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Singular Value Decomposition



Definition
Let A be an m × n matrix. The singular values of A are the square roots of
the nonzero eigenvalues of ATA. Singular Value Decomposition (SVD) can
be thought of as a generalization of orthogonal diagonalization of a
symmetric matrix to an arbitrary m × n matrix.
Given an m × n matrix A, we will see how to express A as a product

A = UΣVT

where

I U is an m × m orthogonal matrix whose columns are eigenvectors of
AAT.

I V is an n × n orthogonal matrix whose columns are eigenvectors of
ATA.

I Σ is an m × n matrix whose only nonzero values lie on its main
diagonal, and are the square roots of the eigenvalues of both AAT and
ATA.



Theorem

If A is an m × n matrix, then ATA and AAT have the same nonzero
eigenvalues.

Proof.
Suppose A is an m × n matrix, and suppose that λ is a nonzero eigenvalue
of ATA. Then there exists a nonzero vector ~x ∈ Rn such that

(ATA)~x = λ~x. (1)

Multiplying both sides of this equation by A:

A(ATA)~x = Aλ~x
(AAT)(A~x) = λ(A~x).

Since λ 6= 0 and ~x 6= ~0n, λ~x 6= ~0n, and thus by equation (1), (ATA)~x 6= ~0n;
thus AT(A~x) 6= ~0n, implying that A~x 6= ~0m.

Therefore A~x is an eigenvector of AAT corresponding to eigenvalue λ. An
analogous argument can be used to show that every nonzero eigenvalue of
AAT is an eigenvalue of ATA, thus completing the proof. �



Examples

Example

Let A =

[
1 −1 3
3 1 1

]
. Then

AAT =

[
1 −1 3
3 1 1

] 1 3
−1 1
3 1

 =

[
11 5
5 11

]
.

ATA =

 1 3
−1 1
3 1

[
1 −1 3
3 1 1

]
=

 10 2 6
2 2 −2
6 −2 10

 .



Example (continued)

Since AAT is 2× 2 while ATA is 3× 3, and AAT and ATA have the same
nonzero eigenvalues, compute cAAT(x) (because it’s easier to compute than
cATA(x)).

cAAT(x) = det(xI − AAT) =

∣∣∣∣ x − 11 −5
−5 x − 11

∣∣∣∣
= (x − 11)2 − 25

= x2 − 22x + 121− 25

= x2 − 22x + 96

= (x − 16)(x − 6).

Therefore, the eigenvalues of AAT are λ1 = 16 and λ2 = 6.



Example (continued)

The eigenvalues of ATA are λ1 = 16, λ2 = 6, and λ3 = 0, and the singular
values of A are σ1 =

√
16 = 4 and σ2 =

√
6. By convention, we list the

eigenvalues (and corresponding singular values) in nonincreasing order (i.e.,
from largest to smallest).

To find the matrix V, find eigenvectors for ATA. Since the eigenvalues of
AAT are distinct, the corresponding eigenvectors are orthogonal, and we
need only normalize them.

λ1 = 16: solve (16I − ATA)~y1 = ~0.
 6 −2 −6 0

−2 14 2 0
−6 2 6 0

 →

 1 0 −1 0
0 1 0 0
0 0 0 0

 , so ~y1 =

 t
0
t

 = t

 1
0
1

 , t ∈ R.

λ2 = 6: solve (6I − ATA)~y2 = ~0.
 −4 −2 −6 0

−2 4 2 0
−6 2 −4 0

 →

 1 0 1 0
0 1 1 0
0 0 0 0

 , so ~y2 =

 −s
−s

s

 = s

 −1
−1
1

 , s ∈ R.



Example (continued)

λ3 = 0: solve (−ATA)~y3 = ~0.
 −10 −2 −6 0

−2 −2 2 0
−6 2 −10 0

 →

 1 0 1 0
0 1 −2 0
0 0 0 0

 , so ~y3 =

 −r
2r
r

 = r

 −1
2
1

 , r ∈ R.

Let

~v1 =
1
√
2

 1
0
1

 ,~v2 =
1
√
3

 −1
−1
1

 ,~v3 =
1
√
6

 −1
2
1

 .

Then

V =
1
√
6

 √
3 −

√
2 −1

0 −
√
2 2√

3
√
2 1

 .

Also,
Σ =

[
4 0 0

0
√
6 0

]
,

and we use A, VT, and Σ to find U.



Example (continued)

Since V is orthogonal and A = UΣVT, it follows that AV = UΣ. Let
V =

[
~v1 ~v2 ~v3

]
, and let U =

[
~u1 ~u2

]
, where ~u1 and ~u2 are the two

columns of U. Then we have
A

[
~v1 ~v2 ~v3

]
=

[
~u1 ~u2

]
Σ[

A~v1 A~v2 A~v3

]
=

[
σ1~u1 + 0~u2 0~u1 + σ2~u2 0~u1 + 0~u2

]
=

[
σ1~u1 σ2~u2 ~0

]
which implies that A~v1 = σ1~u1 = 4~u1 and A~v2 = σ2~u2 =

√
6~u2. Thus,

~u1 =
1

4
A~v1 =

1

4

[
1 −1 3
3 1 1

]
1
√
2

 1
0
1

 =
1

4
√
2

[
4
4

]
=

1
√
2

[
1
1

]
,

and

~u2 =
1
√
6
A~v2 =

1
√
6

[
1 −1 3
3 1 1

]
1
√
3

 −1
−1
1

 =
1

3
√
2

[
3

−3

]
=

1
√
2

[
1

−1

]
.



Example (continued)
Therefore,

U =
1
√
2

[
1 1
1 −1

]
,

and

A =

[
1 −1 3
3 1 1

]

=

(
1
√
2

[
1 1
1 −1

])[
4 0 0

0
√
6 0

] 1
√
6

 √
3 0

√
3

−
√
2 −

√
2

√
2

−1 2 1

 .



Problem

Find an SVD for A =

 −1
2
2

.

Solution

Since A is 3× 1, ATA is a 1× 1 matrix whose eigenvalues are easier to find
than the eigenvalues of the 3× 3 matrix AAT.

ATA =
[
−1 2 2

]  −1
2
2

 =
[
9

]
.

Thus ATA has eigenvalue λ1 = 9, and the eigenvalues of AAT are λ1 = 9,
λ2 = 0, and λ3 = 0. Furthermore, A has only one singular value, σ1 = 3.

To find the matrix V, find an eigenvector for ATA and normalize it. In this
case, finding a unit eigenvector is trivial: ~v1 =

[
1

]
, and

V =
[
1

]
.



Solution (continued)

Also, Σ =

 3
0
0

, and we use A, VT, and Σ to find U.

Now AV = UΣ, with V =
[
~v1

]
, and U =

[
~u1 ~u2 ~u3

]
, where ~u1, ~u2,

and ~u3 are the columns of U. Thus

A
[
~v1

]
=

[
~u1 ~u2 ~u3

]
Σ[

A~v1

]
=

[
σ1~u1 + 0~u2 + 0~u3

]
=

[
σ1~u1

]
This gives us A~v1 = σ1~u1 = 3~u1, so

~u1 =
1

3
A~v1 =

1

3

 −1
2
2

 [
1

]
=

1

3

 −1
2
2

 .



Solution (continued)

The vectors ~u2 and ~u3 are eigenvectors of AAT corresponding to the
eigenvalue λ2 = λ3 = 0. Instead of solving the system (0I − AAT)~x = ~0 and
then using the Gram-Schmidt orthogonalization algorithm on the resulting
set of two basic eigenvectors, the following approach may be used.

Find vectors ~u2 and ~u3 by first extending {~u1} to a basis of R3, then using
the Gram-Schmidt algorithm to orthogonalize the basis, and finally
normalizing the vectors.

Starting with {3~u1} instead of {~u1} makes the arithmetic a bit easier. It is
easy to verify that 

 −1
2
2

 ,

 1
0
0

 ,

 0
1
0


is a basis of R3. Set

~f1 =

 −1
2
2

 ,~x2 =

 1
0
0

 ,~x3 =

 0
1
0

 ,

and apply the Gram-Schmidt orthogonalization algorithm to {~f1,~x2,~x3}.



Solution (continued)
This gives us

~f2 =

 4
1
1

 and ~f3 =

 0
1

−1

 .

Therefore,

~u2 =
1√
18

 4
1
1

 , ~u3 =
1√
2

 0
1

−1

 ,

and

U =

 − 1
3

4√
18

0
2
3

1√
18

1√
2

2
3

1√
18

− 1√
2

 .

Finally,

A =

 −1
2
2

 =

 − 1
3

4√
18

0
2
3

1√
18

1√
2

2
3

1√
18

− 1√
2


 3

0
0

 [
1

]
.

�



Problem

Find a singular value decomposition of A =

[
1 4
2 8

]
.

Solution[
1 4
2 8

]
=

(
1√
5

[
1 −2
2 1

])[ √
85 0
0 0

](
1√
17

[
1 −4
4 1

])
.

�

Remark
Since there is only one non-zero eigenvalue, ~u2 (the second column of U)
can not be found using the formula ~u2 = 1

σ2
A~v2. However, ~u2 can be chosen

to be any unit vector orthogonal to ~u1; in this case, ~u2 = 1√
5

[
−2
1

]
.



Problem

Find a singular value decomposition of A =

[
−1 1 0
0 −1 1

]
.

Solution [
−1 1 0
0 −1 1

]
||(

1√
2

[
−1 1
1 1

])[ √
3 0 0
0 1 0

] 1√
6

 1 −2 1

−
√
3 0

√
3√

2
√
2

√
2


�



Fundamental Subspaces
Full Singular Value Decomposition

Full
Singular Value Decomposition



Applications

Example (Polar Decomposition)

a + bi =
√

a2 + b2︸ ︷︷ ︸
radius

eiθ︸︷︷︸
rotation

.

Similarly, any square matrix

A = UΣVT = UΣUT︸ ︷︷ ︸
nonneg. def.

UVT︸ ︷︷ ︸
rotation

Definition
A real n × n matrix G is nonnegative definite (or positive in the book) if it
is symmetric and for all ~x ∈ Rn

~xTG~x ≥ 0.



Example (Generalized inverse)



Example (Image of unit ball under linear transform A)

Let A = UΣVT be the full SVD for an m × n matrix A. We will see how
the unit ball will be mapped:

{A~x | ||~x|| ≤ 1}

The linear map ~y = A~x is trying to do the following things:
1. Rotate the n-vector ~x by VT

2. Stretch along axes by σi with σi = 0 for i > rank (A)

3. Zero-pad for tall matrix (i.e., m > n) or truncate for fat matrix (i.e.,
m < n >) to get m-vector

4. Rotate the m-vector by UT



Example (Image of unit ball under linear transform A – continued)



Example (Image Compression)

Image is a A is a 300× 300 matrix.

A ≈
n∑

i=1

σi~ui~vT
i


	Singular Value Decomposition
	Examples
	Fundamental Subspaces
	Applications

