Math 221: LINEAR ALGEBRA

Chapter 7. Linear Transformations §7-3. Isomorphisms and Composition

Le Chen¹
Emory University, 2020 Fall

(last updated on 10/26/2020)

What is isomorphism?

Proving vector spaces are isomorphic

Characterizing isomorphisms

Composition of transformations

Inverses

What is an isomorphism?

Example

 $\mathcal{P}_1=\{ax+b\mid a,b\in\mathbb{R}\},$ has addition and scalar multiplication defined as follows:

$$\begin{array}{rcl} (a_1x+b_1)+(a_2x+b_2) & = & (a_1+a_2)x+(b_1+b_2), \\ & k(a_1x+b_1) & = & (ka_1)x+(kb_1), \end{array}$$

for all $(a_1x + b_1), (a_2x + b_2) \in \mathcal{P}_1$ and $k \in \mathbb{R}$.

The role of the variable x is to distinguish a_1 from b_1 , a_2 from b_2 , $(a_1 + a_2)$ from $(b_1 + b_2)$, and (ka_1) from (kb_1) .

Example (continued)

This can be accomplished equally well by using vectors in \mathbb{R}^2 .

$$\mathbb{R}^2 = \left\{ \left[\begin{array}{c} a \\ b \end{array} \right] \ \middle| \ a, b \in \mathbb{R} \right\}$$

where addition and scalar multiplication are defined as follows:

$$\begin{bmatrix} a_1 \\ b_1 \end{bmatrix} + \begin{bmatrix} a_2 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 \\ b_1 + b_2 \end{bmatrix}, k \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} ka_1 \\ kb_1 \end{bmatrix}$$

for all
$$\begin{bmatrix} a_1 \\ b_1 \end{bmatrix}$$
, $\begin{bmatrix} a_2 \\ b_2 \end{bmatrix} \in \mathbb{R}^2$ and $k \in \mathbb{R}$.

Definition

Let V and W be vector spaces, and $T:V\to W$ a linear transformation. T is an isomorphism if and only if T is both one-to-one and onto (i.e., $\ker(T)=\{\mathbf{0}\}$ and $\operatorname{im}(T)=W$). If $T:V\to W$ is an isomorphism, then the vector spaces V and W are said to be isomorphic, and we write $V\cong W$.

Example

The identity operator on any vector space is an isomorphism.

Example

 $T: \mathcal{P}_n \to \mathbb{R}^{n+1}$ defined by

$$T(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

for all $a_0+a_1x+a_2x^2+\cdots+a_nx^n\in\mathcal{P}_n$ is an isomorphism. To verify this, prove that T is a linear transformation that is one-to-one and onto.

Proving isomorphism of vector spaces

Problem

Prove that \mathbf{M}_{22} and \mathbb{R}^4 are isomorphic.

Proof.

Let $T: \mathbf{M}_{22} \to \mathbb{R}^4$ be defined by

$$T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
 for all $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{M}_{22}$.

It remains to prove that

- 1. T is a linear transformation;
- 2. T is one-to-one;
- 3. T is onto.

Solution (continued -1. linear transformation)

Let $A = \begin{bmatrix} a_1 & a_2 \\ a_2 & a_4 \end{bmatrix}$, $B = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} \in \mathbf{M}_{22}$ and let $k \in \mathbb{R}$. Then

$$T(A) = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} \quad \text{and} \quad T(B) = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}.$$

$$T(A) = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} \quad \text{and} \quad T(B) = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}.$$

$$\downarrow \downarrow$$

$$T(A+B) = T \begin{bmatrix} a_1 + b_1 & a_2 + b_2 \\ a_3 + b_3 & a_4 + b_4 \end{bmatrix} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \\ a_4 + b_4 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = T(A) + T(B)$$

T preserves addition.

Solution (continued -1. linear transformation)

Also

$$T(kA) = T\begin{bmatrix} ka_1 & ka_2 \\ ka_3 & ka_4 \end{bmatrix} = \begin{bmatrix} ka_1 \\ ka_2 \\ ka_3 \\ ka_4 \end{bmatrix} = k \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = kT(A)$$

T preserves scalar multiplication.

Since T preserves addition and scalar multiplication, T is a linear transformation.

Solution (continued -2. One-to-one)

By definition,

$$\ker(\mathbf{T}) = \{\mathbf{A} \in \mathbf{M}_{22} \mid \mathbf{T}(\mathbf{A}) = \mathbf{0}\}$$

$$= \left\{ \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix} \middle| \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R} \text{ and } \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \right\}.$$

If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \ker T$, then a = b = c = d = 0, and thus $\ker(T) = \{\mathbf{0}_{22}\}$.

1

T is one-to-one.

Solution (continued – 3. Onto)

Let

$$\mathbf{X} = \left[egin{array}{c} \mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4 \end{array}
ight] \in \mathbb{R}^4,$$

and define matrix $A \in \mathbf{M}_{22}$ as follows:

$$\mathbf{A} = \left[\begin{array}{cc} \mathbf{x}_1 & \mathbf{x}_2 \\ \mathbf{x}_3 & \mathbf{x}_4 \end{array} \right].$$

Then T(A) = X, and therefore T is onto.

Finally, since T is a linear transformation that is one-to-one and onto, T is an isomorphism. Therefore, \mathbf{M}_{22} and \mathbb{R}^4 are isomorphic vector spaces.

Example (Other isomorphic vector spaces)

- 1. For all integers $n \geq 0$, $\mathcal{P}_n \cong \mathbb{R}^{n+1}$.
- 2. For all integers m and n, m, n \geq 1, $\mathbf{M}_{mn} \cong \mathbb{R}^{m \times n}$.
- 3. For all integers m and n, m, n \geq 1, $\boldsymbol{M}_{mn} \cong \mathcal{P}_{mn-1}.$

You should be able to define appropriate linear transformations and prove each of these statements.

Characterizing isomorphisms

Theorem

Let V and W be finite dimensional vector spaces and T : V \to W a linear transformation. The following are equivalent.

- 1. T is an isomorphism.
- 2. If $\{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ is any basis of V, then $\{T(\vec{b}_1), T(\vec{b}_2), \dots, T(\vec{b}_n)\}$ is a basis of W.
- 3. There exists a basis $\{\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_n\}$ of V such that $\{T(\vec{b}_1),T(\vec{b}_2),\ldots,T(\vec{b}_n)\}$ is a basis of W.

Remark

The proof relies on the following results of this chapter.

- ▶ One-to-one linear transformations preserve independent sets.
- ► Onto linear transformations preserve spanning sets.

Suppose V and W are finite dimensional vector spaces with $\dim(V) = \dim(W)$, and let

$$\{\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_n\}\quad \mathrm{and}\quad \{\vec{f}_1,\vec{f}_2,\ldots,\vec{f}_n\}$$

be bases of V and W respectively. Then $T: V \to W$ defined by

$$T(\vec{b}_i) = \vec{f}_i \text{ for } 1 \le k \le n$$

is a linear transformation that maps a basis of V to a basis of W. By the previous Theorem, T is an isomorphism.

Conversely, if V and W are isomorphic and $T:V\to W$ is an isomorphism, then (by the previous Theorem) for any basis $\{\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_n\}$ of V, $\{T(\vec{b}_1),T(\vec{b}_2),\ldots,T(\vec{b}_n)\}$ is a basis of W, implying that $\dim(V)=\dim(W)$.

This proves the next theorem.

Theorem

Finite dimensional vector spaces V and W are isomorphic if and only if $\dim(V)=\dim(W).$

Corollary

If V is a vector space with $\dim(V) = n$, then V is isomorphic to \mathbb{R}^n .

Problem

Let V denote the set of 2×2 real symmetric matrices. Then V is a vector space with dimension three. Find an isomorphism $T: \mathcal{P}_2 \to V$ with the property that $T(1) = I_2$ (the 2×2 identity matrix).

Solution

$$V = \left\{ \left[\begin{array}{cc} a & b \\ b & c \end{array} \right] \ \left| \begin{array}{cc} a,b,c \in \mathbb{R} \right. \right\} = \operatorname{span} \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\}.$$

Let

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

Then B is independent, and $\operatorname{span}(B) = V$, so B is a basis of V. Also, $\dim(V) = 3 = \dim(\mathcal{P}_2)$. However, we want a basis of V that contains I_2 .

Solution (continued)

Let

$$B' = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

Since B' consists of $\dim(V)$ symmetric independent matrices, B' is a basis of V. Note that $I_2 \in B'$. Define

$$T(1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, T(x) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, T(x^2) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Then for all $ax^2 + bx + c \in \mathcal{P}_2$,

$$T(ax^{2} + bx + c) = \begin{bmatrix} c & b \\ b & a + c \end{bmatrix},$$

and $T(1) = I_2$.

By the previous Theorem, $T: \mathcal{P}_2 \to V$ is an isomorphism.

Theorem

Let V and W be vector spaces, and $T:V\to W$ a linear transformation. If $\dim(V)=\dim(W)=n$, then T is an isomorphism if and only if T is either one-to-one or onto.

Proof.

- (\Rightarrow) By definition, an isomorphism is both one-to-one and onto.
- (\Leftarrow) Suppose that T is one-to-one. Then $\ker(T) = \{\vec{0}\}$, so $\dim(\ker(T)) = 0$. By the Dimension Theorem,

$$dim(V) = dim(im(T)) + dim(ker(T))$$

$$n = dim(im(T)) + 0$$

so $\dim(\operatorname{im}(T)) = n = \dim(W)$. Furthermore $\operatorname{im}(T) \subseteq W$, so it follows that $\operatorname{im}(T) = W$. Therefore, T is onto, and hence is an isomorphism.

Proof. (continued)

 (\Leftarrow) Suppose that T is onto. Then $\operatorname{im}(T) = W$, so $\dim(\operatorname{im}(T)) = \dim(W) = n$. By the Dimension Theorem,

 $\dim(V) = \dim(\operatorname{im}(T)) + \dim(\ker(T))$

 $n = n + \dim(\ker(T))$

so $\dim(\ker(T)) = 0$. The only vector space with dimension zero is the zero vector space, and thus $\ker(T) = \{\vec{0}\}$. Therefore, T is one-to-one, and hence is an isomorphism.

Composition of transformations

Definition

Let V, W and U be vector spaces, and let

$$T: V \to W$$
 and $S: W \to U$

be linear transformations. The composite of T and S is

$$ST:V \to U$$

where $(ST)(\vec{v}) = S(T(\vec{v}))$ for all $\vec{v} \in V$. The process of obtaining ST from S and T is called **composition**.

Example

Let $S:M_{22}\to M_{22}$ and $T:M_{22}\to M_{22}$ be linear transformations such that

$$S(A) = -A^{T}$$
 and $T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} b & a \\ d & c \end{bmatrix}$ for all $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{M}_{22}$.

Then

$$(ST) \begin{bmatrix} a & b \\ c & d \end{bmatrix} = S \begin{bmatrix} b & a \\ d & c \end{bmatrix} = \begin{bmatrix} -b & -d \\ -a & -c \end{bmatrix}$$

and

$$(TS) \begin{bmatrix} a & b \\ c & d \end{bmatrix} = T \begin{bmatrix} -a & -c \\ -b & -d \end{bmatrix} = \begin{bmatrix} -c & -a \\ -d & -b \end{bmatrix}.$$

If a, b, c and d are distinct, then $(ST)(A) \neq (TS)(A)$.

This illustrates that, in general, $ST \neq TS$.

Theorem

Let V, W, U and Z be vector spaces and

$$V \overset{T}{\to} W \overset{S}{\to} U \overset{R}{\to} Z$$

be linear transformations. Then

- 1. ST is a linear transformation.
 - 2. $T1_V = T$ and $1_W T = T$.
 - 3. (RS)T = R(ST).

Problem (The composition of onto transformations is onto) $\,$

Let V, W and U be vector spaces, and let

$$V \stackrel{T}{\to} W \stackrel{S}{\to} U$$

be linear transformations. Prove that if T and S are onto, then ST is onto.

Proof.

Let $\mathbf{z} \in U$. Since S is onto, there exists a vector $\mathbf{y} \in W$ such that $S(\mathbf{y}) = \mathbf{z}$. Furthermore, since T is onto, there exists a vector $\mathbf{x} \in V$ such that $T(\mathbf{x}) = \mathbf{y}$. Thus

$$\mathbf{z} = S(\mathbf{y}) = S(T(\mathbf{x})) = (ST)(\mathbf{x}),$$

showing that for each $\mathbf{z} \in U$ there exists and $\mathbf{x} \in V$ such that $(ST)(\mathbf{x}) = \mathbf{z}$. Therefore, ST is onto.

Problem (The composition of one-to-one transformations is one-to-one) $\,$

Let V, W and U be vector spaces, and let

$$V \overset{T}{\to} W \overset{S}{\to} U$$

be linear transformations. Prove that if T and S are one-to-one, then ST is one-to-one.

The proof of this is left as an exercise.

Inverses

Theorem

Let V and W be finite dimensional vector spaces, and $T: V \to W$ a linear transformation. Then the following statements are equivalent.

- 1. T is an isomorphism.
- 2. There exists a linear transformation $S:W\to V$ so that

$$ST = 1_V$$
 and $TS = 1_W$.

In this case, the isomorphism S is uniquely determined by T:

if
$$\vec{w} \in W$$
 and $\vec{w} = T(\vec{v})$, then $S(\vec{w}) = \vec{v}$.

Given an isomorphism $T: V \to W$, the unique isomorphism satisfying the second condition of the theorem is the inverse of T, and is written T^{-1} .

Remark (Fundamental Identities (relating T and T^{-1}))

If V and W are vector spaces and $T: V \to W$ is an isomorphism, then $T^{-1}: W \to V$ is a linear transformation such that

$$(T^{-1}T)(\vec{v}) = \vec{v} \text{ and } (TT^{-1})(\vec{w}) = \vec{w}$$

for each $\vec{v} \in V$, $\vec{w} \in W$. Equivalently,

$$T^{-1}T = 1_V \text{ and } TT^{-1} = 1_W.$$

Problem

The function $T: \mathcal{P}_2 \to \mathbb{R}^3$ defined by

$$T(a + bx + cx^{2}) = \begin{vmatrix} a - c \\ 2b \\ a + c \end{vmatrix}$$
 for all $a + bx + cx^{2} \in \mathcal{P}_{2}$

is a linear transformation (this is left for you to verify). Does T have an inverse? If so, find T^{-1} .

Solution

Since $\dim(\mathcal{P}_2) = 3 = \dim(\mathbb{R}^3)$, it suffices to prove that T is either one-to-one or onto.

Suppose $a + bx + cx^2 \in ker(T)$. Then

$$a - c = 0$$
; $2b = 0$; $a + c = 0$.

This system of three equations in three variable has unique solution a = b = c = 0 (the system is easy to solve, but you should show some work if doing this on an exam).

Therefore $\ker(T) = \{0\}$, and hence T is one-to-one. By our earlier observation, it follows that T is onto, and thus is an isomorphism.

Solution (continued)

To find T^{-1} , we need to specify $T^{-1} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$ for any $\begin{bmatrix} p \\ q \\ r \end{bmatrix} \in \mathbb{R}^3$.

Let $a + bx + cx^2 \in \mathcal{P}_2$, and suppose

$$\Gamma(a + bx + cx^2) = \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

By the definition of T, p = a - c, q = 2b and r = a + c. We now solve for a, b and c in terms of p, q and r.

$$\begin{bmatrix} 1 & 0 & -1 & p \\ 0 & 2 & 0 & q \\ 1 & 0 & 1 & r \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & 0 & (r+p)/2 \\ 0 & 1 & 0 & q/2 \\ 0 & 0 & 1 & (r-p)/2 \end{bmatrix}.$$

Solution (continued)

We now have $a = \frac{r+p}{2}$, $b = \frac{q}{2}$ and $c = \frac{r-p}{2}$, and thus

$$T(a + bx + cx^{2}) = \begin{bmatrix} p \\ q \\ r \end{bmatrix} = T\left(\frac{r+p}{2} + \frac{q}{2}x + \frac{r-p}{2}x^{2}\right)$$

Therefore,

$$T^{-1} \begin{bmatrix} p \\ q \\ r \end{bmatrix} = T^{-1} \left(T \left(\frac{r+p}{2} + \frac{q}{2}x + \frac{r-p}{2}x^2 \right) \right)$$
$$= (T^{-1}T) \left(\frac{r+p}{2} + \frac{q}{2}x + \frac{r-p}{2}x^2 \right)$$
$$= \frac{r+p}{2} + \frac{q}{2}x + \frac{r-p}{2}x^2.$$

Definition

Let V be a vector space with $\dim(V) = n$, let $B = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ be a fixed basis of V, and let $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ denote the standard basis of \mathbb{R}^n . We define a transformation $C_B : V \to \mathbb{R}^n$ by

$$C_B(a_1\vec{b}_1 + a_2\vec{b}_2 + \dots + a_n\vec{b}_n) = a_1\vec{e}_1 + a_2\vec{e}_2 + \dots + a_n\vec{e}_n = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}.$$

Then C_B is a linear transformation such that $C_B(\vec{b}_i) = \vec{e}_i$, $1 \le i \le n$, and thus C_B is an isomorphism, called the coordinate isomorphism corresponding to B.

Example

Let V be a vector space and let $B = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ be a fixed basis of V. Then $C_B : V \to \mathbb{R}^n$ is invertible, and it is clear that $C_B^{-1} : \mathbb{R}^n \to V$ is defined

by

$$C_B^{-1} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = a_1 \vec{b}_1 + a_2 \vec{b}_2 + \dots + a_n \vec{b}_n \text{ for each } \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \in \mathbb{R}^n.$$