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Cholesky factorization — Square Root of a Matrix
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Definition

An n X n matrix A is positive definite if it is symmetric and has positive
eigenvalues, i.e., if A is a eigenvalue of A, then A > 0.
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Positive Definite Matrices

Definition

An n X n matrix A is positive definite if it is symmetric and has positive
eigenvalues, i.e., if A is a eigenvalue of A, then A > 0.

Theorem

If A is a positive definite matrix, then det(A) > 0 and A is invertible.

Proof.

Let A1, A2, ..., An denote the (not necessarily distinct) eigenvalues of A.
Since A is symmetric, A is orthogonally diagonalizable. In particular,
A ~ D, where D = diag(A1, A2, ..., An). Similar matrices have the same
determinant, so

det(A) = det(D) = A Az - An.

Since A is positive definite, A\; > 0 for all i, 1 <i < n; it follows that
det(A) > 0, and therefore A is invertible.



Theorem

A symmetric matrix A is positive definite if and only if XTAX > 0 for all
XeR" X#0.



Theorem

A symmetric matrix A is positive definite if and only if XTAX > 0 for all
XeR" X#0.

Proof.

Since A is symmetric, there exists an orthogonal matrix P so that

PTAP = diag(A1, A2, ..., An) = D,

where A1, A2, ..., Ay are the (not necessarily distinct) eigenvalues of A. Let
% € R, X # 0, and define ¥ = PTX. Then

TAX =T(PDPT)X = @ P)D(PTR) = (P'R)"D(P'R) = ' Dy.

Writing §T = [y1 y2 - yo |
Y1
ST A = 1 v
XAZ = [y1 vz - ya |diag(A, A2, An) 5
Yn

= Aiy:+ Aays 4 - Aayl.



Proof. (continued)

(=) Suppose A is positive definite, and X € R", X # 0. Since PT is
invertible, ¥ = PTX # 0, and thus y; # 0 for some j, implying yj2 > 0 for
some j. Furthermore, since all eigenvalues of A are positive, \iy? > 0 for all
i; in particular )\jij > 0. Therefore, XTAX > 0.



Proof. (continued)

(=) Suppose A is positive definite, and X € R", X # 0. Since PT is
invertible, ¥ = PTX # 0, and thus y; # 0 for some j, implying yj2 > 0 for
some j. Furthermore, since all eigenvalues of A are positive, \iy? > 0 for all
i; in particular )\jij > 0. Therefore, XTAX > 0.

(<) Conversely, if ¥TAX > 0 whenever % # 0, choose X = P&, where & is

the jth column of I,. Since P is invertible, X # 0, and thus

¥ =P =P"(P§) =3
Thus y; =1 and y; = 0 when i # j, so
Ayl 4 A2yz 4 Aaya = A,

i.e., \j = XTAR > 0. Therefore, A is positive definite. [ |



Theorem (Constructing Positive Definite Matrices)

Let U be an n x n invertible matrix, and let A = UTU. Then A is positive
definite.



Theorem (Constructing Positive Definite Matrices)

Let U be an n x n invertible matrix, and let A = UTU. Then A is positive

definite.

Proof.
Let ® € R*, ® # 0. Then

T 5 =
X AX =

FL(UTu)

(&UT)(UR)
(UR)"(UR)
||U=||.

Since U is invertible and ¥ # 0, U # 0, and hence ||[UZ|]? > 0, i.e.,

%TAX = ||UX||*> > 0. Therefore, A is positive definite.



Definition

Let A = [ aij } be an n X n matrix. For 1 <r <n, ™A denotes the r x r
submatrix in the upper left corner of A, i.e.,

WA=[a;],1<i,j<r

WA, DA ..., ™A are called the principal submatrices of A.



Definition

Let A = [ aij } be an n X n matrix. For 1 <r <n, ™A denotes the r x r
submatrix in the upper left corner of A, i.e.,

WA=[a;],1<i,j<r

WA, DA ..., ™A are called the principal submatrices of A.

Lemma

If A is an n X n positive definite matrix, then each principal submatrix of A
is positive definite.



Proof.

Suppose A is an n X n positive definite matrix. For any integer r, 1 <r < n,
write A in block form as
(r)
A— A B )
C D

where B is an r X (n — r) matrix, C is an (n —r) X r matrix, and D is an

y1
y2
y1
y2 _ :
(n—r) X (n —r) matrix. Let y = . #0andlet X = | yr |. Then
: 0
Yr :
L 0

X #£ 0, and by the previous theorem, XTAX > 0.



Proof. (continued)

But
o
1 @A B . ST (@) o
XTAX:[yl ye 0 - 0]{ ‘ D} 36 :yT(()A)}G
Lo |

and therefore §T ((r>A) ¥ > 0. Then M A is positive definite again by the
previous theorem.
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Cholesky factorization — Square Root of a Matrix

4=2x2"

4 12 -16 2
12 37 43| =] 6

or = O
w o O

—_

(=Rl V)

—-16 —43 98 -8

o = O



Cholesky factorization — Square Root of a Matrix

4=2x2"
4 12 —16 2 0 0][2 6 -8
12 37 -43| =16 1 o/|0o 1 5
—16 —43 98 -8 5 3|0 0 3

Theorem
Let A be an n X n symmetric matrix. Then the following conditions are
equivalent.

1. A is positive definite.

2. det(<r)A) >0forr=1,2,...,n.

3. A = UTU where U is upper triangular and has positive entries on its

main diagonal. Furthermore, U is unique. The expression A = UTU is
called the Cholesky factorization of A.



Algorithm for Cholesky Factorization

Let A be a positive definite matrix. The Cholesky factorization A = UTU
can be obtained as follows.
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Let A be a positive definite matrix. The Cholesky factorization A = UTU
can be obtained as follows.

1. Using only type 3 elementary row operations, with multiples of rows
added to lower rows, put A in upper triangular form. Call this matrix
U; then U has positive entries on its main diagonal (this can be proved
by induction on n).



Algorithm for Cholesky Factorization

Let A be a positive definite matrix. The Cholesky factorization A = UTU
can be obtained as follows.

1. Using only type 3 elementary row operations, with multiples of rows
added to lower rows, put A in upper triangular form. Call this matrix
U; then U has positive entries on its main diagonal (this can be proved
by induction on n).

2. Obtain U from U by dividing each row of U by the square root of the
diagonal entry in that row.



Problem

9 —6 3
Show that A = | —6 5 —3 | is positive definite, and find the
3 -3 6

Cholesky factorization of A.



Problem

9 —6 3
Show that A = | —6 5 —3 | is positive definite, and find the
3 -3 6

Cholesky factorization of A.
Solution
1) A @) A _ 9 —6
A—[Q] and A_[—G 5],

so det(WA) = 9 and det(PA) = 9. Since det(A) = 36, it follows that A is
positive definite.



Problem

9 —6 3
Show that A = | —6 5 —3 | is positive definite, and find the
3 -3 6

Cholesky factorization of A.

Solution

WA = [ 9 ] and DA = [ 9 =0 ],
so det(WA) = 9 and det(PA) = 9. Since det(A) = 36, it follows that A is
positive definite.

9 =6 3 9 —6 3 9
—6 5 =3 | =10 1 -1 | =10 1 -1
3 -3 6 0 -1 ) 0



Problem

9 —6 3
Show that A = | —6 5 —3 | is positive definite, and find the
3 -3 6

Cholesky factorization of A.
Solution
1) A @) A _ 9 —6
A—[Q] and A_[—G 5],

so det(WA) = 9 and det(PA) = 9. Since det(A) = 36, it follows that A is
positive definite.

9 =6 3 9 —6 3 9 —6 3
—6 5 =3 | =10 1 -1 | =10 1 -1
3 -3 6 0 -1 ) 0 0 4

Now divide the entries in each row by the square root of the diagonal entry
in that row, to give

3 -2 1
U=|0 1 -1 and UTU = A.
0 0 2



Problem
Verify that

12 4 3
A= 4 2 =l
3 -1 7

is positive definite, and find the Cholesky factorization of A.



Problem
Verify that

12 4 3
A= 4 2 -1
3 -1 7
is positive definite, and find the Cholesky factorization of A.

Solution ( Final Answer )
det ((I)A) =12, det ((Q)A) =8, det (A) = 2; by the previous theorem, A is

positive definite.

0 v6/3 -6

2v/3 2v/3/3 /3/2
U=
[ 0 0 1/2]

and UTU = A.
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