Math 221: LINEAR ALGEBRA

Chapter 8. Orthogonality §8-3. Positive Definite Matrices

Le Chen¹
Emory University, 2020 Fall
(last updated on 11/10/2020)

Positive Definite Matrices	
Cholesky factorization – Square Root of a Matrix	

Positive Definite Matrices

Definition

An $n \times n$ matrix \overline{A} is positive definite if it is symmetric and has positive eigenvalues, i.e., if λ is a eigenvalue of A, then $\lambda > 0$.

Positive Definite Matrices

Definition

An $n \times n$ matrix A is positive definite if it is symmetric and has positive eigenvalues, i.e., if λ is a eigenvalue of A, then $\lambda > 0$.

Theorem

If A is a positive definite matrix, then det(A) > 0 and A is invertible.

Positive Definite Matrices

Definition

An $n \times n$ matrix A is positive definite if it is symmetric and has positive eigenvalues, i.e., if λ is a eigenvalue of A, then $\lambda > 0$.

Theorem

If A is a positive definite matrix, then det(A) > 0 and A is invertible.

Proof.

Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ denote the (not necessarily distinct) eigenvalues of A. Since A is symmetric, A is orthogonally diagonalizable. In particular, $A \sim D$, where $D = \operatorname{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$. Similar matrices have the same determinant, so

$$\det(A) = \det(D) = \lambda_1 \lambda_2 \cdots \lambda_n.$$

Since A is positive definite, $\lambda_i > 0$ for all i, $1 \le i \le n$; it follows that det(A) > 0, and therefore A is invertible.

Theorem

A symmetric matrix A is positive definite if and only if $\vec{x}^T A \vec{x} > 0$ for all $\vec{x} \in \mathbb{R}^n$, $\vec{x} \neq \vec{0}$.

Theorem

A symmetric matrix A is positive definite if and only if $\vec{x}^T A \vec{x} > 0$ for all $\vec{x} \in \mathbb{R}^n$, $\vec{x} \neq \vec{0}$.

Proof.

Since A is symmetric, there exists an orthogonal matrix P so that

$$P^{T}AP = diag(\lambda_1, \lambda_2, \dots, \lambda_n) = D,$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the (not necessarily distinct) eigenvalues of A. Let $\vec{x} \in \mathbb{R}^n$, $\vec{x} \neq \vec{0}$, and define $\vec{y} = P^T \vec{x}$. Then

$$\begin{split} \vec{x}^T A \vec{x} &= \vec{x}^T (PDP^T) \vec{x} = (\vec{x}^T P) D(P^T \vec{x}) = (P^T \vec{x})^T D(P^T \vec{x}) = \vec{y}^T D \vec{y}. \\ Writing \ \vec{y}^T &= \left[\begin{array}{ccc} y_1 & y_2 & \cdots & y_n \end{array} \right], \end{split}$$

$$ec{\mathbf{x}}^{\mathrm{T}}\mathbf{A}\dot{\mathbf{x}} = \begin{bmatrix} \mathbf{y}_1 & \mathbf{y}_2 & \cdots & \mathbf{y}_n \end{bmatrix} \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_n \end{bmatrix}$$

$$= \lambda_1 \mathbf{y}_1^2 + \lambda_2 \mathbf{y}_2^2 + \cdots \lambda_n \mathbf{y}_n^2.$$

Proof. (continued)

(\Rightarrow) Suppose A is positive definite, and $\vec{x} \in \mathbb{R}^n$, $\vec{x} \neq \vec{0}$. Since P^T is invertible, $\vec{y} = P^T \vec{x} \neq \vec{0}$, and thus $y_j \neq 0$ for some j, implying $y_j^2 > 0$ for some j. Furthermore, since all eigenvalues of A are positive, $\lambda_i y_i^2 \geq 0$ for all i; in particular $\lambda_i y_i^2 > 0$. Therefore, $\vec{x}^T A \vec{x} > 0$.

Proof. (continued)

- (\Rightarrow) Suppose A is positive definite, and $\vec{x} \in \mathbb{R}^n$, $\vec{x} \neq \vec{0}$. Since P^T is invertible, $\vec{y} = P^T \vec{x} \neq \vec{0}$, and thus $y_j \neq 0$ for some j, implying $y_j^2 > 0$ for some j. Furthermore, since all eigenvalues of A are positive, $\lambda_i y_i^2 \geq 0$ for all i; in particular $\lambda_j y_i^2 > 0$. Therefore, $\vec{x}^T A \vec{x} > 0$.
- (\Leftarrow) Conversely, if $\vec{x}^T A \vec{x} > 0$ whenever $\vec{x} \neq \vec{0}$, choose $\vec{x} = P \vec{e}_j$, where \vec{e}_j is the jth column of I_n . Since P is invertible, $\vec{x} \neq \vec{0}$, and thus

$$\vec{y} = P^T \vec{x} = P^T (P \vec{e}_j) = \vec{e}_j.$$

Thus $y_j = 1$ and $y_i = 0$ when $i \neq j$, so

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots \lambda_n y_n^2 = \lambda_j,$$

i.e., $\lambda_j = \vec{x}^T A \vec{x} > 0$. Therefore, A is positive definite.

Theorem (Constructing Positive Definite Matrices)

Let U be an $n \times n$ invertible matrix, and let $A = U^T U$. Then A is positive definite.

Theorem (Constructing Positive Definite Matrices)

Let U be an $n \times n$ invertible matrix, and let $A = U^TU$. Then A is positive definite.

Proof.

Let $\vec{x} \in \mathbb{R}^n$, $\vec{x} \neq \vec{0}$. Then

$$\vec{x}^{T} A \vec{x} = \vec{x}^{T} (U^{T} U) \vec{x}$$

$$= (\vec{x}^{T} U^{T}) (U \vec{x})$$

$$= (U \vec{x})^{T} (U \vec{x})$$

$$= ||U \vec{x}||^{2}.$$

Since U is invertible and $\vec{x} \neq \vec{0}$, $U\vec{x} \neq \vec{0}$, and hence $||U\vec{x}||^2 > 0$, i.e., $\vec{x}^T A \vec{x} = ||U\vec{x}||^2 > 0$. Therefore, A is positive definite.

Definition

Let $A=\left[\begin{array}{c}a_{ij}\end{array}\right]$ be an $n\times n$ matrix. For $1\leq r\leq n,$ $^{(r)}A$ denotes the $r\times r$ submatrix in the upper left corner of A, i.e.,

$${}^{(r)}A = \left[\begin{array}{c} a_{ij} \end{array}\right], \ 1 \leq i,j \leq r.$$

(1) A, (2) A,..., (n) A are called the principal submatrices of A.

Definition

Let $A = [a_{ij}]$ be an $n \times n$ matrix. For $1 \le r \le n$, $^{(r)}A$ denotes the $r \times r$ submatrix in the upper left corner of A, i.e.,

$${}^{(r)}A = \left[\begin{array}{c} a_{ij} \end{array} \right], \ 1 \leq i,j \leq r.$$

(1) A, (2) A,..., (n) A are called the principal submatrices of A.

Lemma

If A is an $n \times n$ positive definite matrix, then each principal submatrix of A is positive definite.

Proof.

Suppose A is an $n \times n$ positive definite matrix. For any integer $r, 1 \le r \le n$, write A in block form as

$$A = \begin{bmatrix} {}^{(r)}A & B \\ C & D \end{bmatrix},$$

where B is an
$$r \times (n-r)$$
 matrix, C is an $(n-r) \times r$ matrix, and D is an
$$(n-r) \times (n-r) \text{ matrix. Let } \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_r \end{bmatrix} \neq \vec{0} \text{ and let } \vec{x} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_r \\ 0 \end{bmatrix}. \text{ Then } \vec{0}$$

 $\vec{x} \neq \vec{0}$, and by the previous theorem, $\vec{x}^T A \vec{x} > 0$.

Proof. (continued)

But

$$\vec{\mathbf{x}}^{\mathrm{T}}\mathbf{A}\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{y}_1 & \cdots & \mathbf{y}_r & \mathbf{0} & \cdots & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{r}^{(r)}\mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{y}_r \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix} = \vec{\mathbf{y}}^{\mathrm{T}} \begin{pmatrix} \mathbf{r}^{(r)}\mathbf{A} \end{pmatrix} \vec{\mathbf{y}},$$

and therefore $\vec{y}^T \binom{(r)}{A} \vec{y} > 0$. Then $^{(r)}A$ is positive definite again by the previous theorem.

Cholesky factorization – Square Root of a Matrix

$$4 = 2 \times 2^{\mathrm{T}}$$

$$\begin{bmatrix} 4 & 12 & -16 \\ 12 & 37 & -43 \\ -16 & -43 & 98 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 6 & 1 & 0 \\ -8 & 5 & 3 \end{bmatrix} \begin{bmatrix} 2 & 6 & -8 \\ 0 & 1 & 5 \\ 0 & 0 & 3 \end{bmatrix}$$

Cholesky factorization – Square Root of a Matrix

$$4 = 2 \times 2^{\mathrm{T}}$$

$$\begin{bmatrix} 4 & 12 & -16 \\ 12 & 37 & -43 \\ -16 & -43 & 98 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 6 & 1 & 0 \\ -8 & 5 & 3 \end{bmatrix} \begin{bmatrix} 2 & 6 & -8 \\ 0 & 1 & 5 \\ 0 & 0 & 3 \end{bmatrix}$$

Theorem

Let A be an $n \times n$ symmetric matrix. Then the following conditions are equivalent.

- 1. A is positive definite.
- 2. $\det(^{(r)}A) > 0$ for r = 1, 2, ..., n.
- 3. $A = U^T U$ where U is upper triangular and has positive entries on its main diagonal. Furthermore, U is unique. The expression $A = U^T U$ is called the Cholesky factorization of A.

can be obtained as follows.

Algorithm for Cholesky Factorization

Let A be a positive definite matrix. The Cholesky factorization $A = U^{T}U$

Algorithm for Cholesky Factorization

Let A be a positive definite matrix. The Cholesky factorization $A = U^TU$ can be obtained as follows.

1. Using only type 3 elementary row operations, with multiples of rows added to lower rows, put A in upper triangular form. Call this matrix $\widehat{\mathbf{U}}$; then $\widehat{\mathbf{U}}$ has positive entries on its main diagonal (this can be proved by induction on n).

Algorithm for Cholesky Factorization

Let A be a positive definite matrix. The Cholesky factorization $A = U^TU$ can be obtained as follows.

- 1. Using only type 3 elementary row operations, with multiples of rows added to lower rows, put A in upper triangular form. Call this matrix \widehat{U} ; then \widehat{U} has positive entries on its main diagonal (this can be proved by induction on n).
- 2. Obtain U from \widehat{U} by dividing each row of \widehat{U} by the square root of the diagonal entry in that row.

Show that
$$A = \begin{bmatrix} 9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6 \end{bmatrix}$$
 is positive definite, and find the

Cholesky factorization of A.

Show that
$$A = \begin{bmatrix} 9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6 \end{bmatrix}$$
 is positive definite, and find the

Cholesky factorization of A.

Solution

$$^{(1)}A = \begin{bmatrix} 9 \end{bmatrix}$$
 and $^{(2)}A = \begin{bmatrix} 9 & -6 \\ -6 & 5 \end{bmatrix}$

so $\det(^{(1)}A) = 9$ and $\det(^{(2)}A) = 9$. Since $\det(A) = 36$, it follows that A is positive definite.

Show that
$$A = \begin{bmatrix} 9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6 \end{bmatrix}$$
 is positive definite, and find the

Cholesky factorization of A.

Solution

$$^{(1)}A = \begin{bmatrix} 9 \end{bmatrix}$$
 and $^{(2)}A = \begin{bmatrix} 9 & -6 \\ -6 & 5 \end{bmatrix}$

so $\det(^{(1)}A) = 9$ and $\det(^{(2)}A) = 9$. Since $\det(A) = 36$, it follows that A is positive definite.

$$\begin{bmatrix} 9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 9 & -6 & 3 \\ 0 & 1 & -1 \\ 0 & -1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 9 & -6 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 4 \end{bmatrix}$$

Show that
$$A = \begin{bmatrix} 9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6 \end{bmatrix}$$
 is positive definite, and find the

Cholesky factorization of A.

Solution

$$^{(1)}A = \begin{bmatrix} 9 \end{bmatrix}$$
 and $^{(2)}A = \begin{bmatrix} 9 & -6 \\ -6 & 5 \end{bmatrix}$

so $\det(^{(1)}A) = 9$ and $\det(^{(2)}A) = 9$. Since $\det(A) = 36$, it follows that A is positive definite.

$$\begin{bmatrix} 9 & -6 & 3 \\ -6 & 5 & -3 \\ 3 & -3 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 9 & -6 & 3 \\ 0 & 1 & -1 \\ 0 & -1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 9 & -6 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 4 \end{bmatrix}$$

Now divide the entries in each row by the square root of the diagonal entry in that row, to give

$$U = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \quad \text{and} \quad U^{T}U = A$$

Verify that

$$\mathbf{A} = \begin{bmatrix} 12 & 4 & 3 \\ 4 & 2 & -1 \\ 3 & -1 & 7 \end{bmatrix}$$

is positive definite, and find the Cholesky factorization of A.

Verify that

$$A = \begin{bmatrix} 12 & 4 & 3 \\ 4 & 2 & -1 \\ 3 & -1 & 7 \end{bmatrix}$$

is positive definite, and find the Cholesky factorization of A.

Solution (Final Answer)

 $\det \binom{(1)}{A} = 12$, $\det \binom{(2)}{A} = 8$, $\det (A) = 2$; by the previous theorem, A is positive definite.

$$U = \begin{bmatrix} 2\sqrt{3} & 2\sqrt{3}/3 & \sqrt{3}/2 \\ 0 & \sqrt{6}/3 & -\sqrt{6} \\ 0 & 0 & 1/2 \end{bmatrix}$$

and $U^TU = A$.