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Sample space

Definition 1.1-1 Experiments for which the outcome cannot be predicted with
certainty are called random experiments.

Definition 1.1-2 The collection of all possible outcomes is called the sample
space, denoted as S.
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Example 1.1-1 Find the sample space for the experiment of tossing a coin for
(a) once (b) twice.
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Example 1.1-2 Find the sample space for the experiment of tossing a coin
repeatedly and of counting the number of tosses required until the first head appears.
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Example 1.1-3 Find the sample space for the experiment of measuring (in hours)
the lifetime of a transistor.
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Event

Definition 1.1-3 An event, denoted as A, is a collection of outcomes in S, that is,
A ⊂ S. In particular, S ⊂ S.

Definition 1.1-4 When a random experiment is performed and an outcome of the
experiment is in A, we say that event A has occurred.

S

A

B

A ⊂ B
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Example 1.1-4 Consider the experiments in Examples 1.1-1 and 1.1-2.
(a) Let A be the event that the number of tosses required until the first head appears is
even.
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Example 1.1-4 Consider the experiments in Examples 1.1-1 and 1.1-2.
(b) Let B be the event that the number of tosses required until the first head appears is
odd.
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Example 1.1-4 Consider the experiments in Examples 1.1-1 and 1.1-2.
(c) Let C be the event that the number of tosses required until the first head appears
is less than 6.
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Algebra of sets

Definition 1.1-5 (Equality) Two sets A and B are equal, denoted A = B, if and
only if A ⊂ B and B ⊂ A.

Definition 1.1-6 (Complementation) Suppose A ⊂ S. The complement of set A,
denoted A′ or A, is the set containing all elements in S but not in A, namely,

A′ := {x : x ∈ S and x /∈ A} .

A

A′
S
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Definition 1.1-7 (Union) The union of sets A and B, denoted A ∪ B, is the set
containing all elements in either A or B or both, i.e.,

A ∪ B := {x : x ∈ A or x ∈ B} .

A ∪ B

S

A B

A ∪ B ∪ C

S

A B

C
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Definition 1.1-8 (Intersection) The intersection of sets A and B, denoted A ∩ B,
is the set containing all elements in both A and B.

A ∩ B = {x : x ∈ A and B}

A ∩ B

S

A B

A ∩ B ∩ C

S

A B

C
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Definition 1.1-9 (Null set) The set containing no element is called the null set,
denoted ∅. Note that

∅ = S′.
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Definition 1.1-10 (Disjoit sets) Two sets A and B are called disjoint or mutually
exclusive if they contain no common element, that is, if A ∩ B = ∅.

A and B are disjoint

S

A B
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The definitions of the union and intersection of two sets can be extended to
any finite number of sets as follows:

n⋃
i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An

= {x : x ∈ A1 or A2 or · · · or x ∈ An},
n⋂

i=1

Ai = A1 ∩ A2 ∩ · · · ∩ An

= {x : x ∈ A1 and A2 and · · · and x ∈ An},

and even to countably infinite many sets:
∞⋃

i=1

Ai = A1 ∪ A2 ∪ A3 ∪ · · ·

∞⋂
i=1

Ai = A1 ∩ A2 ∩ A3 ∩ · · ·

15



Interpretation of sets in probability

1.

S = the certain event
∅ = the impossible event

2. If A and B are events in S, then

A′ = the event that A did not occur
A ∪ B = the event that either A or B or both occurred

A ∩ B = the event that both A and B occurred

3. Similarly, if A1,A2, ...,An are sequence of events in S, then
n⋃

i=1

Ai = the event that at least one of the Ai occurred

n⋂
i=1

Ai = the event that all of the Ai occurred
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Definition 1.1-11 (Mutually exclussive and exhaustive events) Events
A1,A2, ...,Ak are mutually exclusive and exhaustive if

1. Ai ∩ Aj = ∅, i 6= j , and (mutually exclusive)

2. A1 ∪ A2 ∪ · · · ∪ Ak = S. (exhaustive)
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Identities

By the above set of definitions, we obtain the following identities:

S′ = ∅

A′′ = A

S ∪ A = S

S ∩ A = A

A ∪ A′ = S

A ∩ A′ = ∅
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Commutative Laws:

A ∪ B = B ∪ A

A ∩ B = B ∩ A

Associative Laws:

A ∪ (B ∪ C) = (A ∪ B) ∪ C

A ∩ (B ∩ C) = (A ∩ B) ∩ C

Distributive Laws:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

De Morrgan’s Laws:

(A ∪ B)′ = A′ ∩ B′

(A ∩ B)′ = A′ ∪ B′
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The distributive laws can be extended as follows:

A ∩

(
n⋃

i=1

Bi

)
=

n⋃
i=1

(A ∩ Bi)

A ∪

(
n⋂

i=1

Bi

)
=

n⋂
i=1

(A ∪ Bi)

Similarly, De Morgan’s laws also can be extended as follows:(
n⋃

i=1

Ai

)′

=
n⋂

i=1

Ai
′

(
n⋂

i=1

Ai

)′

=
n⋃

i=1

Ai
′
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Example 1.1-5 An experiment consists of tossing two dice.
(a) Find the sample space S.
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Example 1.1-5 An experiment consists of tossing two dice.
(b) Find the event A that the sum of the dots on the dice equals 7.
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Example 1.1-5 An experiment consists of tossing two dice.
(c) Find the event B that the sum of the dots on the dice is greater than 10.
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Example 1.1-5 An experiment consists of tossing two dice.
(d) Find the event C that the sum of the dots on the dice is greater than 12.
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Example 1.1-6 Consider the experiment of Example 1.1-2. We define the events

A = {k : k is odd}
B = {k : 4 ≤ k ≤ 7}
C = {k : 1 ≤ k ≤ 10}

where k is the number of tosses required until the first H (head) appears. Determine
the events A′,B′,C′,A ∪ B,B ∪ C,A ∩ B,A ∩ C,B ∩ C, and A′ ∩ B.
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Properties of Probability

Definition 1.1-12 (Relative frequency definition) Suppose that the random
experiment is repeated n times. If event A occurs N (A) times, then the probability of
event A, denoted by P(A), is defined as

P(A) = lim
n→∞

N (A)
n

,

where N (A)/n is relative frequency of an event A.

Remark 1.1-1 Note that this limit may not exist.
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It is clear that for any event A, the relative frequency of A has the following
properties:

1. 0 ≤ N (A)/n ≤ 1, where N (A)/n = 0 if A occurs in none of the repeated
trials and N (A)/n = 1 if A occurs in all of the n repeated trials.

2. If A and B are mutually exclusive events, then

N (A ∪ B) = N (A) +N (B)

and

N (A ∪ B)

n
=

N (A)
n

+
N (B)

n
.
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It is clear that for any event A, the relative frequency of A has the following
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n
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n
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Example 1.1-7 A fair six-sided die is rolled six times. If the face numbered k is
the outcome on roll k for k = 1, 2, · · · , 6, we say that a match has occurred. The
experiment is called a success if at least one match occurs during the six trials.
Otherwise, the experiment is called a failure. The sample space is

S = {success, failure} .

Let A = {success}. We would like to assign a value to P(A). Accordingly, this
experiment was simulated on a computer as follows:

No. of trials n N (A) N (A)/n
10 7 0.700

100 69 0.690

500 336 0.672

2000 1307 0.653

46656 31042 0.665

The probability of event A is not intuitively obvious, but it will be shown latter that

P(A) = 1−
(
1− 1

6

)6

=
31031

46656
≈ 0.665.

This assignment is certainly supported by the simulation (although not proved by it).
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1 #!/usr/bin/env python3
2

3 import random
4 random.seed(10)
5

6 def Experiment(trials):
7 success = 0
8 for k in range(0, trials):
9 for i in range(1, 7):

10 n = random.randint(1, 6)
11 if n == i:
12 success = success + 1
13 break
14 print(”Number and ratio of success among {} tries are {} and {:0.3}, respectively”.

format(trials, success, success/trials))
15

16

17 def main():
18 Experiment(10)
19 Experiment(100)
20 Experiment(500)
21 Experiment(2000)
22 Experiment(46656)
23

24

25 if __name__ == ”__main__”:
26 main()
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1 Number and ratio of success among 10 tries are 7 and 0.7, respectively
2 Number and ratio of success among 100 tries are 69 and 0.69, respectively
3 Number and ratio of success among 500 tries are 336 and 0.672, respectively
4 Number and ratio of success among 2000 tries are 1307 and 0.653, respectively
5 Number and ratio of success among 46656 tries are 31042 and 0.665, respectively
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Axiomatic definition

Definition 1.1-13 (Probability) Probability is a real-valued set function P that
assigns, to each event A in the sample space S, a number P(A), called the probability
of the event A, such that the following properties are satisfied:

(a) P(A) ≥ 0;

(b) P(S) = 1;

(c) If A1,A2,A3, · · · are events and Ai ∩ Aj = ∅, i 6= j , then

P (A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak ) = P(A1) + P(A2) + P(A3) + · · ·+ P(Ak )

for each positive integer K , and

P (A1 ∪ A2 ∪ A3 ∪ · · ·) = P(A1) + P(A2) + P(A3) + · · ·

for an infinite, but countable, number of events.
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Example 1.1-8 (Rolling a die once) Consider rolling a die once. For each subset
A of S = {1, 2, 3, 4, 5, 6}, let P(A) be the number of elements of A divided by 6. It
is trivial to see that this satisfies the first two axioms. There are only finitely many
distinct collections of nonempty disjoint events. It is not difficult to see that Axiom
(c) is also satisfied by this example.
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Example 1.1-9 (Loaded die) If we believe that the die is loaded, we might believe
that some sides have different probabilities of turning up. To be specific, suppose that
we believe that 6 is three times as likely to come up as each of the other five sides. We
could set pi = 1/8 for i = 1, 2, 3, 4, 5 and p6 = 3/8. Then, for each event A, define
P(A) to be the sum of all pi such that i ∈ A. For example, if A = {1, 4, 5}, then

P(A) = p1 + p4 + p5 =
3

8
.

It is not difficult to check that this also satisfies all three axioms.
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Theorem 1.1-1 For each event A, we have P(A) = 1− P (A′).
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Theorem 1.1-2 P (∅) = 0.
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Theorem 1.1-3 If events A and B are such that A ⊂ B, then P(A) ≤ P(B).
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Theorem 1.1-4 For each event A, it holds that 0 ≤ P(A) ≤ 1.
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Theorem 1.1-5 If A and B are any two events, then

P(A ∪ B) = P(A) + P(B)− P (A ∩ B) .
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Theorem 1.1-6 If A, B, and C are any three events, then

P (A ∪ B ∪ C) =P(A) + P(B) + P(C)

− P (A ∩ B)− P (A ∩ C)− P (B ∩ C)

+ P (A ∩ B ∩ C) .
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Definition 1.1-14 Consider a finite sample space S with m elements

S = {e1, e2, ..., em} ,

where ei is a possible outcomes of the experiment. If each of these outcomes has the
same probability of occurring, we say that the m outcomes are equally likely, that is,

P (ei) =
1

m
, i = 1, 2, ...,m,

and

P(A) = N (A)
m

,

where N (A) is the number of outcomes belonging to event A and m = N (S) is the
number of sample points in S.

37



Definition 1.1-15 Let P(A) = 0.9,P(B) = 0.8. Show that P(A ∩ B) ≥ 0.7.
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Example 1.1-10 Given that P(A) = 0.9,P(B) = 0.8, and P (A ∩ B) = 0.75, find
(a) P (A ∪ B);
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Example 1.1-10 Given that P(A) = 0.9,P(B) = 0.8, and P (A ∩ B) = 0.75, find
(b) P (A ∩ B′);
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Example 1.1-10 Given that P(A) = 0.9,P(B) = 0.8, and P (A ∩ B) = 0.75, find
(c) P (A′ ∩ B′).
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Example 1.1-11 Let A, B, and C be three events in S. If

P(A) = P(B) =
1

4
, P(C) =

1

3
, P (A ∩ B) =

1

8
, P (A ∩ C) =

1

6

and P (B ∩ C) = 0, find P (A ∪ B ∪ C).
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Example 1.1-12 Prove that

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P(Ai) and P

(
n⋂

i=1

Ai

)
≥ 1−

n∑
i=1

P(A′),

where the second inequality above is known as the Bonferroni inequality.
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Example 1.1-13 During a visit to a primary care physician’s office, the probability
of having neither lab work nor referral to a specialist is 0.21. Of those coming to that
office, the probability of having lab work is 0.41 and the probability of having
referral is 0.53. What is the probability of having both lab work and a referral?
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Example 1.1-14 Draw one card at random from a standard deck of cards. The
sample space S is the collection of the 52 cards. Assume that the probability set
function assigns 1/52 to each of the 52 outcomes. Let

A = {x : x is a jack, queen, or king},
B = {x : x is a 9, 10, or jack and x is red},
C = {x : x is a club},
D = {x : x is a diamond, a heart, or a spade}.

Find (a) P(A);
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Example 1.1-15 Consider two events A and B such that P(A) = 1/3 and
P(B) = 1/2. Determine the value of P(B ∩ A′) for each of the following conditions:
(a) A and B are disjoint; (b) A ⊂ B; (c) P(A ∩ B) = 1/8.
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Exercises from textbook: Section 1.1: 1, 2, 4, 5, 6, 7, 8, 9, 12, 13.
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Example 1.2-1 (Routes between Cities) Suppose that there are three different
routes from city A to city B and five different routes from city B to city C. The cities
and routes are depicted in the figure, with the routes numbered from 1 to 8. We wish
to count the number of different routes from A to C that pass through B. For
example, one such route is 1 followed by 4, which we can denote (1, 4). Similarly,
there are the routes (1, 5), (1, 6), ..., (3, 8). It is not difficult to see that the number of
different routes 3× 5 = 15.

A
B

C
2

1

3

6

5

7

4

8
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Theorem 1.2-1 (Multiplication Principle) Suppose that an experiment (or
procedure) E1 has n1 outcomes and, for each of these possible outcomes, an
experiment (procedure) E2 has n2 possible outcomes. Then the has n1n2 possible
outcomes.

More generally, suppose that an experiment has k parts (k ≥ 2), that the i-th part of
the experiment can have ni possible outcomes (i = 1, ..., k), and that all of the
outcomes in each part can occur regardless of which specific outcomes have occurred
in the other parts. Then the sample space S of the experiment will contain all vectors
of the form (u1, · · · , uk ), where ui is one of the ni possible outcomes of part
i(i = 1, ..., k). The total number of these vectors in S will be equal to the product
n1n2 · · · nk .
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Example 1.2-2 A boy found a bicycle lock for which the combination was
unknown. The correct combination is a four-digit number, d1d2d3d4, where
di , i = 1, 2, 3, 4, is selected from 1, 2, 3, 4, 5, 6, 7, and 8. How many different lock
combinations are possible with such a lock?
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Suppose that n positions are to be filled with n different objects. There are
n choices for filling the first position, n − 1 for the second, ..., and 1 choice
for the last position. So, by multiplication rule, there are

n(n − 1)(n − 2) · · · (2)(1) = n!

possible arrangements. The symbol n! is read ”n factorial.”

Definition 1.2-1 (Permutation) Each of the n! arrangements (in a raw) of n
different objects is called a permutation of the n objects.
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Example 1.2-3 Order 7 books on a shelf = 7! permutations.
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If only r positions are to be filled with objects selected from n different
objects, r ≤ n, then the number of possible ordered arrangements is

nPr = n(n − 1)(n − 2) · · · (n − r + 1) =
n!

(n − r)!

Definition 1.2-2 Each of the nPr arrangements is called a permutation of n objects
taken r at a time.

Remark 1.2-1 Sampling without replacement, one at a time, order is important!
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Example 1.2-4 (Choosing Officers) Suppose that a club consists of 25 members
and that a president and a secretary are to be chosen from the membership. We shall
determine the total possible number of ways in which these two positions can be
filled.

Since the positions can be filled by first choosing one of the 25 members to be
president and then choosing one of the remaining 24 members to be secretary, the
possible number of choices is 25P2 = (25)(24) = 600.
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Sampling with Replacement

Consider a box that contains n balls numbered 1, ..., n. First, one ball is
selected at random from the box and its number is noted. This ball is then
put back in the box and another ball is selected (it is possible that the same
ball will be selected again). As many balls as desired can be selected in this
way. This process is called sampling with replacement. It is assumed that
each of the n balls is equally likely to be selected at each stage and that all
selections are made independently of each other.

Suppose that a total of r selections are to be made, where r is a given
positive integer. Then the sample space S of this experiment will contain
all vectors of the form (x1, ..., xk ), where xi is the outcome of the ith
selection (i = 1, ..., k). Since there are n possible outcomes for each of the r
selections, the total number of vectors in S is nr . Furthermore, from our
assumptions it follows that S is a equally likely sample space. Hence, the
probability assigned to each vector in S is 1/nr .
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Example 1.2-5 (Birthday problem) In a group of k people, what is the
probability that at least 2 people will have the same birthday? Assume n = 365 and
that birthdays are equally distributed throughout the year, no twins, etc.

Solution.
1. Since there are 365 possible birthdays for each of k people, the sample space S

will contain 365k outcomes, all of which will be equally probable.

2. If k > 365, there are not enough birthdays for every one to be different, and
hence at least two people must have the same birthday. (Pigeonhole principle)

3. So, we assume below that k ≤ 365.

4. Denote

Ak = {at least 2 people have the same birthday in a group of k people}

and hence,

A′
k = {all k people have distinct birthdays}.
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that birthdays are equally distributed throughout the year, no twins, etc.
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Solution(continued).
5. Counting the number of outcomes in Ak is tedious. However, the number of

outcomes in S for which all k birthdays will be different, namely, the number of
outcomes in A′

k , is easy.

6. Indeed, N (A′
k ) =365 Pk , since the first person’s birthday could be any one of

the 365 days, the second person’s birthday could then be any of the other 364
days, and so on.

7. Hence,

P
(
A′

k
)
=

365Pk

365k ,

and therefore,

P(Ak ) = 1− P
(
A′

k
)
= 1− 365Pk

365k = 1− 365!

(365− k)! 365k .

�
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k 2 3 10 20 60

P(Ak )
1

365

1093

133225

2689423743942044098153

22996713557917153515625
– –

Approx. 0.002704 0.008204 0.1169 0.4114 0.9941
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Sampling without replacement

Sample a subset of size r from n different objects, if we aren’t concerned

with order, the number of subsets = nCr =

(
n
r

)
=

n!
r !(n − r)!

.

Definition 1.2-3 (Combinations) Each of the nCr unordered subsets is called a
combination of n objects taken r at a time, where

nCr =

(
n
r

)
=

n!
r !(n − r)!

.
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Example 1.2-6 A committee of 5 persons is to selected randomly from a group of 5
men and 10 women.
(a) Find the probability that the committee consists of 2 men and 3 women.
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Example 1.2-6 A committee of 5 persons is to selected randomly from a group of 5
men and 10 women.
(b) Find the probability that the committee consists of all women.
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Theorem 1.2-2 (Binomial theorem) For n ≥ 0, it holds that

(x + y)n =

n∑
r=0

(
n
r

)
xn−r y r .

(
0
0

)
= 1

(
1
0

)
= 1

(
1
1

)
= 1

(
2
0

)
= 1

(
2
1

)
= 2

(
2
2

)
= 1

(
3
0

)
= 1

(
3
1

)
= 3

(
3
2

)
= 3

(
3
3

)
= 1

(
4
0

)
= 1

(
4
1

)
= 4

(
4
2

)
= 6

(
4
3

)
= 4

(
4
4

)
= 1

1

x + y

x2 + 2xy + y2

x3 + 3x2y + 3xy2 + y3

x4 + 4x3y + 6x2y2 + 4xy3 + y4

n = 0

n = 1

n = 2

n = 3

n = 4
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Example 1.2-7 Prove
∑n

r=0(−1)r

(
n
r

)
= 0 and

∑n
r=0

(
n
r

)
= 2n.
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Split objects into m groups of various sizes:

Suppose that in a set of n objects, n1 are similar, n2 are similar, ..., nm are
similar, where n1 + n2 + · · ·+ nm = n. Then the number of distinguishable
permutations of the n objects is(

n
n1, n2, ..., nm

)
=

n!
n1!n2! · · · nm!

These numbers are called multinomial coefficient because of the following
multinomial expansion:

(x1 + x2 + · · ·+ xk )
n =

∑
k1+k2+···+km=n

(
n

k1, k2, · · · , km

)
xk1
1 xk2

2 · · · xkm
m .
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Example 1.2-8 20 members of a club need to be split into 3 committees (A, B, C)
of 8, 8, and 4 people, respectively. How many ways are there to split the club into
these committees?

64



Example 1.2-9 Suppose that three runners from team A and three runners from
team B participate in a race. If all six runners have equal ability and there are no ties,
what is the probability that the three runners from team A will finish first, second,
and third, and the three runners from team B will finish fourth, fifth, and sixth?
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Exercises from textbook: Section 1.2: 1, 3, 4, 5, 7, 8, 9, 11, 16, 17.
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§ 1.1 Properties of Probability

§ 1.2 Methods of Enumerations

§ 1.3 Conditional Probability

§ 1.4 Independent Events

§ 1.5 Bayes Theorem
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Chapter 1. Probability

§ 1.1 Properties of Probability

§ 1.2 Methods of Enumerations

§ 1.3 Conditional Probability

§ 1.4 Independent Events

§ 1.5 Bayes Theorem
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A major use of probability in statistical inference is the updating of
probabilities when certain events are observed.

The updated probability of event A after we learn that event B has
occurred is the conditional probability of A given B.
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Example 1.3-1 (Lottery) Consider a state lottery game in which six numbers are
drawn without replacement from a bin containing the numbers 1− 30.

Each player tries to match the set of six numbers that will be drawn without regard to
the order in which the numbers are drawn.

Suppose that you hold a ticket in such a lottery with the numbers

1, 14, 15, 20, 23, and 27.

You turn on your television to watch the drawing but all you see is one number, 15,
being drawn when the power suddenly goes off in your house. You don’t even know
whether 15 was the first, last, or some in-between draw.

However, now that you know that 15 appears in the winning draw, the probability
that your ticket is a winner must be higher than it was before you saw the draw. How
do you calculate the revised probability?
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Example 1.3-1 is typical of the following situation. An experiment is
performed for which the sample space S is given (or can be constructed
easily) and the probabilities are available for all of the events of interest.

We then learn that some event B has occurred, and we want to know how
the probability of another event A changes after we learn that B has
occurred.

In Example 1.3-1, the event that we have learned is

B = {one of the numbers drawn is 15}.

We are certainly interested in the probability of

A = {the numbers 1, 14, 15, 20, 23, and 27 are drawn} ,

and possibly other events.
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If we know that the event B has occurred, then we know that the outcome
of the experiment is one of those included in B. Hence, to evaluate the
probability that A will occur, we must consider the set of those outcomes in
B that also result in the occurrence of A.

As sketched in the figure, this set is precisely the set A ∩ B. It is therefore
natural to calculate the revised probability of A according to the following
definition.

SA

B

A ∩ B
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Definition 1.3-1 (Conditional probability) Conditional probability of event A
given event B, is defined by

P(A|B) :=
P(A ∩ B)

P(B)
, provided that P(B) > 0.

Similarly,

P(B|A) := P(A ∩ B)

P(A)
, provided P(A) > 0.
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Using the above two equations, we have the following multiplication rule

P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A).

This often quite useful in computing the joint probability of events A and B.

In general, suppose that A1,A2, · · · ,An are events such that
P(A1 ∩ A2 ∩ · · · ∩ An−1) > 0. Then

P(A1 ∩ A2 ∩ · · · ∩ An)

||
P(A1)P(A2|A1)P(A3|A1 ∩ A2) · · ·P(An|A1 ∩ A2 ∩ · · · ∩ An−1)
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Solution (Example 1.3-1). In Example 1.3-1, you learned that the event
B = {one of the numbers drawn is 15} has occurred. You want to calculate the
probability of the event A that your ticket is a winner. Both events A and B are
expressible in the sample space that consists of the 30C6 = 30!/(6!24!) possible
combinations of 30 items taken six at a time, namely, the unordered draws of six
numbers from 1− 30. The event B consists of combinations that include 15. Since
there are 29 remaining numbers from which to choose the other five in the winning
draw, there are 29C5 = 29!/(5!24!) outcomes in B. It follows that

P(B) =
29C5

30C6
= 0.2.

The event A that your ticket is a winner consists of a single outcome that is also in B,
so A ∩ B = A, and

P(A ∩ B) = P(A) =
1

30C6
= 1.68× 10−6.

It follows that the conditional probability of A given B is

P(A|B) =
P(A ∩ B)

P(B)
=

1.68× 10−6

0.2
= 8.4× 10−6.

This is five times as large as P(A) before you learned that B had occurred. �
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Example 1.3-2 Consider an experiment consists of observing the sum of the dice
when two fair dice are thrown; you are then informed that the sum is not greater than
3.
(a) Find the probability of the event that two faces are the same without the given
information.
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Example 1.3-2 Consider an experiment consists of observing the sum of the dice
when two fair dice are thrown; you are then informed that the sum is not greater than
3.
(b) Find the probability of the same event with the information given.
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Example 1.3-3 A lot of 100 semiconductor chips contains 20 that are defective.
Two chips are selected at random, without replacement, from the lot.
(a) What is the probability that the first one selected is defective?
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Example 1.3-3 A lot of 100 semiconductor chips contains 20 that are defective.
Two chips are selected at random, without replacement, from the lot.
(b) What is the probability that the second one selected is defective given that the first
one was defective?
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Example 1.3-3 A lot of 100 semiconductor chips contains 20 that are defective.
Two chips are selected at random, without replacement, from the lot.
(c) What is the probability that both are defective?
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Example 1.3-4 A number is selected at random from {1, 2, 3, ..., 100}. Given that
the number selected is divisible by 2, find the probability that it is divisible by 3 or 5.
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Example 1.3-5 An urn contains four colored balls; two orange and two blue. Two
balls are selected at random without replacement, and you are told that at least one of
them is orange. What is the probability that the other ball is also orange?
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Example 1.3-6 Suppose that four balls are selected one at a time, without
replacement, from a box containing r red balls and b blue balls (r ≥ 2, b ≥ 2).
Determine the probability of obtaining the sequence of outcomes red, blue, red, blue.
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Example 1.3-7 For any two events A and B with P(B) > 0, prove that
P (A′|B) = 1− P(A|B).
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Example 1.3-8 For any three events A,B, and D, such that P(D) > 0, prove that
P(A ∪ B|D) = P(A|D) + P(B|D)− P(A ∩ B|D).
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Exercises from textbook. Section 1.3: 1, 3, 4, 5, 6, 8, 9, 11, 12a, 15, 16.
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§ 1.1 Properties of Probability

§ 1.2 Methods of Enumerations

§ 1.3 Conditional Probability

§ 1.4 Independent Events

§ 1.5 Bayes Theorem
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For certain pairs of events, the occurrence of one of them may or may not
change the probability of the occurrence of the other. In the latter case,
they are said to be independent events. However, before giving the formal
definition of independence, let us consider an example.
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Example 1.4-1 Flip a fair coin twice and observe the sequence of heads and tails.
The sample space is then

S = {HH,HT ,TH,TT}.

It is reasonable to assign a probability 1/4 to each of these four outcomes (equally
likely events). Let

A = {heads on the first flip} = {HH,HT},
B = {tails on the second flip} = {HT ,TT},
C = {tails on the both flips} = {TT}.

Then P(B) = 2/4 = 1/2.

Now, on the one hand, if we are given that C has occurred, then P(B|C) = 1,
because C ⊂ B. That is, the knowledge of the occurrence of C has changed the
probability of B.

On the other hand, if we are given that A has occurred, then

P(B|A) = P(A ∩ B)

P(A)
=

1/4

2/4
=

1

2
= P(B).
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So the occurrence of A has not changed the probability of B. Hence, the
probability of B does not depend upon knowledge about event A, so we say
that A and B are independent events. That is, events A and B are
independent if the occurrence of one of them does not affect the probability
of the occurrence of the other.

A more mathematical way of saying this is

P(B|A) = P(B) or P(A|B) = P(A),

provided P(A) > 0 or, in the latte case, P(B) > 0. With the first of these
equalities and the multiplication rule, we have

P(A ∩ B) = P(A)P(B|A) = P(A)P(B).

The second of these equalities, namely, P(A|B) = P(A), gives us the same
result

P(A ∩ B) = P(B)P(A|B) = P(B)P(A).
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Definition 1.4-1 Events A and B are independent if and only if
P(A ∩ B) = P(A)P(B). Otherwise A and B are called dependent events.

Remark 1.4-1 It follows immediately that if A and B are independent, then

P(A|B) = P(A) and P(B|A) = P(B).
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Theorem 1.4-1 If A and B are independent events, then the following pairs of
events are also independent:
(a) A and B′. (b) A′ and B. (c) A′ and B′.
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Example 1.4-2 A system consisting of n separate components is said to be a series
system if it functions when all n components function. Assume that the components
fail independently and that the probability of failure of component i is pi , i = 1, 2,
· · · , n. Find the probability that the system functions.

1 2 n
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Example 1.4-3 A system consisting of n separate components is said to be a
parallel system if it functions when at least one of components functions. Assume
that the components fail independently and that the probability of failure of
component i is pi , i = 1, 2, · · · , n. Find the probability that the system functions.

1

2

n
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Example 1.4-4 (Tossing a coin until a head appears) Suppose that a fair coin
is tossed until a head appears for the first time, and assume that the outcomes of the
tosses are independent. We shall determine the probability pn that exactly n tosses
will be required.

Solution. The desired probability is equal to the probability of obtaining n − 1 tails
in succession and then obtaining a head on the next toss. Since the outcomes of the
tosses are independent, the probability of this particular sequence of n outcomes is
pn = (1/2)n. �
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tosses are independent. We shall determine the probability pn that exactly n tosses
will be required.

Solution. The desired probability is equal to the probability of obtaining n − 1 tails
in succession and then obtaining a head on the next toss. Since the outcomes of the
tosses are independent, the probability of this particular sequence of n outcomes is
pn = (1/2)n. �

93



Remark 1.4-2 The probability that a head will be obtained sooner or later (or,
equivalently, that tails will not be obtained forever) is

∞∑
n=1

pn =

∞∑
n=1

(
1

2

)n

=
1

2
+

1

4
+

1

8
+ · · · = 1.

Since the sum of the probabilities pn is 1, it follows that the probability of obtaining
an infinite sequence of tails without ever obtaining a head must be 0, which is
equivalent to the limit:

lim
n→∞

(
1

2

)n

= 0.
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Definition 1.4-2 (Mutually independence) Events A, B, and C are mutually
independent if and only if the following two conditions hold:

(a) A, B, and C are pairwise independent, that is,

P(A ∩ B) = P(A)P(B)

P(A ∩ C) = P(A)P(C)

P(B ∩ C) = P(B)P(C);

and (b)

P(A ∩ B ∩ C) = P(A)P(B)P(C).
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Example 1.4-5 In the experiment of throwing two fair dice, let A be the event that
the first die is odd, B be the event that the second die is odd, and C be the event that
the sum is odd. Show that events A, B, and C are pairwise independent, but A, B,
and C are not independent.
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Exercises from textbook: Section 1.4: 1, 2, 3, 5, 7, 8, 9, 11, 12, 13, 16.
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§ 1.1 Properties of Probability

§ 1.2 Methods of Enumerations

§ 1.3 Conditional Probability

§ 1.4 Independent Events

§ 1.5 Bayes Theorem
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Suppose that we are interested in which of several disjoint events B1, ...,Bk

will occur and that we will get to observe some other event A. If P(A|Bi) is
available for each i, then Bayes’ theorem is a useful formula for computing
the conditional probabilities of the Bi events given A, namely, P(Bi |A).
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Example 1.5-1 (Test for a disease) Suppose that you are walking down the
street and notice that the Department of Public Health is giving a free medical test for
a certain disease. The test is 90 percent reliable in the following sense: If a person
has the disease, there is a probability of 0.9 that the test will give a positive response;
whereas, if a person does not have the disease, there is a probability of only 0.1 that
the test will give a positive response.

Data indicate that your chances of having the disease are only 1 in 10, 000. However,
since the test costs you nothing, and is fast and harmless, you decide to stop and take
the test. A few days later you learn that you had a positive response to the test. Now,
what is the probability that you have the disease?

101



The last question in Example 1.5-1 is a prototype of the question for which
Bayes’ theorem was designed. We have at least two disjoint events (”you
have the disease” and ”you do not have the disease”) about which we are
uncertain, and we learn a piece of information (the result of the test) that
tells us something about the uncertain events. Then we need to know how
to revise the probabilities of the events in the light of the information we
learned.
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From multiplication rule P(B ∩ A) = P(A|B)P(B), we can obtain the
following Bayes’ rule:

Theorem 1.5-1 (Bayes’ rule)

P(B|A) = P(A|B)P(B)

P(A)
provided P(A) 6= 0.
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Let the events B1,B2, ...,Bm are mutually exclusive and exhaustive events,
that is,

S = B1 ∪ B2 ∪ · · · ∪ Bm and Bi ∩ Bj = ∅, i 6= j.

Furthermore, suppose the prior probability of the events Bi is positive, that
is, P(Bi) > 0, i = 1, · · · ,m.

If A is an event, then A is the union of m mutually exclusive events, namely,

A = (B1 ∩ A) ∪ (B2 ∩ A) ∪ · · · ∪ (Bm ∩ A) .

Thus,

P(A) =
m∑

i=1

P (Bi ∩ A) =
m∑

i=1

P(Bi)P(A|Bi),

which is known as the total probability of event A.

104



If P(A) > 0, then

P(Bk |A) =
P(Bk ∩ A)

P(A)
=

P(Bk )P(A|Bk )

P(A)
k = 1, 2, · · · ,m.

Using total probability equation for P(A), we obtain

Theorem 1.5-2 (Bayes’ theorem) Let the events B1,B2, ...,Bm are mutually
exclusive and exhaustive events. If P(A) > 0, then

P(Bk |A) =
P(Bk )P(A|Bk )∑m
i=1 P(Bi)P(A|Bi)

, k = 1, · · · ,m.
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S

B1

B2

B3

B4

B5

B6

A

A ∩ B1
A ∩ B4

A ∩ B2

A ∩ B3

A ∩ B5

A ∩ B6
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Solution(Example 1.5-1). Let us return to the example with which we began this
section. We have just received word that we have tested positive for a disease. The
test was 90 percent reliable in the sense that we described in Example 1.5-1. We want
to know the probability that we have the disease after we learn that the result of the
test is positive. Some of you may feel that this probability should be about 0.9.
However, this feeling completely ignores the small probability of 0.0001 that you
had the disease before taking the test. We shall let B1 denote the event that you have
the disease, and let B2 denote the event that you do not have the disease. The events
B1 and B2 form a partition. Also, let A denote the event that the response to the test
is positive. The event A is information we will learn that tells us something about the
partition elements. Then, by Bayes’ theorem,

P(B1|A) =
P(A|B1)P(B1)

P(A|B1)P(B1) + P(A|B2)P(B2)

=
(0.9)(0.0001)

(0.9)(0.0001) + (0.1)(0.9999)
= 0.0009.

�
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Remark 1.5-1 Thus, the conditional probability that you have the disease given the
test result is approximately only 1 in 1000. Of course, this conditional probability is
approxi- mately 9 times as great as the probability was before you were tested, but
even the conditional probability is quite small.

Another way to explain this result is as follows: Only one person in every 10, 000
actually has the disease, but the test gives a positive response for approximately one
person in every 10. Hence, the number of positive responses is approximately 1000
times the number of persons who actually have the disease. In other words, out of
every 1000 persons for whom the test gives a positive response, only one person
actually has the disease. This example illustrates not only the use of Bayes’ theorem
but also the importance of taking into account all of the information available in a
problem.
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Example 1.5-2 A company producing electric relays has three manufacturing
plants producing 50, 30, and 20 percent, respectively, of its product. Suppose that the
probabilities that a relay manufactured by these plants is defective are 0.02, 0.05, and
0.01, respectively.
(a) If a relay is selected at random from the output of the company, what is the
probability that it is defective?
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Example 1.5-2 A company producing electric relays has three manufacturing
plants producing 50, 30, and 20 percent, respectively, of its product. Suppose that the
probabilities that a relay manufactured by these plants is defective are 0.02, 0.05, and
0.01, respectively.
(b) If a relay selected at random is found to be defective, what is the probability that
it was manufactured by plant 2?
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Example 1.5-3 (Test for a disease again) There is a new diagnostic test for a
disease that occurs in about 0.05% of the population. The test is not perfect, but will
detect a person with the disease 99% of the time. It will, however, say that a person
without the disease has the disease about 3% of the time. A person is selected at
random from the population, and the test indicates that this person has the disease.
What are the conditional probabilities that
(a) the person has the disease?
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Example 1.5-3 (Test for a disease again) There is a new diagnostic test for a
disease that occurs in about 0.05% of the population. The test is not perfect, but will
detect a person with the disease 99% of the time. It will, however, say that a person
without the disease has the disease about 3% of the time. A person is selected at
random from the population, and the test indicates that this person has the disease.
What are the conditional probabilities that
(b) the person does not have the disease?
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Example 1.5-4 In a certain city, 30 percent of the people are Conservatives, 50
percent are Liberals, and 20 percent are Independents. Records show that in a
particular election, 65 percent of the Conservatives voted, 82 percent of the Liberals
voted, and 50 percent of the Independents voted. If a person in the city is selected at
random and it is learned that she did not vote in the last election, what is the
probability that she is a Liberal?
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Exercises from textbook: Section 1.5: 1, 3, 4, 5, 7, 12.
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