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What is a Linear Transformation?

Definition
Let V and W be vector spaces, and T : V → W a function. Then T is called
a linear transformation if it satisfies the following two properties.

1. T preserves addition.
For all ~v1,~v2 ∈ V, T(~v1 + ~v2) = T(~v1) + T(~v2).

2. T preserves scalar multiplication.
For all ~v ∈ V and r ∈ R, T(r~v) = rT(~v).

Remark
Note that the sum ~v1 + ~v2 is in V, while the sum T(~v1) + T(~v2) is in W.
Similarly, r~v is scalar multiplication in V, while rT(~v) is scalar
multiplication in W.
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Theorem ( Linear Transformations from Rn to Rm )
If T : Rn → Rm is a linear transformation, then T is induced by an m × n
matrix

A =
[

T(~e1) T(~e2) · · · T(~en)
]
,

where {~e1,~e2, . . . ,~en} is the standard basis of Rn, and thus for each ~x ∈ Rn

T(~x) = A~x.



Example

T : R3 → R2 is defined by T

 x
y
z

 =

[
x + y
x − z

]
for all

 x
y
z

 ∈ R3.

One can show that T preserves addition and scalar multiplication, and
hence is a linear transformation. Therefore, the matrix that induces T is

A =

 T

 1
0
0

 T

 0
1
0

 T

 0
0
1

  =

[
1 1 0
1 0 −1

]
.



Remark ( Notation and Terminology )
1. If A is an m × n matrix, then TA : Rn → Rm defined by

TA(~x) = A~x for all ~x ∈ Rn

is the linear (or matrix) transformation induced by A.
2. Let V be a vector space. A linear transformation T : V → V is called a

linear operator on V.



Examples and Problems

Example
Let V and W be vector spaces.

1. The zero transformation.
0 : V → W is defined by 0(~x) = ~0 for all ~x ∈ V.

2. The identity operator on V.
1V : V → V is defined by 1V(~x) = ~x for all ~x ∈ V.

3. The scalar operator on V. Let a ∈ R.
sa : V → V is defined by sa(~x) = a~x for all ~x ∈ V.

Problem
For vector spaces V and W, prove that the zero transformation, the identity
operator, and the scalar operator are linear transformations.
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Solution ( Partial Solution – the scalar operator on any vector space
is a linear transformation )
Let V be a vector space and let a ∈ R.

1. Let ~u, ~w ∈ V. Then sa(~u) = a~u and sa(~w) = a~w. Now

sa(~u + ~w) = a(~u + ~w) = a~u + a~w = sa(~u) + sa(~w),

and thus sa preserves addition.
2. Let ~u ∈ V and k ∈ R. Then sa(~u) = a~u. Now

sa(k~u) = ak~u = ka~u = ksa(~u),

and thus sa preserves scalar multiplication.
Since sa preserves addition and scalar multiplication, sa is a linear
transformation. �
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Example (Matrix transposition)
Let R : Mnn → Mnn be a transformation defined by

R(A) = AT for all A ∈ Mnn.

1. Let A,B ∈ Mnn. Then R(A) = AT and R(B) = BT, so

R(A + B) = (A + B)T = AT + BT = R(A) + R(B).

2. Let A ∈ Mnn and let k ∈ R. Then R(A) = AT, and

R(kA) = (kA)T = kAT = kR(A).

Since R preserves addition and scalar multiplication, R is a linear
transformation.
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Example (Evaluation at a)
For each a ∈ R, the transformation Ea : Pn → R is defined by

Ea(p) = p(a) for all p ∈ Pn.

1. Let p, q ∈ Pn. Then Ea(p) = p(a) and Ea(q) = q(a), so

Ea(p + q) = (p + q)(a) = p(a) + q(a) = Ea(p) + Ea(q).

2. Let p ∈ Pn and k ∈ R. Then Ea(p) = p(a) and

Ea(kp) = (kp)(a) = kp(a) = kEa(p).

Since Ea preserves addition and scalar multiplication, Ea is a linear
transformation.
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Problem
Let S : Mnn → R be a transformation defined by

S(A) = tr(A) for all A ∈ Mnn.

Prove that S is a linear transformation.



Solution
Let A = [aij] and B = [bij] be n × n matrices. Then

S(A) =
n∑

i=1

aii and S(B) =
n∑

i=1

bii.

1. Since A + B = [aij + bij],

S(A+B) = tr(A+B) =

n∑
i=1

(aii+bii) =

(
n∑

i=1

aii

)
+

(
n∑

i=1

bii

)
= S(A)+S(B).

2. Let k ∈ R. Since kA = [kaij],

S(kA) = tr(kA) =

n∑
i=1

kaii = k
n∑

i=1

aii = kS(A).

Therefore, S preserves addition and scalar multiplication, and thus is a
linear transformation. �



Solution
Let A = [aij] and B = [bij] be n × n matrices. Then

S(A) =
n∑

i=1

aii and S(B) =
n∑

i=1

bii.

1. Since A + B = [aij + bij],

S(A+B) = tr(A+B) =

n∑
i=1

(aii+bii) =

(
n∑

i=1

aii

)
+

(
n∑

i=1

bii

)
= S(A)+S(B).

2. Let k ∈ R. Since kA = [kaij],

S(kA) = tr(kA) =

n∑
i=1

kaii = k
n∑

i=1

aii = kS(A).

Therefore, S preserves addition and scalar multiplication, and thus is a
linear transformation. �



Solution
Let A = [aij] and B = [bij] be n × n matrices. Then

S(A) =
n∑

i=1

aii and S(B) =
n∑

i=1

bii.

1. Since A + B = [aij + bij],

S(A+B) = tr(A+B) =

n∑
i=1

(aii+bii) =

(
n∑

i=1

aii

)
+

(
n∑

i=1

bii

)
= S(A)+S(B).

2. Let k ∈ R. Since kA = [kaij],

S(kA) = tr(kA) =

n∑
i=1

kaii = k
n∑

i=1

aii = kS(A).

Therefore, S preserves addition and scalar multiplication, and thus is a
linear transformation. �



Solution
Let A = [aij] and B = [bij] be n × n matrices. Then

S(A) =
n∑

i=1

aii and S(B) =
n∑

i=1

bii.

1. Since A + B = [aij + bij],

S(A+B) = tr(A+B) =

n∑
i=1

(aii+bii) =

(
n∑

i=1

aii

)
+

(
n∑

i=1

bii

)
= S(A)+S(B).

2. Let k ∈ R. Since kA = [kaij],

S(kA) = tr(kA) =

n∑
i=1

kaii = k
n∑

i=1

aii = kS(A).

Therefore, S preserves addition and scalar multiplication, and thus is a
linear transformation. �



Properties of Linear Transformations

Theorem
Let V and W be vector spaces, and T : V → W a linear transformation.
Then

1. T preserves the zero vector. T(~0) = ~0.
2. T preserves additive inverses. For all ~v ∈ V, T(−~v) = −T(~v).
3. T preserves linear combinations. For all ~v1,~v2, . . . ,~vm ∈ V and all

k1, k2, . . . , km ∈ R,

T(k1~v1 + k2~v2 + · · ·+ km~vm) = k1T(~v1) + k2T(~v2) + · · ·+ kmT(~vm).

Proof.

1. Let ~0V denote the zero vector of V and let ~0W denote the zero vector of
W. We want to prove that T(~0V) = ~0W. Let ~x ∈ V. Then 0~x = ~0V and

T(~0V) = T(0~x) = 0T(~x) = ~0W.
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Proof. (continued)

2. Let ~v ∈ V; then −~v ∈ V is the additive inverse of ~v, so ~v + (−~v) = ~0V.
Thus

T(~v + (−~v)) = T(~0V)

T(~v) + T(−~v)) = ~0W

T(−~v) = ~0W − T(~v) = −T(~v).

3. This result follows from preservation of addition and preservation of
scalar multiplication. A formal proof would be by induction on m.

�

One of the keys to doing problems involving linear transformations is to
make effective use of the fact that linear transformations preserve linear
combinations.



Proof. (continued)

2. Let ~v ∈ V; then −~v ∈ V is the additive inverse of ~v, so ~v + (−~v) = ~0V.
Thus

T(~v + (−~v)) = T(~0V)

T(~v) + T(−~v)) = ~0W

T(−~v) = ~0W − T(~v) = −T(~v).

3. This result follows from preservation of addition and preservation of
scalar multiplication. A formal proof would be by induction on m.

�

One of the keys to doing problems involving linear transformations is to
make effective use of the fact that linear transformations preserve linear
combinations.



Proof. (continued)

2. Let ~v ∈ V; then −~v ∈ V is the additive inverse of ~v, so ~v + (−~v) = ~0V.
Thus

T(~v + (−~v)) = T(~0V)

T(~v) + T(−~v)) = ~0W

T(−~v) = ~0W − T(~v) = −T(~v).

3. This result follows from preservation of addition and preservation of
scalar multiplication. A formal proof would be by induction on m.

�

One of the keys to doing problems involving linear transformations is to
make effective use of the fact that linear transformations preserve linear
combinations.



Problem
Let T : P2 → R be a linear transformation such that

T(x2 + x) = −1;T(x2 − x) = 1;T(x2 + 1) = 3.

Find T(4x2 + 5x − 3).

Solution ( first )

Suppose a(x2 + x) + b(x2 − x) + c(x2 + 1) = 4x2 + 5x − 3. Then

(a + b + c)x2 + (a − b)x + c = 4x2 + 5x − 3.

Solving for a, b, and c results in the unique solution a = 6, b = 1, c = −3.
Thus

T(4x2 + 5x − 3) = T
(
6(x2 + x) + (x2 − x)− 3(x2 + 1)

)
= 6T(x2 + x) + T(x2 − x)− 3T(x2 + 1)

= 6(−1) + 1− 3(3) = −14.

�
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Solution ( second )

Notice that S = {x2 + x, x2 − x, x2 + 1} is a basis of P2, and thus x2, x, and
1 can each be written as a linear combination of elements of S.

x2 = 1
2
(x2 + x) + 1

2
(x2 − x)

x = 1
2
(x2 + x)− 1

2
(x2 − x)

1 = (x2 + 1)− 1
2
(x2 + x)− 1

2
(x2 − x).

⇓

T(x2) = T
(
1
2
(x2 + x) + 1

2
(x2 − x)

)
= 1

2
T(x2 + x) + 1

2
T(x2 − x)

= 1
2
(−1) + 1

2
(1) = 0.

T(x) = T
(
1
2
(x2 + x)− 1

2
(x2 − x)

)
= 1

2
T(x2 + x)− 1

2
T(x2 − x)

= 1
2
(−1)− 1

2
(1) = −1.

T(1) = T
(
(x2 + 1)− 1

2
(x2 + x)− 1

2
(x2 − x)

)
= T(x2 + 1)− 1

2
T(x2 + x)− 1

2
T(x2 − x)

= 3− 1
2
(−1)− 1

2
(1) = 3.

⇓

T(4x2 + 5x − 3) = 4T(x2) + 5T(x)− 3T(1) = 4(0) + 5(−1)− 3(3) = −14.

�
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(−1)− 1

2
(1) = 3.
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T(4x2 + 5x − 3) = 4T(x2) + 5T(x)− 3T(1) = 4(0) + 5(−1)− 3(3) = −14.
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Remark
The advantage of this solution over Solution 1 is that if you were now asked
to find T(−6x2 − 13x + 9), it is easy to use T(x2) = 0, T(x) = −1 and
T(1) = 3:

T(−6x2 − 13x + 9) = −6T(x2)− 13T(x) + 9T(1)

= −6(0)− 13(−1) + 9(3) = 13 + 27 = 40.

More generally,

T(ax2 + bx + c) = aT(x2) + bT(x) + cT(1)

= a(0) + b(−1) + c(3) = −b + 3c.
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Definition (Equality of linear transformations)
Let V and W be vector spaces, and let S and T be linear transformations
from V to W. Then S = T if and only if, for every ~v ∈ V,

S(~v) = T(~v).

Theorem
Let V and W be vector spaces, where

V = span{~v1,~v2, . . . ,~vn}.

Suppose that S and T are linear transformations from V to W. If
S(~vi) = T(~vi) for all i, 1 ≤ i ≤ n, then S = T.

Remark
This theorem tells us that a linear transformation is completely determined
by its actions on a spanning set.
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Proof.
We must show that S(~v) = T(~v) for each ~v ∈ V. Let ~v ∈ V. Then (since V
is spanned by ~v1,~v2, . . . ,~vn), there exist k1, k2, . . . , kn ∈ R so that

~v = k1~v1 + k2~v2 + · · ·+ kn~vn.

It follows that

S(~v) = S(k1~v1 + k2~v2 + · · ·+ kn~vn)

= k1S(~v1) + k2S(~v2) + · · ·+ knS(~vn)

= k1T(~v1) + k2T(~v2) + · · ·+ knT(~vn)

= T(k1~v1 + k2~v2 + · · ·+ kn~vn)

= T(~v).

Therefore, S = T. �
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Constructing Linear Transformations

Theorem

Let V and W be vector spaces, let B = {~b1, ~b2, . . . , ~bn} be a basis of V, and
let ~w1, ~w2, . . . , ~wn be (not necessarily distinct) vectors of W. Then there
exists a unique linear transformation T : V → W such that T(~bi) = ~wi for
each i, 1 ≤ i ≤ n. Furthermore, if

~v = k1
~b1 + k2

~b2 + · · ·+ kn~bn

is a vector of V, then

T(~v) = k1~w1 + k2~w2 + · · ·+ kn~wn.
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Proof.
Suppose ~v ∈ V. Since B is a basis, there exist unique scalars
k1, k2, . . . , kn ∈ R so that ~v = k1

~b1 + k2
~b2 + · · ·+ kn~bn. We now define

T : V → W by
T(~v) = k1~w1 + k2~w2 + · · ·+ kn~wn

for each ~v = k1
~b1 + k2

~b2 + · · ·+ kn~bn in V. From this definition, T(~bi) = ~wi

for each i, 1 ≤ i ≤ n.

To prove that T is a linear transformation, prove that T preserves addition
and scalar multiplication. Let ~v, ~u ∈ V. Then

~v = k1
~b1 + k2

~b2 + · · ·+ kn~bn and ~u = `1~b1 + `2~b2 + · · ·+ `n~bn

for some k1, k2, . . . , kn ∈ R and `1, `2, . . . , `n ∈ R.



Proof. (continued)

T( ~v + u) = T[(k1
~b1 + k2

~b2 + · · ·+ kn~bn) + (`1~b1 + `2~b2 + · · ·+ `n~bn)]

= T[(k1 + `1)~b1 + (k2 + `2)~b2 + · · ·+ (kn + `n)~bn]

= (k1 + `1)~w1 + (k2 + `2)~w2 + · · ·+ (kn + `n)~wn

= (k1~w1 + k2~w2 + · · ·+ kn~wn) + (`1~w1 + `2~w2 + · · ·+ `n~wn)

= T(k1
~b1 + k2

~b2 + · · ·+ kn~bn) + T(`1~b1 + `2~b2 + · · ·+ `n~bn)

= T(~v) + T(~u).

Therefore, T preserves addition.

Let ~v be as already defined and let r ∈ R.
Then

T(r~v) = T[r(k1
~b1 + k2

~b2 + · · ·+ kn~bn)]

= T[(rk1)~b1 + (rk2)~b2 + · · ·+ (rkn)~bn]

= (rk1)~w1 + (rk2)~w2 + · · ·+ (rkn)~wn

= r(k1~w1 + k2~w2 + · · ·+ kn~wn)

= rT(k1
~b1 + k2

~b2 + · · ·+ kn~bn)

= rT(~v).

Therefore, T preserves scalar multiplication.
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Proof. (continued)
Finally, the previous Theorem guarantees that T is unique: since B is a
basis (and hence a spanning set), the action of T is completely determined
by the fact that T(~bi) = ~wi for each i, 1 ≤ i ≤ n. This completes the proof
of the theorem. �

Remark
The significance of this Theorem is that it gives us the ability to define
linear transformations between vector spaces, a useful tool in what follows.
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Problem
B =

{
1 + x, x + x2, 1 + x2

}
is a basis of P2 (you should be able to prove

this). Let

A1 =

[
1 0
0 0

]
,A2 =

[
0 1
1 0

]
,A3 =

[
0 0
0 1

]
(elements of M22). Find a linear transformation T : P2 → M22 so the

T(1 + x) = A1,T(x + x2) = A2, and T(1 + x2) = A3,

i.e., for a + bx + cx2 ∈ P2, find T(a + bx + cx2).
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Solution
Notice that (1 + x) + (x + x2)− (1 + x2) = 2x, and thus

x = 1
2
(1 + x) + 1

2
(x + x2)− 1

2
(1 + x2),

⇓

T(x) = 1
2
T(1 + x) + 1

2
T(x + x2)− 1

2
T(1 + x2)

= 1
2
A1 +

1
2
A2 − 1

2
A3

= 1
2

[
1 0
0 0

]
+ 1

2

[
0 1
1 0

]
− 1

2

[
0 0
0 1

]
= 1

2

[
1 1
1 −1

]
.



Solution (continued)

Next, 1 = (1 + x)− x, so T(1) = T(1 + x)− T(x), and thus

T(1) = A1 − 1
2

[
1 1
1 −1

]
=

[
1 0
0 0

]
− 1

2

[
1 1
1 −1

]
= 1

2

[
1 −1

−1 1

]
.

Finally, x2 = (x + x2)− x, so T(x2) = T(x + x2)− T(x), and thus

T(x2) = A2 − 1
2

[
1 1
1 −1

]
=

[
0 1
1 0

]
− 1

2

[
1 1
1 −1

]
= 1

2

[
−1 1
1 1

]
.

Therefore,

T(a + bx + cx2) = aT(1) + bT(x) + cT(x2)

= a
2

[
1 −1

−1 1

]
+ b

2

[
1 1
1 −1

]
+ c

2

[
−1 1
1 1

]
= 1

2

[
a + b − c −a + b + c

−a + b + c a − b + c

]
.
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Solution (continued)
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Solution (continued)
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Problem
Let V be a vector space, T a linear operator on V, and v,w ∈ V. Suppose
that

T(v + w) = v − 2w and T(2v − w) = 2v.

Find T(v) and T(w).

Solution ( final answer )

T(v) = v − 2
3
w and T(w) = − 4

3
w. �
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