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What are the Kernel and the Image?

Definition
Let V and W be vector spaces, and T : V → W a linear transformation.

1. The kernel of T (sometimes called the null space of T) is defined to be
the set

ker(T) = {~v ∈ V | T(~v) = ~0}.

2. The image of T is defined to be the set

im(T) = {T(~v) | ~v ∈ V}.

Remark
If A is an m × n matrix and TA : Rn → Rm is the linear transformation
induced by A, then
I ker(TA) = null(A);
I im(TA) = im(A).
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Example
Let T : P1 → R be the linear transformation defined by

T(p(x)) = p(1) for all p(x) ∈ P1.

ker(T) = {p(x) ∈ P1 | p(1) = 0}
= {ax + b | a, b ∈ R and a + b = 0}
= {ax − a | a ∈ R}.

im(T) = {p(1) | p(x) ∈ P1}
= {a + b | ax + b ∈ P1}
= {a + b | a,b ∈ R}
= R.
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Theorem
Let V and W be vector spaces and T : V → W a linear transformation.
Then ker(T) is a subspace of V and im(T) is a subspace of W.

Proof. (that ker(T) is a subspace of V)

1. Let ~0V and ~0W denote the zero vectors of V and W, respectively. Since
T(~0V) = ~0W, ~0V ∈ ker(T).

2. Let ~v1,~v2 ∈ ker(T). Then T(~v1) = ~0, T(~v2) = ~0, and

T(~v1 + ~v2) = T(~v1) + T(~v2) = ~0 +~0 = ~0.

Thus ~v1 + ~v2 ∈ ker(T).
3. Let ~v1 ∈ ker(T) and let k ∈ R. Then T(~v1) = ~0, and

T(k~v1) = kT(~v1) = k(~0) = ~0.

Thus k~v1 ∈ ker(T).
By the Subspace Test, ker(T) is a subspace of V. �
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Definition
Let V and W be vector spaces and T : V → W a linear transformation.

1. The dimension of ker(T), dim(ker(T)) is called the nullity of T and is
denoted nullity(T), i.e.,

nullity(T) = dim(ker(T)).

2. The dimension of im(T), dim(im(T)) is called the rank of T and is
denoted rank (T), i.e.,

rank(T) = dim(im(T)).



Definition
Let V and W be vector spaces and T : V → W a linear transformation.

1. The dimension of ker(T), dim(ker(T)) is called the nullity of T and is
denoted nullity(T), i.e.,

nullity(T) = dim(ker(T)).

2. The dimension of im(T), dim(im(T)) is called the rank of T and is
denoted rank (T), i.e.,

rank(T) = dim(im(T)).



Example
If A is an m × n matrix, then

im(TA) = im(A) = col(A).

It follows that

rank (TA) = dim(im(TA)) = dim(col(A)) = rank (A).

Also, ker(TA) = null(A), so

nullity(TA) = dim(null(A)) = n − rank (A).



Example
If A is an m × n matrix, then

im(TA) = im(A) = col(A).

It follows that

rank (TA) = dim(im(TA)) = dim(col(A)) = rank (A).

Also, ker(TA) = null(A), so
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Finding bases of the kernel and the image

Example (continued)
For the linear transformation T defined by T : P1 → R

T(p(x)) = p(1) for all p(x) ∈ P1,

we found that

ker(T) = {ax − a | a ∈ R} and
im(T) = R.

From this, we see that ker(T) = span{(x − 1)}; since {(x − 1)} is an
independent subset of P1, {(x − 1)} is a basis of ker(T). Thus

dim(ker(T)) = 1 = nullity(T).

Since im(T) = R,
dim(im(T)) = 1 = rank (T).
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Problem
Let T : M22 → M22 be defined by

T
[

a b
c d

]
=

[
a + b b + c
c + d d + a

]
for all

[
a b
c d

]
∈ M22.

Then T is a linear transformation (you should be able to prove this). Find
a basis of ker(T) and a basis of im(T).

Solution

Suppose
[

a b
c d

]
∈ ker(T). Then

T
[

a b
c d

]
=

[
a + b b + c
c + d d + a

]
=

[
0 0
0 0

]
.

This gives us a system of four equations in the four variables a, b, c,d:

a + b = 0; b + c = 0; c + d = 0; d + a = 0.
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Solution (continued)
This system has solution a = −t,b = t, c = −t, d = t for any t ∈ R, and thus

ker(T) =

{[
−t t
−t t

] ∣∣∣∣ t ∈ R
}

= span
{[

−1 1
−1 1

]}
.

Let Bk =

{[
−1 1
−1 1

]}
. Since Bk is an independent subset of M22 and

span(B) = ker(T), Bk is a basis of ker(T).

im(T) =

{[
a + b b + c
c + d d + a

] ∣∣∣∣ a, b, c,d ∈ R
}

= span
{[

1 0
0 1

]
,

[
1 1
0 0

]
,

[
0 1
1 0

]
,

[
0 0
1 1

]}
.

Let

S =

{[
1 0
0 1

]
,

[
1 1
0 0

]
,

[
0 1
1 0

]
,

[
0 0
1 1

]}
.
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Solution (continued)

S is a dependent subset of M22, but (check this yourselves)

Bi =

{[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 0
1 1

]}
is an independent subset of S. Since span(Bi) = span(S) = im(T) and Bi is
independent, Bi is a basis of im(T). �



Surjections and Injections

Definition
Let V and W be vector spaces and T : V → W a linear transformation.

1. T is onto (or surjective) if im(T) = W.
2. T is one-to-one (or injective) if, for ~v, ~w ∈ V, T(~v) = T(~w) implies that

~v = ~w.

Example
Let V be a vector space. Then the identity operator on V, 1V : V → V, is
one-to-one and onto.
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Theorem
Let V and W be vector spaces and T : V → W a linear transformation.
Then T is one-to-one if and only if ker(T) = {~0}.

Proof.
(⇒) Let ~v ∈ ker(T). Then

T(~v) = ~0 = T(~0).

Since is one-to-one, ~v = ~0. But ~v is an arbitrary element of ker(T), and
thus ker T = {~0}.

(⇐) Conversely, suppose that ker(T) = {~0}, and let ~v, ~w ∈ V be such that

T(~v) = T(~w).

Then T(~v)− T(~w) = ~0, and since T is a linear transformation

T(~v − ~w) = ~0.

By definition, ~v − ~w ∈ ker(T), implying that ~v − ~w = ~0. Therefore ~v = ~w,
and hence T is one-to-one. �
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Problem
Let T : M22 → R2 be a linear transformation defined by

T
[

a b
c d

]
=

[
a + d
b + c

]
for all

[
a b
c d

]
∈ M22.

Prove that T is onto but not one-to-one.

Proof.

Let
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x
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]
∈ R2. Since T

[
x y
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]
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x
y

]
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Observe that
[

1 0
0 −1

]
∈ ker(T), so ker(T) 6= ~022. By the previous

Theorem, T is not one-to-one. �
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Problem
Suppose U is an invertible m × m matrix and let T : Mmn → Mmn be
defined by

T(A) = UA for all A ∈ Mmn.

Then T is a linear transformation (this is left to you to verify). Prove that
T is one-to-one and onto.

Proof.
Suppose A,B ∈ Mmn and that T(A) = T(B). Then UA = UB; since U is
invertible

U−1(UA) = U−1(UB)

(U−1U)A = (U−1U)B
ImmA = ImmB

A = B.

Therefore, T is one-to-one.



Problem
Suppose U is an invertible m × m matrix and let T : Mmn → Mmn be
defined by

T(A) = UA for all A ∈ Mmn.

Then T is a linear transformation (this is left to you to verify). Prove that
T is one-to-one and onto.

Proof.
Suppose A,B ∈ Mmn and that T(A) = T(B). Then UA = UB; since U is
invertible

U−1(UA) = U−1(UB)

(U−1U)A = (U−1U)B
ImmA = ImmB

A = B.

Therefore, T is one-to-one.



Proof. (continued)

To prove that T is onto, let B ∈ Mmn and let A = U−1B. Then

T(A) = UA = U(U−1B) = (UU−1)B = ImmB = B,

and therefore T is onto. �



Problem
Let S : P2 → M22 be a linear transformation defined by

S(ax2 + bx + c) =
[

a + b a + c
b − c b + c

]
for all ax2 + bx + c ∈ P2.

Prove that S is one-to-one but not onto.

Proof.
By definition,

ker(S) = {ax2 + bx + c ∈ P2 | a + b = 0, a + c = 0, b − c = 0, b + c = 0}.

Suppose p(x) = ax2 + bx + c ∈ ker(S). This leads to a homogeneous system
of four equations in three variables. Putting the augmented matrix in
reduced row-echelon form:

1 1 0 0
1 0 1 0
0 1 −1 0
0 1 1 0

 → · · · →


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .

Since the unique solution is a = b = c = 0, ker(S) = {~0}, and thus S is
one-to-one.
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Proof. (continued)

To show that S is not onto, show that im(S) 6= P2; i.e., find a matrix
A ∈ M22 such that for every p(x) ∈ P2, S(p(x)) 6= A. Let

A =

[
0 1
0 2

]
,

and suppose p(x) = ax2 + bx + c ∈ P2 is such that S(p(x)) = A. Then

a + b = 0 a + c = 1
b − c = 0 b + c = 2

Solving this system
1 1 0 0
1 0 1 1
0 1 −1 0
0 1 1 2

 →


1 1 0 0
0 −1 1 1
0 1 −1 0
0 1 1 2

 .

Since the system is inconsistent, there is no p(x) ∈ P2 so that S(p(x)) = A,
and therefore S is not onto. �



Problem ( One-to-one linear transformations preserve independent
sets )
Let V and W be vector spaces and T : V → W a linear transformation.
Prove that if T is one-to-one and {~v1,~v2, . . . ,~vk} is an independent subset
of V, then {T(~v1),T(~v2), . . . ,T(~vk)} is an independent subset of W.

Proof.

Let ~0V and ~0W denote the zero vectors of V and W, respectively. Suppose
that

a1T(~v1) + a2T(~v2) + · · ·+ akT(~vk) = ~0W

for some a1, a2, . . . , ak ∈ R. Since linear transformations preserve linear
combinations (addition and scalar multiplication),

T(a1~v1 + a2~v2 + · · ·+ ak~vk) = ~0W.

Now, since T is one-to-one, ker(T) = {~0V}, and thus

a1~v1 + a2~v2 + · · ·+ ak~vk = ~0V.

However, {~v1,~v2, . . . ,~vk} is independent, and hence a1 = a2 = · · · = ak = 0.
Therefore, {T(~v1),T(~v2), . . . ,T(~vk)} is independent. �
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Problem ( Onto linear transformations preserve spanning sets )
Let V and W be vector spaces and T : V → W a linear transformation.
Prove that if T is onto and V = span{~v1,~v2, . . . ,~vk}, then

W = span{T(~v1),T(~v2), . . . ,T(~vk)}.

Proof.
Suppose that T is onto and let w ∈ W. Then there exists v ∈ V such that
T(v) = w. Since V = span{~v1,~v2, . . . ,~vk}, there exist a1, a2, . . . ak ∈ R such
that v = a1v1 + a2v2 + · · ·+ akvk. Using the fact that T is a linear
transformation,

w = T(v) = T(a1v1 + a2v2 + · · ·+ akvk)

= a1T(v1) + a2T(v2) + · · ·+ akT(vk),

i.e., w ∈ span{T(~v1),T(~v2), . . . ,T(~vk)}, and thus

W ⊆ span{T(~v1),T(~v2), . . . ,T(~vk)}.

Since T(~v1),T(~v2), . . . ,T(~vk) ∈ W, it follows that
span{T(~v1),T(~v2), . . . ,T(~vk)} ⊆ W, and therefore
W = span{T(~v1),T(~v2), . . . ,T(~vk)}. �
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Suppose A is an m × n matrix. How do we determine if TA : Rn → Rm is
onto? How do we determine if TA : Rn → Rm is one-to-one?

Theorem
Let A be an m × n matrix, and TA : Rn → Rm the linear transformation
induced by A.

1. TA is onto if and only if rank (A) = m.
2. TA is one-to-one if and only if rank (A) = n.

Proof. (sketch)

1. TA is onto if and only if im(TA) = Rm. This is equivalent to
col(A) = Rm, which occurs if and only if dim(col(A)) = m, i.e.,
rank (A) = m.

2. ker(TA) = null(A), and null(A) = {~0} if and only if A~x = ~0 has the
unique solution ~x = ~0. Thus and row echelon form of A has a leading
one in every column, which occurs if and only if rank (A) = n. �



Suppose A is an m × n matrix. How do we determine if TA : Rn → Rm is
onto? How do we determine if TA : Rn → Rm is one-to-one?

Theorem
Let A be an m × n matrix, and TA : Rn → Rm the linear transformation
induced by A.

1. TA is onto if and only if rank (A) = m.
2. TA is one-to-one if and only if rank (A) = n.

Proof. (sketch)

1. TA is onto if and only if im(TA) = Rm. This is equivalent to
col(A) = Rm, which occurs if and only if dim(col(A)) = m, i.e.,
rank (A) = m.

2. ker(TA) = null(A), and null(A) = {~0} if and only if A~x = ~0 has the
unique solution ~x = ~0. Thus and row echelon form of A has a leading
one in every column, which occurs if and only if rank (A) = n. �



Suppose A is an m × n matrix. How do we determine if TA : Rn → Rm is
onto? How do we determine if TA : Rn → Rm is one-to-one?

Theorem
Let A be an m × n matrix, and TA : Rn → Rm the linear transformation
induced by A.

1. TA is onto if and only if rank (A) = m.
2. TA is one-to-one if and only if rank (A) = n.

Proof. (sketch)

1. TA is onto if and only if im(TA) = Rm. This is equivalent to
col(A) = Rm, which occurs if and only if dim(col(A)) = m, i.e.,
rank (A) = m.

2. ker(TA) = null(A), and null(A) = {~0} if and only if A~x = ~0 has the
unique solution ~x = ~0. Thus and row echelon form of A has a leading
one in every column, which occurs if and only if rank (A) = n. �



The Dimension Theorem (Rank-Nullity Theorem)

Suppose A is an m × n matrix with rank r. Since im(TA) = col(A),

dim(im(TA)) = rank (A) = r.

We also know that ker(TA) = null(A), and that dim(null(A)) = n− r. Thus,

dim(im(TA)) + dim(ker(TA)) = n = dim Rn.

Theorem (Dimension Theorem (Rank-Nullity Theorem))
Let V and W be vector spaces and T : V → W a linear transformation. If
ker(T) and im(T) are both finite dimensional, then V is finite dimensional,
and

dim(V) = dim(ker(T)) + dim(im(T)).

Equivalently, dim(V) = nullity(T) + rank (T).
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Proof. (Outline)

Let ~w ∈ im(T); then ~w = T(~v) for some ~v ∈ V. Suppose{
T(~b1),T(~b2), . . . ,T(~br)

}
is a basis of im(T), and that {

~f1,~f2, . . . ,~fk
}

is a basis of ker(T). We define

B =
{
~b1, ~b2, . . . , ~br,~f1,~f2, . . . ,~fk

}
.

To prove that B is a basis of V, it remains to prove that B spans V and
that B is linearly independent.

Since B is independent and spans V, B is a basis of V, implying V is finite
dimensional (V is spanned by a finite set of vectors). Furthermore,
|B| = r + k, so

dim(V) = dim(im(T)) + dim(ker(T)).

�



Remark
1. It is not an assumption of the theorem that V is finite dimensional.

Rather, it is a consequence of the assumption that both im(T) and
ker(T) are finite dimensional.

2. As a consequence of the Dimension Theorem, if V is a finite
dimensional vector space and either dim(ker(T)) or dim(im(T)) is
known, then the other can be easily found.

Example
Let V and W be vector spaces and T : V → W a linear transformation. If V
is finite dimensional, then it follows that

dim(ker(T)) ≤ dim(V) and dim(im(T)) ≤ dim(V).
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Problem
For a ∈ R, recall that the linear transformation Ea : Pn → R, the evaluation
map at a, is defined as

Ea(p(x)) = p(a) for all p(x) ∈ Pn.

Prove that Ea is onto, and that

B = {(x − a), (x − a)2, (x − a)3, . . . , (x − a)n}

is a basis of ker(Ea).



Proof.
Let t ∈ R, and choose p(x) = t ∈ Pn. Then p(a) = t, so Ea(p(x)) = t, i.e.,
Ea is onto.

By the Dimension Theorem,

n + 1 = dim(Pn) = dim(ker(Ea)) + dim(im(Ea)).

Since Ea is onto, dim(im(Ea)) = dim(R) = 1, and thus dim(ker(Ea)) = n.

It now suffices to find n independent polynomials in ker(Ea).

Note that (x − a)j ∈ ker(Ea) for j = 1, 2, . . . , n, so B ⊆ ker(Ea).

Furthermore, B is independent because the polynomials in B have distinct
degrees.

Since |B| = n = dim(ker(Ea)), B spans ker(Ea).

Therefore, B is a basis of ker(Ea). �
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Theorem
Let V and W be vector spaces, T : V → W a linear transformation, and

B =
{
~b1, ~b2, . . . , ~br, ~br+1, ~br+2, . . . , ~bn

}
a basis of V with the property that

{
~br+1, ~br+2, . . . , ~bn

}
is a basis of

ker(T). Then {
T(~b1),T(~b2), . . . ,T(~br)

}
is a basis of im(T), and therefore r = rank (T).

Remark ( How is this useful? )
Suppose V and W are vector spaces and T : V → W is a linear
transformation. If you find a basis of ker(T), then this may be used to find
a basis of im(T): extend the basis of ker(T) to a basis of V; applying the
transformation T to each of the vectors that was added to the basis of
ker(T) produces a set of vectors that is a basis of im(T).
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Problem

Let A =

[
0 1
1 0

]
, and let T : M22 → M22 be a linear transformation

defined by
T(X) = XA − AX for all X ∈ M22.

Find a basis of ker(T) and a basis of im(T).

Solution
First note that by the Dimension Theorem,

dim(ker(T)) + dim(im(T)) = dim(M22) = 4.

Let X =

[
a b
c d

]
. Then

T(X) = AX − XA

=

[
0 1
1 0

] [
a b
c d

]
−

[
a b
c d

] [
0 1
1 0

]
=

[
c d
a b

]
−

[
b a
d c

]
=

[
c − b d − a
a − d b − c

]
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Solution (continued)

If X ∈ ker(T), then T(X) = ~022 so

c − b = 0,d − a = 0, a − d = 0, b − c = 0.

This system of four equations in four variables has general solution
a = s, b = t, c = t, d = s for s, t ∈ R. Therefore,

ker(T) =

{[
s t
t s

] ∣∣∣∣ s, t ∈ R
}

= span
{[

1 0
0 1

]
,

[
0 1
1 0

]}
.

Let Bk =

{[
1 0
0 1

]
,

[
0 1
1 0

]}
. Since Bk is independent and spans

ker(T), Bk is a basis of ker(T).

To find a basis of im(T), extend the basis of ker(T) to a basis of M22: here
is one such basis{[

1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 0
0 0

]
,

[
0 1
0 0

]}
.



Solution (continued)

If X ∈ ker(T), then T(X) = ~022 so

c − b = 0,d − a = 0, a − d = 0, b − c = 0.

This system of four equations in four variables has general solution
a = s, b = t, c = t, d = s for s, t ∈ R. Therefore,

ker(T) =

{[
s t
t s

] ∣∣∣∣ s, t ∈ R
}

= span
{[

1 0
0 1

]
,

[
0 1
1 0

]}
.

Let Bk =

{[
1 0
0 1

]
,

[
0 1
1 0

]}
. Since Bk is independent and spans

ker(T), Bk is a basis of ker(T).

To find a basis of im(T), extend the basis of ker(T) to a basis of M22: here
is one such basis{[

1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 0
0 0

]
,

[
0 1
0 0

]}
.



Solution (continued)
Thus

Bi =

{
T
[

1 0
0 0

]
,T

[
0 1
1 0

]}
=

{[
0 −1
1 0

]
,

[
1 0
0 −1

]}
is a basis of im(T). �
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