Math 221: LINEAR ALGEBRA

Chapter 7. Linear Transformations

§7-1. Examples and Elementary Properties

Le Chen!
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What is a Linear Transformation?



What is a Linear Transformation?

Definition

Let V and W be vector spaces, and T : V. — W a function. Then T is called
a linear transformation if it satisfies the following two properties.
1. T preserves addition.
For all \71,\_/‘2 eV, T(\71 + \72) = T(\_;l) =+ T(\—;Q)
2. T preserves scalar multiplication.
For all V€ V and r € R, T(rv) = r'T(¥).



What is a Linear Transformation?

Definition

Let V and W be vector spaces, and T : V. — W a function. Then T is called
a linear transformation if it satisfies the following two properties.
1. T preserves addition.
For all \71,\_/‘2 eV, T(\71 + \72) = T(\71) + T(\—;Q)
2. T preserves scalar multiplication.
For all V€ V and r € R, T(rv) = r'T(¥).

Remark

Note that the sum Vi + V2 is in V, while the sum T(v1) + T(V2) is in W.
Similarly, rv is scalar multiplication in V, while rT(V) is scalar
multiplication in W.



Theorem ( Linear Transformations from R to R™ )

If T:R" — R™ is a linear transformation, then T is induced by an m x n
matrix

A=[T@E) TE) --- T@E) ],

where {€1,65,...,€y} is the standard basis of R", and thus for each X € R"



Example

x x
T:R® - R? is defined by T | y :[’;fﬂforau v | eR®.

7 %
One can show that T preserves addition and scalar multiplication, and
hence is a linear transformation. Therefore, the matrix that induces T is

1 0 0
A=|T|o| T|1| T]|oO :“é_?].
0 0 1



Remark ( Notation and Terminology )
1. If A is an m X n matrix, then Ta : R" — R™ defined by
Ta(X) = AX for all X € R"

is the linear (or matrix) transformation induced by A.

2. Let V be a vector space. A linear transformation T : V — V is called a
linear operator on V.



Examples and Problems

Example
Let V and W be vector spaces.

1. The zero transformation.

0:V — W is defined by 0(X) =0 for all X € V.
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Example
Let V and W be vector spaces.

1. The zero transformation.

0:V — W is defined by 0(X) =0 for all X € V.

2. The identity operator on V.
lv : V — V is defined by 1v(X) = X for all X € V.



Examples and Problems

Example
Let V and W be vector spaces.

1. The zero transformation.

0:V — W is defined by 0(X) =0 for all X € V.
2. The identity operator on V.

lv : V — V is defined by 1v(X) = X for all X € V.

3. The scalar operator on V. Let a € R.
Sa : V. — V is defined by sa(X) = aX for all X € V.



Examples and Problems

Example
Let V and W be vector spaces.

1. The zero transformation.

0:V — W is defined by 0(X) =0 for all X € V.

2. The identity operator on V.
lv : V — V is defined by 1v(X) = X for all X € V.

3. The scalar operator on V. Let a € R.
Sa : V. — V is defined by sa(X) = aX for all X € V.

Problem

For vector spaces V and W, prove that the zero transformation, the identity
operator, and the scalar operator are linear transformations.



Solution ( Partial Solution — the scalar operator on any vector space
is a linear transformation )

Let V be a vector space and let a € R.



Solution ( Partial Solution — the scalar operator on any vector space
is a linear transformation )

Let V be a vector space and let a € R.

1. Let 4,w € V. Then s,(d) = at and s.(W) = aw. Now
Sa(U+ W) =a(d+ W) = at + aw = sa(d) + sa(W),

and thus s, preserves addition.



Solution ( Partial Solution — the scalar operator on any vector space
is a linear transformation )

Let V be a vector space and let a € R.

1. Let 4,w € V. Then s,(d) = at and s.(W) = aw. Now
Sa(U+ W) =a(d+ W) = at + aw = sa(d) + sa(W),

and thus s, preserves addition.
2. Let © € V and k € R. Then s,(0) = aid. Now

sa (k) = akd = kat = ksa(d),

and thus s, preserves scalar multiplication.



Solution ( Partial Solution — the scalar operator on any vector space
is a linear transformation )

Let V be a vector space and let a € R.
1. Let 4,w € V. Then s,(d) = at and s.(W) = aw. Now
Sa(U+ W) =a(d+ W) = at + aw = sa(d) + sa(W),

and thus s, preserves addition.
2. Let © € V and k € R. Then s,(0) = aid. Now

sa (k) = akd = kat = ksa(d),

and thus s, preserves scalar multiplication.

Since s, preserves addition and scalar multiplication, s, is a linear
transformation.



Example (Matrix transposition)
Let R : Mun — Mun be a transformation defined by

R(A) = AT for all A € My,,.



Example (Matrix transposition)
Let R : Myun — My, be a transformation defined by

R(A) = AT for all A € My,,.

1. Let A,B € My,. Then R(A) = AT and R(B) = B”, so

R(A+B)=(A+B)" = A" + BT =R(A) + R(B).



Example (Matrix transposition)
Let R : Myun — My, be a transformation defined by

R(A) = AT for all A € My,,.

1. Let A,B € My,. Then R(A) = AT and R(B) = B”, so

R(A+B)=(A+B)" = A" + BT =R(A) + R(B).

2. Let A € Mpy and let k € R. Then R(A) = AT, and

R(kA) = (kA)T = kAT = kR(A).



Example (Matrix transposition)
Let R : Myun — My, be a transformation defined by

R(A) = AT for all A € My,,.

1. Let A,B € My,. Then R(A) = AT and R(B) = B”, so

R(A+B)=(A+B)" = A" + BT =R(A) + R(B).

2. Let A € Mpy and let k € R. Then R(A) = AT, and
R(kA) = (kA)T = kAT = kR(A).

Since R preserves addition and scalar multiplication, R is a linear
transformation.



Example (Evaluation at a)

For each a € R, the transformation E, : P, — R is defined by

Ea(p) = p(a) for all p € Py.



Example (Evaluation at a)

For each a € R, the transformation E, : P, — R is defined by

Ea(p) = p(a) for all p € Py.

1. Let p,q € Pn. Then E,(p) = p(a) and E.(q) = g(a), so

Ea(p +a) = (p+q)(a) = p(a) + q(a) = Ea(p) + Ea(q)-



Example (Evaluation at a)

For each a € R, the transformation E, : P, — R is defined by

E.(p) = p(a) for all p € P.

1. Let p,q € Pn. Then E,(p) = p(a) and E.(q) = g(a), so

Ea(p +4q) = (p+a)(a) = p(a) + q(a) = Ea(p) + Ea(q).

2. Let p € Py and k € R. Then E,(p) = p(a) and

Ea(kp) = (kp)(a) = kp(a) = kEa(p).



Example (Evaluation at a)

For each a € R, the transformation E, : P, — R is defined by

E.(p) = p(a) for all p € P.

1. Let p,q € Pn. Then E,(p) = p(a) and E.(q) = g(a), so

Ea(p +4q) = (p+a)(a) = p(a) + q(a) = Ea(p) + Ea(q).

2. Let p € Py and k € R. Then E,(p) = p(a) and

Ea(kp) = (kp)(a) = kp(a) = kEa(p).

Since E, preserves addition and scalar multiplication, E, is a linear
transformation.



Problem
Let S: My, — R be a transformation defined by

S(A) = tr(A) for all A € Myy.

Prove that S is a linear transformation.



Solution
Let A = [a;;] and B = [bjj] be n X n matrices. Then

Zau and S(B an



Solution
Let A = [a;;] and B = [bjj] be n X n matrices. Then

Zau and S(B an-

1. Since A + B = [a;; + by],

S(A—f—B):tr(A—i—B):i aii+bi) = <Za> (Z > S(A)+5(B).

i=1



Solution
Let A = [a;;] and B = [bjj] be n X n matrices. Then

Zau and S(B an

1. Since A + B = [a;; + by],

S(A—f—B):tr(A—i—B):ian—l—bn = <Za> (Z > S(A)+5(B).

i=1
2. Let k € R. Since kA = [kajj],

S(kA) = tr(kA) Zkau_kZau_kS



Solution
Let A = [a;;] and B = [bjj] be n X n matrices. Then

Zau and S(B an

1. Since A + B = [a;; + by],

S(A+B) = tr(A+B) = i(aii‘i'bii) = <ZH: aii) “F(Zn: bii) S(A)+S(B).

i=1 i=1
2. Let k € R. Since kA = [kajj],
S(kA) = tr(kA) Zkan —kZau =kS(A

Therefore, S preserves addition and scalar multiplication, and thus is a
linear transformation. |



Properties of Linear Transformations



Properties of Linear Transformations

Theorem

Let V and W be vector spaces, and T : V — W a linear transformation.
Then

1. T preserves the zero vector. T(ﬁ) =0.
2. T preserves additive inverses. For all v € V, T(—V) = —T(¥).

3. T preserves linear combinations. For all ¥1,Vs,...,Vm € V and all

kl,k27...,km GR,

T(ki¥1 + koVa + - - + km¥m) = kiT(¥1) + ko T(¥F2) + - - - + km T(¥Vom).



Properties of Linear Transformations

Theorem

Let V and W be vector spaces, and T : V — W a linear transformation.
Then

1. T preserves the zero vector. T(ﬁ) =0.
2. T preserves additive inverses. For all v € V, T(—V) = —T(¥).

3. T preserves linear combinations. For all ¥1,Vs,...,Vm € V and all

kl,k27...,km G]R,

T(kiv1 +koVa + - - + kmVm) = kiT(¥1) + ko T(¥V2) + - - - + ki T (V).

Proof.

1. Let 6v denote the zero vector of V and let 6w denote the zero vector of
W. We want to prove that T(0v) = Ow. Let X € V. Then 0X = Oy and

—

T(0v) = T(0%) = 0T(X) = Ow.



Proof. (continued)

2. Let vV € V; then —V € V is the additive inverse of V, so V + (—V)

Thus
T+ (—V))
T(¥) + T(-V))
T(—v



Proof. (continued)

2. Let ¥ € V; then —¥ € V is the additive inverse of ¥, so ¥ + (—¥) = Ov.
Thus

TF+(-v)) = T(v)
T(F) 4+ T(-V)) = Ow
T(—%) = 0w-TE) =-TF)

3. This result follows from preservation of addition and preservation of
scalar multiplication. A formal proof would be by induction on m.



Proof. (continued)

2. Let ¥ € V; then —¥ € V is the additive inverse of ¥, so ¥ + (—¥) = 0

= Ov.
Thus
TE+(-¥) = T(Ov)
T(F) 4+ T(-V)) = Ow
T(-¥ 0w — T(¥) = —T(¥)

3. This result follows from preservation of addition and preservation of
scalar multiplication. A formal proof would be by induction on m.

One of the keys to doing problems involving linear transformations is to
make effective use of the fact that linear transformations preserve linear

combinations.



Problem

Let T : P — R be a linear transformation such that
T(X2 +x) = —1;T(x2 —x) = 1;T(X2 +1)=3.

Find T(4x* + 5x — 3).



Problem

Let T : P — R be a linear transformation such that
T(X2 +x) = —1;T(x2 —x) = 1;T(X2 +1)=3.

Find T(4x* + 5x — 3).

Solution ( first )
Suppose a(x® + x) + b(x? — x) + ¢(x* + 1) = 4x* + 5x — 3. Then

(a+b+c)x> + (a—b)x + ¢ = 4x* 4 5x — 3.



Problem

Let T : P — R be a linear transformation such that
T(X2 +x) = —1;T(x2 —x) = 1;T(X2 +1)=3.

Find T(4x* + 5x — 3).

Solution ( first )
Suppose a(x® + x) + b(x? — x) + ¢(x* + 1) = 4x* + 5x — 3. Then
(a+b+c)x> + (a—b)x + ¢ = 4x* 4 5x — 3.

Solving for a, b, and c results in the unique solution a =6, b =1, ¢ = —3.



Problem

Let T : P — R be a linear transformation such that
T(X2 +x) = —1;T(x2 —x) = 1;T(X2 +1)=3.
Find T(4x* + 5x — 3).

Solution ( first )
Suppose a(x® + x) + b(x? — x) + ¢(x* + 1) = 4x* + 5x — 3. Then
(a+b+c)x> + (a—b)x + ¢ = 4x* 4 5x — 3.

Solving for a, b, and c results in the unique solution a =6, b =1, ¢ = —3.
Thus

T(4X2 + 5x — 3) T (6()(2 +x)+ (X2 —X) — 3(X2 + 1))
6T (x> +x) + T(x* —x) — 3T(x> + 1)

6(—1)+1—3(3) = —14.



Solution ( second )

Notice that S = {x* + x,x* — x,x? + 1} is a basis of P2, and thus x*, x, and
1 can each be written as a linear combination of elements of S.



Solution ( second )

Notice that S = {x* + x,x* — x,x? + 1} is a basis of P2, and thus x*, x, and
1 can each be written as a linear combination of elements of S.

2
X =

X —



Solution ( second )

Notice that S = {x* + x,x* — x,x? + 1} is a basis of P2, and thus x*, x, and
1 can each be written as a linear combination of elements of S.

= 00+ + 505 - %)
x = +(x*+x) —3(x*—x)
L= (D) =56 +x) =36 %)
U
T() = T (30 +%) + 30 =) = 3T( +%) + 3T —x)



Solution ( second )

Notice that S = {x* + x,x* — x,x? + 1} is a basis of P2, and thus x*, x, and
1 can each be written as a linear combination of elements of S.

= )+ 3 - %)
x = +(x*+x) —3(x*—x)
I = (X2+1)—%X2+X)—%(X2—X)
I
Tx") = TEE+x)+ 3 —x%) = 1T +x) + 3T(x* — x)
= 3D+ 0=
T(x) = T(HE+x) —-3x"—-x))=1TE +x) - 1T —x)



Solution ( second )

Notice that S = {x* + x,x* — x,x? + 1} is a basis of P2, and thus x*, x, and
1 can each be written as a linear combination of elements of S.

2

= 14+ 1063 %)
xOo= %(XQ-FX)—%(XZ_X)
L= (@41 - 36"+ - 3" = %)
U
T() = T (30 +%) + 30 =) = 3T( +%) + 3T —x)

H(D+30) =

T(x) = T(HE+x) —-3x"—-x))=1TE +x) - 1T —x)
= (-)-1i(1)=-1

T(1) = T(x+1)-1ix*+x) —1i(x*—x)
= Tx*+1)—31TEx*+x) — :T(x* —x)



Solution ( second )

Notice that S = {x* + x,x* — x,x? + 1} is a basis of P2, and thus x*, x, and
1 can each be written as a linear combination of elements of S.

= 6P+ + 507 - x)
x = +(x*+x) —3(x*—x)
L= (@41 - 36"+ - 3" = %)
U
T() = T (30 +%) + 30 =) = 3T( +%) + 3T —x)

H(D+30) =

T(x) = T(HE+x) —-3x"—-x))=1TE +x) - 1T —x)
= (-)-1i(1)=-1

T(1) = T(x+1)-1ix*+x) —1i(x*—x)
= Tx*+1)—31TEx*+x) — :T(x* —x)

T(4x> + 5x — 3) = 4T(x*) + 5T (x) — 3T(1) = 4(0) + 5(—1) — 3(3) = —14.
|



Remark
The advantage of this solution over Solution 1 is that if you were now asked
to find T(—6x> — 13x + 9), it is easy to use T(x?) = 0, T(x) = —1 and
T(1) =3:
T(—6x> —13x+9) = —6T(x°) — 13T(x) +9T(1)
—6(0) — 13(—1) +9(3) = 13 + 27 = 40.



Remark
The advantage of this solution over Solution 1 is that if you were now asked
to find T(—6x> — 13x + 9), it is easy to use T(x?) = 0, T(x) = —1 and
T(1) = 3:
T(—6x> —13x+9) = —6T(x°) — 13T(x) +9T(1)
—6(0) — 13(—1) +9(3) = 13 + 27 = 40.
More generally,

T(ax®4+bx+c) = aT(x’)+bT(x)+cT(1)
= a(0)+b(-1) +¢c(3) = —b + 3c.



Definition (Equality of linear transformations)

Let V and W be vector spaces, and let S and T be linear transformations
from V to W. Then S = T if and only if, for every v € V,



Definition (Equality of linear transformations)

Let V and W be vector spaces, and let S and T be linear transformations
from V to W. Then S = T if and only if, for every v € V,

Theorem

Let V and W be vector spaces, where
V = span{vi,Va,...,Vn}.

Suppose that S and T are linear transformations from V to W. If
S(vi) = T(+;) for all i, 1 <i<m, then S=T.



Definition (Equality of linear transformations)

Let V and W be vector spaces, and let S and T be linear transformations
from V to W. Then S = T if and only if, for every v € V,

Theorem
Let V and W be vector spaces, where
V = span{vi,Va,...,Vn}.

Suppose that S and T are linear transformations from V to W. If
S(vi) = T(+;) for all i, 1 <i<m, then S=T.

Remark

This theorem tells us that a linear transformation is completely determined
by its actions on a spanning set.



Proof.

We must show that S(v) = T(V) for each v € V. Let v € V. Then (since V
is spanned by V1, Va, ..., Vn), there exist ki, ks, ..., ks € R so that

vV =kiVi +koVo + -+ + kn V.



Proof.
We must show that S(v) = T(V) for each v € V. Let v € V. Then (since V
is spanned by V1, Va, ..., Vn), there exist ki, ks, ..., ks € R so that
vV =kiVi +koVo + -+ + kn V.
It follows that

SF) = S(kith + koW + - + ka¥n)
ki1S(V1) +kaS(v2) + - - - + knS(Va)
i T(%1) + ko T(F2) + - + kaT(n)
= T(kiV1 +kaVo + -+ knVn)

= T().

Therefore, S = T. |



Constructing Linear Transformations



Constructing Linear Transformations

Theorem

Let V and W be vector spaces, let B = {Bl,gz, e ,Bn} be a basis of V, and
let W1, W2,...,Wn be (not necessarily distinct) vectors of W. Then there

exists a unique linear transformation T : V — W such that T(gi) = w; for
each i, 1 <i < n. Furthermore, if
¥ = kiby + kaba + - - + knbn

is a vector of V, then

T(V) =kiwi + kowa + - - - + knWn.



Proof.

Suppose V € V. Since B is a basis, there exist unique scalars
ki,ks,...,kn € R so that Vv = klgl e kzgg + ..o+ kngn. We now define
T:V — W by

T(V) = kiwi + kawa + -+ - + knWn
for each ¥ = k1by + koby + - - - + knby in V. From this definition, T(b;) = W
for each i, 1 <i<n.

To prove that T is a linear transformation, prove that T preserves addition
and scalar multiplication. Let v,u € V. Then

?=kib; +kobs 4+ -+ kabn and &= l1b; + labs + -+ + lubn

for some ki,ks,...,ky € R and ¢1,02,...,0, € R.



Proof. (continued)

T(v¥u) = T[(kibi +kebg + -+ knbn) + (£1b1 + £abg + - - - 4 £nbn)]
= T[(ki + £1)b1 + (kz + £2)b2 + - - - + (kn + £n)bn]
= (ki +00)W1 + (ko + l2)Wo + - - + (kn + £n)Wn
= (kiw1 +kowa + -+ + knWn) + (L1W1 + loWa + -+ - + nWy)
= T(kib1 +kaba + - - - + knbn) + T(€1b1 + £aba + - - - + fnby)
= T+ T(8).

Therefore, T preserves addition.



Proof. (continued)

T(v¥u) = T[(kibi +kebg + -+ knbn) + (£1b1 + £abg + - - - 4 £nbn)]
= T[(ki + £1)b1 + (kz + £2)b2 + - - - + (kn + £n)bn]
= (ki +00)W1 + (ko + l2)Wo + - - + (kn + £n)Wn
= (kiwy +koWo + - +knWn) + (1aW1 + LoWa + - - + LnWn)
= T(kibi + kobz 4 - - - + knbn) 4+ T(£1b1 + £ob2 + - - - + £nby)
= T+ T(8).

Therefore, T preserves addition. Let ¥ be as already defined and let r € R.

Then

T(rv)

T[I‘(klgl + k262 + Tt + kngn)}
T[(rk1)b1 + (rk2)ba + - - - + (rkn)bu]

I‘(kl\ﬁl + k2“72 qF oo + knW/n)
1T (kib1 + kabz + - - + kubu)
T (V).

Therefore, T preserves scalar multiplication.



Proof. (continued)

Finally, the previous Theorem guarantees that T is unique: since B is a
basis (and hence a spanning set), the action of T is completely determined

by the fact that T(bi) = w; for each i, 1 <i < n. This completes the proof
of the theorem. |



Proof. (continued)

Finally, the previous Theorem guarantees that T is unique: since B is a
basis (and hence a spanning set), the action of T is completely determined

by the fact that T(bi) = w; for each i, 1 <i < n. This completes the proof
of the theorem. |

Remark

The significance of this Theorem is that it gives us the ability to define
linear transformations between vector spaces, a useful tool in what follows.



Problem
B= {1 +x,x+x%1+ x2} is a basis of P2 (you should be able to prove

this). Let
1 0 0 1 0 0
S ERA S F T L VY

(elements of Ma2). Find a linear transformation T : P2 — Mas so the
T(1+x)=A;, T(x+x°)=As, and T(1+x°)=Ag,

i.e., for a+ bx + cx? € Pa, find T(a + bx + cx?).



Problem
B= {1 +x,x+x%1+ x2} is a basis of P2 (you should be able to prove

this). Let
1 0 0 1 0 0
S ERA S F T L VY

(elements of Ma2). Find a linear transformation T : P2 — Mas so the
T(1+x)=A;, T(x+x°)=As, and T(1+x°)=Ag,

i.e., for a+ bx + cx? € Pa, find T(a + bx + cx?).



Solution

Notice that (1 +x) + (x +x%) — (1 + x?) = 2x, and thus

5w o= %(1—|—X)—|—%(X+X2)—%(1+X2)7
U
T(x) = 3T(1+x)+3T+x%) 3T +x%)

%A1 + %Az — %A:a

_ ifr 0] 10 1] _1]0 0]_
2loo]"zl1 0] 20 1|~

ol



Solution (continued)
Next, 1 = (1 +x) — x, so T(1) = T(1 4+ x) — T(x), and thus

wo-s-i[ 2]-[ 8] 2]



Solution (continued)
Next, 1 = (1 +x) — x, so T(1) = T(1 4+ x) — T(x), and thus

e EE P R B I

Finally, x* = (x + x?) — x, so T(x?) = T(x + x?) — T(x), and thus

e R F R |

D=



Solution (continued)

Next, 1 = (1 +x) — x, so T(1) = T(1 4+ x) — T(x), and thus

e EE P R B I

Finally, x* = (x + x?) — x, so T(x?) = T(x + x?) — T(x), and thus

e R F R |

Therefore,

D=

M

T(a+bx+cx’) = aT(1)+bT(x) + cT(x?)

1 -1 1 1 -1 1
_ a b c
=i T eln a0

1 [ at+b—c —a+b+c }

2| —_at+b+ec a—b+c



Problem

Let V be a vector space, T a linear operator on V, and v,w € V. Suppose

that
T(v+w)=v—2w and T(2v—w)=2v.

Find T(v) and T(w).



Problem

Let V be a vector space, T a linear operator on V, and v,w € V. Suppose
that
T(v+w)=v—2w and T(2v—w)=2v.

Find T(v) and T(w).

Solution ( final answer )

T(v) =v— 2w and T(w) = —3w.
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