1, an ∈ R

}
.

Then Pn is a vector space, and it is left as an exercise to verify the Pn is
closed under addition and scalar multiplication, and satisfies the ten vector
space axioms.
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More Examples

Problem
Let V = {(x, y) | x, y ∈ R}, with addition ⊕ and scalar multiplication �
defined as follows:

For (x1, y1), (x2, y2) ∈ V, and a, b ∈ R:

1. Addition. (x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + y2 + 1).

2. Scalar Multiplication. a � (x1, y1) = (ax1, ay1 + a − 1).

Show that V, with addition and scalar multiplication as defined, is a vector
space.
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Proof.
1. It is clear that V is closed under ⊕ and �, since both operations

produce ordered pairs of real numbers.

2. It is routine to verify that ⊕ is commutative and associative.
3. What is the additive identity?
4. What is the additive inverse of (x, y) ∈ V?
5. Verify that (a + b)� (x1, y1) = (a � (x1, y1))⊕ (b � (x1, y1)).
6. Verify that a � ((x1, y1)⊕ (x2, y2)) = (a � (x1, y1))⊕ (a � (x2, y2)).
7. Verify that a � (b � (x1, y1)) = (ab)� (x1, y1).
8. Verify that 1� (x, y) = (x, y). �
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Problem
Let R+ be the set of positive reals. Let the addition ⊕ and the scalar
multiplication � defined as follows:

For x, y ∈ R+, and a ∈ R:

1. Addition. x ⊕ y = xy.

2. Scalar Multiplication. a � x = xa.

Prove that R+ equipped with ⊕ and � is a vector space.

Proof.
Verify ten properties in the Axioms! �
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Problem
1. Let C([0, 1]) be the set of continuous functions defined on [0, 1]

equipped with usual addition and scalar multiplication. Prove that
C([0, 1]) is a vector space.

2. Let Cn([0, 1]) be the set of functions that have continuous nth
derivatives (n ≥ 0) defined on [0, 1], equipped with usual addition and
scalar multiplication. Prove that Cn([0, 1]) is a vector space.

Proof.
Verify ten properties in the Axioms! �
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