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Chapter 5: Estimation



Chapter 5. Estimation

§ 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound



§ 5.5 MVE: The Cramér-Rao Lower Bound

Question: Can one identify the unbiased estimator having the smallest variance?

Short answer: In many cases, yes!

We are going to develop the theory to answer this question in details!



Regular Estimation/Condition: The set of y (resp. k) values, where
fy(y;0) # 0 (resp. px(k; 8) # 0), does not depend on 6.

i.e., the domain of the pdf does not depend on the parameter (so that one
can differentiate under integration).

Definition. The Fisher’s Information of a continous (resp. discrete) random
variable Y (resp. X) with pdf fy(y; 0) (resp. px(k; 6)) is defined as

10) =E [(E)Inf(ya(OYG))T (resp. E [(W)T) .



Lemma. Under regular condition, let Yy, - -, Y, be a random sample of size
n from the continuous population pdf fy(y; 6). Then the Fisher Information in
the random sample Y, --- , Y, equals ntimes the Fisher information in X:

(8Infy1,‘.‘,y,,(821,"' ,Yn§9)>2:| hE [(a'"fgéy?@)ﬂ —nl(9). (1)

(A similar statement holds for the discrete case px(k;9)).
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Proof. Based on two observations:
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Lemma. Under regular condition, if In fy(y; 6) is twice differentiable in 6, then

1%
10) = — {802 Infy(Y; 9)} (2)
(A similar statement holds for the discrete case px(k;9)).

Proof. This is due to the two facts:
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Theorem (Cramér-Rao Inequality) Under regular condition, let Yi,--- , Y, be
a random sample of size n from the continuous population pdf fy(y; 0). Let
6 =0(Y1,---,Ys) be any unbiased estimator for 6. Then

Var(f) > I(Q)

(A similar statement holds for the discrete case px(k;6)).

Proof. If n =1, then by Cauchy-Schwartz inequality,

E {(5— 9)% Infy(Y: 9)} < \/Var(d) x 1(0)

On the other hand,
>~ 0 . _ ~ %fy(y; 0) _

/ @- e)%fy(y; )y

0

= 55 .0 = 0f(y:0)ay +1=1.

=E(6-0)=0
For general n, apply for (1). O



Definition. Let © be the set of all estimators @ that are unbiased for the
parameter 6. We say that 0* is a best or minimum-variance esimator (MVE)
if 0* € © and

Var(6*) < Var(d)  forallf € ©.

Definition. An unbiased estimator 4 is efficient if Var(§) is equal to the
Cramér-Rao lower bound, i.e., Vard = (n 1(0)) .

~ ~\ —1
The efficiency of an unbiased estimator ¢ is defined to be (nl(@)Var(G)) .

(Unbiased estimators ©

MVE




E.g. 1. X ~Bernoulli(p). Check whether p = X is efficient?

Step 1. Compute Fisher’s Information:

px(kip) = p*(1 — p)' *.

Inpx(k; p) = kInp + (1 = k) In(1 - p)
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Step 2. Compute Var(p).
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Conclusion Because p is unbiased and Var(p) = (nl(p))~', pis efficient.



E.g. 2. Exponential distr.: fy(y; A) = Ae ™ for y > 0. Is X = 1/Y efficent?

Answer No, because X is biased. Nevertheless, we can still compute Fisher's
Information as follows

Fisher’s Inf.
Infy(y;A) =InXx =Xy

) 1
—Infy(y;\) = — —
mny(y ) NV
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f—lnfy(y;A)=;
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. 3% . n—11 . . . .
Try: A" := 222 5. Itis unbiased. Is it efficient?



E.g. 2. Exponential distr.: fy(y;0) = 6~ 'e¥/® for y > 0. 6 = Y efficent?

Step. 1. Compute Fisher’s Information:

|nfy(y;9):—|ne—%

0 y
— Infy(y;0) = —= + =
89”Y(y') 9+92

0? 1 2y
Tz "YU =5 s
o 12y 120,
) {820Infy(Y 6)] [ 024- 03}:_07 9—376
() =072
Step 2. Compute Var(f):

— 2 _ 92
Var(Y E:v Y)=—np?=_.
ar(Y) = ar( 5N -

Conclusion. Because 8 is unbiased and Var(p) = (nl(p))~", 8 is efficient.



E.g. 3. fyr(y;0) =2y/62 for y € [0,6]. § = 3V efficent?
Step. 1. Compute Fisher’s Information:
Infy(y;0) =In(2y) —2In6

19}
20 Infy(y;0) =

By the definition of Fisher’s information,

I(6) =E [(8‘99 Infy(y; 0))2

However, if we compute

=E

{2

52
~ 90 Infy(y;0) = 2

2 2 4
{329 '"fY(Y;G)] =E [—6—2} = # 52 =10

Step 2. Compute Var(6):

R 2 2
Var(9) = 3Var(Y) = S = 0—
4n 4n18 8n
Discussion. Even though 9 is unbiased, we have two discripencies: (1) and
62 62 1

Var(@) = — < — =
ar(®) 8n ~— 4n  nl(0)

This is because this is not a regular estimation!
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