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Subspaces and Spanning Sets

Linear Combinations and Spanning Sets



Subspaces and spanning Sets

Definition (Subspaces of a Vector Space)

Let V be a vector space and let U be a subset of V. Then U is a subspace
of V if U is a vector space using the addition and scalar multiplication of V.

Theorem (Subspace Test)

Let V be a vector space and U C V. Then U is a subspace of V if and only
if it satisfies the following three properties:

1. U contains the zero vector of V, i.e., 0 € U where 0 is the zero vector of
V.

2. U is closed under addition, i.e., if u,v € U, then u+ v € U.

3. U is closed under scalar multiplication, i.e., if u € U and k € R, then
kue U.

Remark

The proof of this theorem requires one to show that if the three properties
listed above hold, then all the vector space axioms hold.



Remark ( Important Note )

As a consequence of the proof, any subspace U of a vector space V has the
same zero vector as V, and each u € U has the same additive inverse in U
as in V.

Examples (Two extreme examples)
Let V be a vector space.
1. V is a subspace of V.

2. {0} is a subspace of V, where 0 denotes the zero vector of V.



Problem

Let A be a fixed (arbitrary) n x n real matrix, and define
U={X€EMum | AX =XA},

i.e., U is the subset of matrices of My, that commute with A. Prove that U
is a subspace of Myy,.

Solution

» Let 0,y denote the n x n matrix of all zeros. Then A0y, = 0, and
0unA = 0np, 50 A0y = 04 A. Thus 0., € U.

» Suppose X,Y € U. Then AX = XA and AY = YA, implying that
AX4+Y)=AX+AY =XA+ YA =(X+Y)A,

and thus X+ Y € U, so U is closed under addition.
» Suppose X € U and k € R. Then AX = XA, implying that

AkX) = k(AX) = k(XA) = (kX)A;

thus kX € U, so U is closed under scalar multiplication.

By the subspace test, U is a subspace of Myy,. |



Problem

Let t € R, and let
U={peP]|p(t) =0},

i.e., U is the subset of polynomials that have t as a root. Prove that U is a
vector space.

Proof.
» Let 0 denote the zero polynomial. Then 0(t) = 0, and thus 0 € U.
» Let gq,r € U. Then q(t) =0, r(t) =0, and
(a+1)(6) = a(t) +x(t) = 0+ 0 =0,

Therefore, q +r € U, so U is closed under addition.
» Let g € U and k € R. Then ¢(t) = 0 and

(ka)(t) = k(q(t) =k -0 = 0.

Therefore, kq € U, so U is closed under scalar multiplication.

By the subspace test, U is a subspace of P, and thus is a vector space. N



Examples (more...)

1. It is routine to verify that P, is a subspace of P for all n > 0.

2. U= {A € Mgy | A% = A} is NOT a subspace of Maa.

To prove this, notice that Iz, the two by two identity matrix, is in U,
but 21, ¢ U since (212)2 = 415 # 215, so U is not closed under scalar
multiplication.

3. U={peP2|p()=1}is NOT a subspace of Ps.

Because the zero polynomial is not in U: 0(1) = 0.

4. C"([0,1]), n > 1, is a subspace of C([0, 1]).



Linear Combinations and Spanning Sets

Definitions (Linear Combinations and Spanning)

Let V be a vector space and let {u;,uz,...,u,} be a subset of V.
1. A vector u € V is called a linear combination of uj,ug, ..., uy if there
exist scalars aj,az,...,an € R such that

u=aiju; + agup + -+ anUy.

2. The set of all linear combinations of uy, us, ..., u, is called the span of
uj,ug, ..., U, and is defined as
span{ui, Uz, ..., un} = {aju; + agus + -+ + azuy | ai,az,...,an € R}
3. If U = span{ui,uz,...,un}, then {ui,uz,...,un} is called a spanning

set of U.



Problem

Is it possible to express x> + 1 as a linear combination of
x+1, x*+x, and x>+27?

Equivalently, is x* 4+ 1 € span{x + 1,x> 4+ x,x> + 2}?

Solution
Suppose that there exist a, b, c € R such that
>+ 1=a(x+1)+bx>+x)+c(x*+2).

Then
X2 +1= (b+c)x2+(a+b)x+ (a+ 2c),

implying that b4+c=1,a+b =0, and a+ 2¢c = 1.



Solution (continued)

Hence,

1. If this system is consistent, then we have found a way to express x* + 1
as a linear combination of the other vectors; otherwise,

2. if the system is inconsistent and it is impossible to express x*> + 1 as a
linear combination of the other vectors.

Because

0 1 1 0 1 1 11
det 1 1 0 = det 0 1 -2 = det ([1 72]> = =320,
1 0 2 1 0 2

Answer: Yes, i.e., x* + 1 € span{x + 1,x* + x,x> + 2}. [ |



Remark

By solving the linear equation

we find that

Hence,

b + ¢ = 1
a + b + = 0
a + e = 1
1 1 2
=—= == _—
Ty EAN



Problem

Let
u= Lol V= 21 and w = !
2 1|’ |1 0 |

Is w € span{u, v}? Prove your answer.

= W
[

Solution (partial)
Suppose there exist a,b € R such that

[ ]l el ]

Then
a+2b =
—a+b = 3
2a+b = -1
a+0b = 1.

What remains is to determine whether or not this system is consistent.
Answer: No.



Example

The set of 3 x 2 real matrices,

1 0 (U 0 0 0 0 0 0 0
M3z =span o o0y,{0 O}, 2 O0Of,]0 1T (,[0 O],O0
0 0 0 0 0 0 0 0 1 0 0

Remark ( A Spanning Set of My, )

In general, the set of mn m x n matrices that have a ‘1’ in position (i,j) and
zeros elsewhere, 1 <i<m, 1 <j < n, constitutes a spanning set of Mun.

)

= O O



Example

Let p(x) € P3. Then p(x) = ag + a1x + asx> + azx® for some
ao, a1, asz,as € R. Therefore,

Ps = span{1, x, X2,X3}.

Remark ( A Spanning Set of P, )
For all n > 0,

P = span{xo,xl,)(27 ..., x"} = span{l,x, X2, ... , X"}



span{- - - } is a subspace and the smallest one.

Theorem
Let V be a vector space, let ui,us,...,u, € V, and let
U = span{ui,uz,...,un}.

Then

1. U is a subspace of V containing uj,us, ..., un.

2. If W is a subspace of V and ui,uz,...,u, € W, then U C W. In other

words, U is the “smallest” subspace of V that contains uj,us, ..., un.

Remark

This theorem should be familiar as it was covered in the particular case
V = R". The proof of the result in R" immediately generalizes to an
arbitrary vector space V.



Problem
Let

1 -1 0 1 1
Al_{—l 1}’A2:[1 —1}’A3:{—1

Show that Mss = Span{Ah As, As, A4}.

Remark

We need to prove two inclusions
Mao - span{Al, AQ, Ag, A4}

and

Spa‘n{Ala AZ, A37 A4} g M22



Proof. ( First proof )

Let
1 0 0 1 0 0 0 0
B=loo)Em= o] m=[1 o]m=[0 1]

Since Moy = span{E1, E2, E3, E4} and Ay, Ay, A3, Ay € Mag, it follows from
the previous Theorem that

span{Al, AQ, A37 A4} g M22.

Now show that E;, 1 <1i < 4, can be written as a linear combination of
A1, Az, Ag, Ay, ie., E; € span{A1, Az, A3, As} (lots of work to be done
here!), and apply the previous Theorem again to show that

Mso C span{Ai, As, Az, Ay}



Proof. ( Second proof )
(1) Since A1, Az, A3, Ay € M2z and My, is a vector space,

span{Al, Az, A37 A4} g M22.

(2) For any {2 2} € Ms2, we need to find x1, -+ ,x4, such that

b
x1A1 + x2A2 + x3A3 + x4A4 = { i d ]

)

X1 + X3 + X4 = a
—X1 + X2 — X3 = b
X3 + X2 — X3 + x4 = ¢

X1 — X2 + X4 = d

Since the coefficient matrix is invertible one can find unique solution and so

{2 ld)} € span{A1, As, Az, Ay}

Therefore, Mas C span{A1, Aa, Az, As}. [ |



Problem

Let p(x) = x> + 1, q(x) = x> + x, and r(x) = x + 1. Prove that
P2 = span{p(x), q(x), r(x)}.

Solution (sketch)
(1) Since p(x),q(x),r(x) € P2 and P2 is a vector space,

span{p(x), q(x), r(x)} € Po.
(2) As we've already observed, P2 = span{1,x,x?}. To complete the proof,

show that each of 1, x and x? can be written as a linear combination of
p(x),q(x) and r(x), i.e., show that

1,x, <2 e span{p(x), q(x), r(x)}.

Then apply the previous Theorem. |
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