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In the study of systems of linear equations in Chapter 1, we found it convenient to manipulate the
augmented matrix of the system. Our aim was to reduce it to row-echelon form (using elementary
row operations) and hence to write down all solutions to the system. In the present chapter we
consider matrices for their own sake. While some of the motivation comes from linear equations,
it turns out that matrices can be multiplied and added and so form an algebraic system somewhat
analogous to the real numbers. This “matrix algebra” is useful in ways that are quite different from
the study of linear equations. For example, the geometrical transformations obtained by rotating the
euclidean plane about the origin can be viewed as multiplications by certain 2×2 matrices. These
“matrix transformations” are an important tool in geometry and, in turn, the geometry provides a
“picture” of the matrices. Furthermore, matrix algebra has many other applications, some of which
will be explored in this chapter. This subject is quite old and was first studied systematically in
1858 by Arthur Cayley.1

1Arthur Cayley (1821-1895) showed his mathematical talent early and graduated from Cambridge in 1842 as
senior wrangler. With no employment in mathematics in view, he took legal training and worked as a lawyer while
continuing to do mathematics, publishing nearly 300 papers in fourteen years. Finally, in 1863, he accepted the
Sadlerian professorship in Cambridge and remained there for the rest of his life, valued for his administrative and
teaching skills as well as for his scholarship. His mathematical achievements were of the first rank. In addition
to originating matrix theory and the theory of determinants, he did fundamental work in group theory, in higher-
dimensional geometry, and in the theory of invariants. He was one of the most prolific mathematicians of all time
and produced 966 papers.
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40 Matrix Algebra

2.1 Matrix Addition, Scalar Multiplication, and
Transposition

A rectangular array of numbers is called a matrix (the plural is matrices), and the numbers are
called the entries of the matrix. Matrices are usually denoted by uppercase letters: A, B, C, and
so on. Hence,

A =

[
1 2 −1
0 5 6

]
B =

[
1 −1
0 2

]
C =

 1
3
2


are matrices. Clearly matrices come in various shapes depending on the number of rows and
columns. For example, the matrix A shown has 2 rows and 3 columns. In general, a matrix with
m rows and n columns is referred to as an m× n matrix or as having size m× n. Thus matrices
A, B, and C above have sizes 2×3, 2×2, and 3×1, respectively. A matrix of size 1×n is called a
row matrix, whereas one of size m×1 is called a column matrix. Matrices of size n×n for some
n are called square matrices.

Each entry of a matrix is identified by the row and column in which it lies. The rows are
numbered from the top down, and the columns are numbered from left to right. Then the (i,,, j)-
entry of a matrix is the number lying simultaneously in row i and column j. For example,

The (1, 2)-entry of
[

1 −1
0 1

]
is −1.

The (2, 3)-entry of
[

1 2 −1
0 5 6

]
is 6.

A special notation is commonly used for the entries of a matrix. If A is an m×n matrix, and if
the (i, j)-entry of A is denoted as ai j, then A is displayed as follows:

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
... ... ... ...

am1 am2 am3 · · · amn


This is usually denoted simply as A =

[
ai j

]
. Thus ai j is the entry in row i and column j of A. For

example, a 3×4 matrix in this notation is written

A =

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34


It is worth pointing out a convention regarding rows and columns: Rows are mentioned before
columns. For example:

• If a matrix has size m×n, it has m rows and n columns.

• If we speak of the (i, j)-entry of a matrix, it lies in row i and column j.
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• If an entry is denoted ai j, the first subscript i refers to the row and the second subscript j to
the column in which ai j lies.

Two points (x1, y1) and (x2, y2) in the plane are equal if and only if2 they have the same
coordinates, that is x1 = x2 and y1 = y2. Similarly, two matrices A and B are called equal (written
A = B) if and only if:

1. They have the same size.

2. Corresponding entries are equal.

If the entries of A and B are written in the form A =
[
ai j

]
, B =

[
bi j

]
, described earlier, then the

second condition takes the following form:

A =
[
ai j

]
=
[
bi j

]
means ai j = bi j for all i and j

Example 2.1.1

Given A =

[
a b
c d

]
, B =

[
1 2 −1
3 0 1

]
and C =

[
1 0

−1 2

]
discuss the possibility that

A = B, B =C, A =C.

Solution. A = B is impossible because A and B are of different sizes: A is 2×2 whereas B is
2×3. Similarly, B =C is impossible. But A =C is possible provided that corresponding
entries are equal:

[
a b
c d

]
=

[
1 0

−1 2

]
means a = 1, b = 0, c =−1, and d = 2.

Matrix Addition

Definition 2.1 Matrix Addition
If A and B are matrices of the same size, their sum A+B is the matrix formed by adding
corresponding entries.

If A =
[
ai j

]
and B =

[
bi j

]
, this takes the form

A+B =
[
ai j +bi j

]
Note that addition is not defined for matrices of different sizes.

2If p and q are statements, we say that p implies q if q is true whenever p is true. Then “p if and only if q” means
that both p implies q and q implies p. See Appendix ?? for more on this.
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Example 2.1.2

If A =

[
2 1 3

−1 2 0

]
and B =

[
1 1 −1
2 0 6

]
, compute A+B.

Solution.

A+B =

[
2+1 1+1 3−1

−1+2 2+0 0+6

]
=

[
3 2 2
1 2 6

]

Example 2.1.3

Find a, b, and c if
[

a b c
]
+
[

c a b
]
=
[

3 2 −1
]
.

Solution. Add the matrices on the left side to obtain[
a+ c b+a c+b

]
=
[

3 2 −1
]

Because corresponding entries must be equal, this gives three equations: a+c = 3, b+a = 2,
and c+b =−1. Solving these yields a = 3, b =−1, c = 0.

If A, B, and C are any matrices of the same size, then
A+B = B+A (commutative law)

A+(B+C) = (A+B)+C (associative law)
In fact, if A =

[
ai j

]
and B =

[
bi j

]
, then the (i, j)-entries of A+B and B+A are, respectively, ai j +bi j

and bi j +ai j. Since these are equal for all i and j, we get
A+B =

[
ai j +bi j

]
=
[

bi j +ai j
]
= B+A

The associative law is verified similarly.
The m×n matrix in which every entry is zero is called the m×n zero matrix and is denoted

as 0 (or 0mn if it is important to emphasize the size). Hence,
0+X = X

holds for all m×n matrices X . The negative of an m×n matrix A (written −A) is defined to be the
m×n matrix obtained by multiplying each entry of A by −1. If A =

[
ai j

]
, this becomes −A =

[
−ai j

]
.

Hence,
A+(−A) = 0

holds for all matrices A where, of course, 0 is the zero matrix of the same size as A.
A closely related notion is that of subtracting matrices. If A and B are two m×n matrices, their

difference A−B is defined by
A−B = A+(−B)

Note that if A =
[
ai j

]
and B =

[
bi j

]
, then

A−B =
[
ai j

]
+
[
−bi j

]
=
[
ai j −bi j

]
is the m×n matrix formed by subtracting corresponding entries.
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Example 2.1.4

Let A =

[
3 −1 0
1 2 −4

]
, B =

[
1 −1 1

−2 0 6

]
, C =

[
1 0 −2
3 1 1

]
. Compute −A, A−B, and

A+B−C.

Solution.

−A =

[
−3 1 0
−1 −2 4

]
A−B =

[
3−1 −1− (−1) 0−1
1− (−2) 2−0 −4−6

]
=

[
2 0 −1
3 2 −10

]
A+B−C =

[
3+1−1 −1−1−0 0+1− (−2)
1−2−3 2+0−1 −4+6−1

]
=

[
3 −2 3

−4 1 1

]

Example 2.1.5

Solve
[

3 2
−1 1

]
+X =

[
1 0

−1 2

]
where X is a matrix.

Solution. We solve a numerical equation a+ x = b by subtracting the number a from both
sides to obtain x = b−a. This also works for matrices. To solve

[
3 2

−1 1

]
+X =

[
1 0

−1 2

]
simply subtract the matrix

[
3 2

−1 1

]
from both sides to get

X =

[
1 0

−1 2

]
−
[

3 2
−1 1

]
=

[
1−3 0−2

−1− (−1) 2−1

]
=

[
−2 −2

0 1

]
The reader should verify that this matrix X does indeed satisfy the original equation.

The solution in Example 2.1.5 solves the single matrix equation A+X = B directly via matrix
subtraction: X = B−A. This ability to work with matrices as entities lies at the heart of matrix
algebra.

It is important to note that the sizes of matrices involved in some calculations are often deter-
mined by the context. For example, if

A+C =

[
1 3 −1
2 0 1

]
then A and C must be the same size (so that A+C makes sense), and that size must be 2×3 (so
that the sum is 2×3). For simplicity we shall often omit reference to such facts when they are clear
from the context.
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Scalar Multiplication

In gaussian elimination, multiplying a row of a matrix by a number k means multiplying every entry
of that row by k.

Definition 2.2 Matrix Scalar Multiplication

More generally, if A is any matrix and k is any number, the scalar multiple kA is the
matrix obtained from A by multiplying each entry of A by k.

If A =
[
ai j

]
, this is

kA =
[
kai j

]
Thus 1A = A and (−1)A =−A for any matrix A.

The term scalar arises here because the set of numbers from which the entries are drawn is
usually referred to as the set of scalars. We have been using real numbers as scalars, but we could
equally well have been using complex numbers.

Example 2.1.6

If A =

[
3 −1 4
2 0 1

]
and B =

[
1 2 −1
0 3 2

]
compute 5A, 1

2B, and 3A−2B.

Solution.

5A =

[
15 −5 20
10 0 30

]
, 1

2B =

[ 1
2 1 −1

2
0 3

2 1

]
3A−2B =

[
9 −3 12
6 0 18

]
−
[

2 4 −2
0 6 4

]
=

[
7 −7 14
6 −6 14

]

If A is any matrix, note that kA is the same size as A for all scalars k. We also have

0A = 0 and k0 = 0

because the zero matrix has every entry zero. In other words, kA = 0 if either k = 0 or A = 0. The
converse of this statement is also true, as Example 2.1.7 shows.

Example 2.1.7

If kA = 0, show that either k = 0 or A = 0.

Solution. Write A =
[
ai j

]
so that kA = 0 means kai j = 0 for all i and j. If k = 0, there is

nothing to do. If k 6= 0, then kai j = 0 implies that ai j = 0 for all i and j; that is, A = 0.

For future reference, the basic properties of matrix addition and scalar multiplication are listed
in Theorem 2.1.1.
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Theorem 2.1.1
Let A, B, and C denote arbitrary m×n matrices where m and n are fixed. Let k and p
denote arbitrary real numbers. Then

1. A+B = B+A.

2. A+(B+C) = (A+B)+C.

3. There is an m×n matrix 0, such that 0+A = A for each A.

4. For each A there is an m×n matrix, −A, such that A+(−A) = 0.

5. k(A+B) = kA+ kB.

6. (k+ p)A = kA+ pA.

7. (kp)A = k(pA).

8. 1A = A.

Proof. Properties 1–4 were given previously. To check Property 5, let A=
[
ai j

]
and B=

[
bi j

]
denote

matrices of the same size. Then A+B =
[
ai j +bi j

]
, as before, so the (i, j)-entry of k(A+B) is

k(ai j +bi j) = kai j + kbi j

But this is just the (i, j)-entry of kA+ kB, and it follows that k(A+B) = kA+ kB. The other
Properties can be similarly verified; the details are left to the reader.

The Properties in Theorem 2.1.1 enable us to do calculations with matrices in much the same
way that numerical calculations are carried out. To begin, Property 2 implies that the sum

(A+B)+C = A+(B+C)

is the same no matter how it is formed and so is written as A+B+C. Similarly, the sum

A+B+C+D

is independent of how it is formed; for example, it equals both (A+B)+(C+D) and A+[B+(C+D)].
Furthermore, property 1 ensures that, for example,

B+D+A+C = A+B+C+D

In other words, the order in which the matrices are added does not matter. A similar remark applies
to sums of five (or more) matrices.

Properties 5 and 6 in Theorem 2.1.1 are called distributive laws for scalar multiplication, and
they extend to sums of more than two terms. For example,

k(A+B−C) = kA+ kB− kC

(k+ p−m)A = kA+ pA−mA
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Similar observations hold for more than three summands. These facts, together with properties 7
and 8, enable us to simplify expressions by collecting like terms, expanding, and taking common
factors in exactly the same way that algebraic expressions involving variables and real numbers are
manipulated. The following example illustrates these techniques.

Example 2.1.8

Simplify 2(A+3C)−3(2C−B)−3 [2(2A+B−4C)−4(A−2C)] where A, B, and C are all
matrices of the same size.

Solution. The reduction proceeds as though A, B, and C were variables.

2(A+3C)−3(2C−B)−3 [2(2A+B−4C)−4(A−2C)]

= 2A+6C−6C+3B−3 [4A+2B−8C−4A+8C]

= 2A+3B−3 [2B]
= 2A−3B

Transpose of a Matrix

Many results about a matrix A involve the rows of A, and the corresponding result for columns is
derived in an analogous way, essentially by replacing the word row by the word column throughout.
The following definition is made with such applications in mind.

Definition 2.3 Transpose of a Matrix

If A is an m×n matrix, the transpose of A, written AT , is the n×m matrix whose rows are
just the columns of A in the same order.

In other words, the first row of AT is the first column of A (that is it consists of the entries of column
1 in order). Similarly the second row of AT is the second column of A, and so on.

Example 2.1.9

Write down the transpose of each of the following matrices.

A =

 1
3
2

 B =
[

5 2 6
]

C =

 1 2
3 4
5 6

 D =

 3 1 −1
1 3 2

−1 2 1



Solution.

AT =
[

1 3 2
]

, BT =

 5
2
6

 , CT =

[
1 3 5
2 4 6

]
, and DT = D.
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If A =
[
ai j

]
is a matrix, write AT =

[
bi j

]
. Then bi j is the jth element of the ith row of AT and

so is the jth element of the ith column of A. This means bi j = a ji, so the definition of AT can be
stated as follows:

If A =
[
ai j

]
, then AT =

[
a ji

]
. (2.1)

This is useful in verifying the following properties of transposition.

Theorem 2.1.2
Let A and B denote matrices of the same size, and let k denote a scalar.

1. If A is an m×n matrix, then AT is an n×m matrix.

2. (AT )T = A.

3. (kA)T = kAT .

4. (A+B)T = AT +BT .

Proof. Property 1 is part of the definition of AT , and Property 2 follows from (2.1). As to Property
3: If A =

[
ai j

]
, then kA =

[
kai j

]
, so (2.1) gives

(kA)T =
[
ka ji

]
= k

[
a ji

]
= kAT

Finally, if B =
[
bi j

]
, then A+B =

[
ci j

]
where ci j = ai j +bi j Then (2.1) gives Property 4:

(A+B)T =
[
ci j

]T
=
[
c ji

]
=
[
a ji +b ji

]
=
[
a ji

]
+
[
b ji

]
= AT +BT

There is another useful way to think of transposition. If A =
[
ai j

]
is an m× n matrix, the

elements a11, a22, a33, . . . are called the main diagonal of A. Hence the main diagonal extends
down and to the right from the upper left corner of the matrix A; it is shaded in the following
examples:  a11 a12

a21 a22
a31 a32

[
a11 a12 a13
a21 a22 a23

] a11 a12 a13
a21 a22 a23
a31 a32 a33

[
a11
a21

]
Thus forming the transpose of a matrix A can be viewed as “flipping” A about its main diagonal,

or as “rotating” A through 180◦ about the line containing the main diagonal. This makes Property
2 in Theorem 2.1.2 transparent.

Example 2.1.10

Solve for A if
(

2AT −3
[

1 2
−1 1

])T

=

[
2 3

−1 2

]
.
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Solution. Using Theorem 2.1.2, the left side of the equation is(
2AT −3

[
1 2

−1 1

])T

= 2
(
AT)T −3

[
1 2

−1 1

]T

= 2A−3
[

1 −1
2 1

]
Hence the equation becomes

2A−3
[

1 −1
2 1

]
=

[
2 3

−1 2

]

Thus 2A =

[
2 3

−1 2

]
+3

[
1 −1
2 1

]
=

[
5 0
5 5

]
, so finally A = 1

2

[
5 0
5 5

]
= 5

2

[
1 0
1 1

]
.

Note that Example 2.1.10 can also be solved by first transposing both sides, then solving for AT ,
and so obtaining A = (AT )T . The reader should do this.

The matrix D =

[
1 2
2 5

]
in Example 2.1.9 has the property that D = DT . Such matrices are

important; a matrix A is called symmetric if A = AT . A symmetric matrix A is necessarily square
(if A is m×n, then AT is n×m, so A = AT forces n = m). The name comes from the fact that these
matrices exhibit a symmetry about the main diagonal. That is, entries that are directly across the
main diagonal from each other are equal.

For example,

 a b c
b′ d e
c′ e′ f

 is symmetric when b = b′, c = c′, and e = e′.

Example 2.1.11

If A and B are symmetric n×n matrices, show that A+B is symmetric.

Solution. We have AT = A and BT = B, so, by Theorem 2.1.2, we have
(A+B)T = AT +BT = A+B. Hence A+B is symmetric.

Example 2.1.12

Suppose a square matrix A satisfies A = 2AT . Show that necessarily A = 0.

Solution. If we iterate the given equation, Theorem 2.1.2 gives

A = 2AT = 2
[
2AT ]T

= 2
[
2(AT )T ]= 4A

Subtracting A from both sides gives 3A = 0, so A = 1
3(0) = 0.
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Exercises for 2.1

Exercise 2.1.1 Find a, b, c, and d if

a.
[

a b
c d

]
=

[
c−3d −d
2a+d a+b

]

b.
[

a−b b− c
c−d d −a

]
= 2

[
1 1

−3 1

]

c. 3
[

a
b

]
+2

[
b
a

]
=

[
1
2

]

d.
[

a b
c d

]
=

[
b c
d a

]

b. (a b c d) = (−2, −4, −6, 0)+ t(1, 1, 1, 1),
t arbitrary

d. a = b = c = d = t, t arbitrary

Exercise 2.1.2 Compute the following:[
3 2 1
5 1 0

]
−5

[
3 0 −2
1 −1 2

]
a)

3
[

3
−1

]
−5

[
6
2

]
+7

[
1

−1

]
b) [

−2 1
3 2

]
−4

[
1 −2
0 −1

]
+3

[
2 −3

−1 −2

]
c) [

3 −1 2
]
−2

[
9 3 4

]
+
[

3 11 −6
]

d) [
1 −5 4 0
2 1 0 6

]T

e)

 0 −1 2
1 0 −4

−2 4 0

T

f)

[
3 −1
2 1

]
−2

[
1 −2
1 1

]T

g)

3
[

2 1
−1 0

]T

−2
[

1 −1
2 3

]
h)

b.
[
−14
−20

]
d. (−12, 4, −12)

f.

 0 1 −2
−1 0 4

2 −4 0


h.

[
4 −1

−1 −6

]

Exercise 2.1.3 Let A =

[
2 1
0 −1

]
,

B =

[
3 −1 2
0 1 4

]
, C =

[
3 −1
2 0

]
,

D=

 1 3
−1 0

1 4

, and E =

[
1 0 1
0 1 0

]
. Compute the

following (where possible).

3A−2Ba) 5Cb)
3ETc) B+Dd)
4AT −3Ce) (A+C)Tf)
2B−3Eg) A−Dh)
(B−2E)Ti)

b.
[

15 −5
10 0

]
d. Impossible

f.
[

5 2
0 −1

]
h. Impossible

Exercise 2.1.4 Find A if:

a. 5A−
[

1 0
2 3

]
= 3A−

[
5 2
6 1

]

b. 3A−
[

2
1

]
= 5A−2

[
3
0

]

b.
[

4
1
2

]
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Exercise 2.1.5 Find A in terms of B if:

A+B = 3A+2Ba) 2A−B = 5(A+2B)b)

b. A =−11
3 B

Exercise 2.1.6 If X , Y , A, and B are matrices of the
same size, solve the following systems of equations
to obtain X and Y in terms of A and B.

5X +3Y = A
2X +Y = B

a) 4X +3Y = A
5X +4Y = B

b)

b. X = 4A−3B, Y = 4B−5A

Exercise 2.1.7 Find all matrices X and Y such
that:

3X−2Y =
[

3 −1
]

a) 2X −5Y =
[

1 2
]

b)

b. Y = (s, t), X = 1
2(1+ 5s, 2+ 5t); s and t arbi-

trary

Exercise 2.1.8 Simplify the following expressions
where A, B, and C are matrices.

a. 2 [9(A−B)+7(2B−A)]
−2 [3(2B+A)−2(A+3B)−5(A+B)]

b. 5 [3(A−B+2C)−2(3C−B)−A]
+2 [3(3A−B+C)+2(B−2A)−2C]

b. 20A−7B+2C

Exercise 2.1.9 If A is any 2×2 matrix, show that:

a. A = a
[

1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+

d
[

0 0
0 1

]
for some numbers a, b, c, and d.

b. A = p
[

1 0
0 1

]
+ q

[
1 1
0 0

]
+ r

[
1 0
1 0

]
+

s
[

0 1
1 0

]
for some numbers p, q, r, and s.

b. If A =

[
a b
c d

]
, then (p, q, r, s) = 1

2(2d, a+

b− c−d, a−b+ c−d, −a+b+ c+d).

Exercise 2.1.10 Let A =
[

1 1 −1
]
,

B =
[

0 1 2
]
, and C =

[
3 0 1

]
. If

rA+ sB+ tC = 0 for some scalars r, s, and t, show
that necessarily r = s = t = 0.

Exercise 2.1.11

a. If Q+A = A holds for every m× n matrix A,
show that Q = 0mn.

b. If A is an m×n matrix and A+A′ = 0mn, show
that A′ =−A.

b. If A+A′ = 0 then −A = −A+ 0 = −A+(A+
A′) = (−A+A)+A′ = 0+A′ = A′

Exercise 2.1.12 If A denotes an m×n matrix, show
that A =−A if and only if A = 0.

Exercise 2.1.13 A square matrix is called a diag-
onal matrix if all the entries off the main diagonal
are zero. If A and B are diagonal matrices, show that
the following matrices are also diagonal.

A+Ba) A−Bb)
kA for any number kc)

b. Write A = diag (a1, . . . , an), where a1, . . . , an

are the main diagonal entries. If B =
diag (b1, . . . , bn) then kA = diag (ka1, . . . , kan).

Exercise 2.1.14 In each case determine all s and
t such that the given matrix is symmetric:
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[
1 s

−2 t

]
a)

[
s t
st 1

]
b) s 2s st

t −1 s
t s2 s

c)

 2 s t
2s 0 s+ t
3 3 t

d)

b. s = 1 or t = 0

d. s = 0, and t = 3

Exercise 2.1.15 In each case find the matrix A.

a.
(

A+3
[

1 −1 0
1 2 4

])T

=

 2 1
0 5
3 8


b.

(
3AT +2

[
1 0
0 2

])T

=

[
8 0
3 1

]
c.

(
2A−3

[
1 2 0

])T
= 3AT +

[
2 1 −1

]T

d.
(

2AT −5
[

1 0
−1 2

])T

= 4A−9
[

1 1
−1 0

]

b.
[

2 0
1 −1

]

d.
[

2 7
−9

2 −5

]
Exercise 2.1.16 Let A and B be symmetric (of
the same size). Show that each of the following is
symmetric.

(A−B)a) kA for any scalar kb)

b. A=AT , so using Theorem 2.1.2, (kA)T = kAT =
kA.

Exercise 2.1.17 Show that A+AT and AAT are
symmetric for any square matrix A.

Exercise 2.1.18 If A is a square matrix and
A = kAT where k 6=±1, show that A = 0.

Exercise 2.1.19 In each case either show that the
statement is true or give an example showing it is
false.

a. If A+B = A+C, then B and C have the same
size.

b. If A+B = 0, then B = 0.

c. If the (3, 1)-entry of A is 5, then the (1, 3)-
entry of AT is −5.

d. A and AT have the same main diagonal for ev-
ery matrix A.

e. If B is symmetric and AT = 3B, then A = 3B.

f. If A and B are symmetric, then kA+mB is sym-
metric for any scalars k and m.

b. False. Take B =−A for any A 6= 0.

d. True. Transposing fixes the main diagonal.

f. True. (kA + mB)T = (kA)T + (mB)T = kAT +
mBT = kA+mB

Exercise 2.1.20 A square matrix W is called
skew-symmetric if W T =−W . Let A be any square
matrix.

a. Show that A−AT is skew-symmetric.

b. Find a symmetric matrix S and a skew-
symmetric matrix W such that A = S+W .

c. Show that S and W in part (b) are uniquely
determined by A.

c. Suppose A = S +W , where S = ST and W =
−W T . Then AT = ST +W T = S−W , so A+AT =
2S and A−AT = 2W . Hence S = 1

2(A+AT ) and
W = 1

2(A−AT ) are uniquely determined by A.

Exercise 2.1.21 If W is skew-symmetric (Exer-
cise 2.1.20), show that the entries on the main diag-
onal are zero.

Exercise 2.1.22 Prove the following parts of The-
orem 2.1.1.
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(k+ p)A = kA+ pAa) (kp)A = k(pA)b)

b. If A = [ai j] then (kp)A = [(kp)ai j] = [k(pai j)] =
k [pai j] = k(pA).

Exercise 2.1.23 Let A, A1, A2, . . . , An denote ma-
trices of the same size. Use induction on n to verify
the following extensions of properties 5 and 6 of The-
orem 2.1.1.

a. k(A1 +A2 + · · ·+An) = kA1 + kA2 + · · ·+ kAn for
any number k

b. (k1 + k2 + · · ·+ kn)A = k1A+ k2A+ · · ·+ knA for
any numbers k1, k2, . . . , kn

Exercise 2.1.24 Let A be a square matrix. If
A = pBT and B = qAT for some matrix B and num-
bers p and q, show that either A = 0 = B or pq = 1.
[Hint: Example 2.1.7.]
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2.2 Matrix-Vector Multiplication

Up to now we have used matrices to solve systems of linear equations by manipulating the rows of
the augmented matrix. In this section we introduce a different way of describing linear systems that
makes more use of the coefficient matrix of the system and leads to a useful way of “multiplying”
matrices.

Vectors

It is a well-known fact in analytic geometry that two points in the plane with coordinates (a1, a2)
and (b1, b2) are equal if and only if a1 = b1 and a2 = b2. Moreover, a similar condition applies to
points (a1, a2, a3) in space. We extend this idea as follows.

An ordered sequence (a1, a2, . . . , an) of real numbers is called an ordered n-tuple. The word
“ordered” here reflects our insistence that two ordered n-tuples are equal if and only if corresponding
entries are the same. In other words,

(a1, a2, . . . , an) = (b1, b2, . . . , bn) if and only if a1 = b1, a2 = b2, . . . , and an = bn.

Thus the ordered 2-tuples and 3-tuples are just the ordered pairs and triples familiar from geometry.

Definition 2.4 The set Rn of ordered n-tuples of real numbers

Let R denote the set of all real numbers. The set of all ordered n-tuples from R has a
special notation:

Rn denotes the set of all ordered n-tuples of real numbers.

There are two commonly used ways to denote the n-tuples in Rn: As rows (r1, r2, . . . , rn) or

columns


r1
r2
...

rn

; the notation we use depends on the context. In any event they are called vectors

or n-vectors and will be denoted using bold type such as x or v. For example, an m×n matrix A
will be written as a row of columns:

A =
[

a1 a2 · · · an
]

where a j denotes column j of A for each j.

If x and y are two n-vectors in Rn, it is clear that their matrix sum x+y is also in Rn as is the
scalar multiple kx for any real number k. We express this observation by saying that Rn is closed
under addition and scalar multiplication. In particular, all the basic properties in Theorem 2.1.1
are true of these n-vectors. These properties are fundamental and will be used frequently below
without comment. As for matrices in general, the n×1 zero matrix is called the zero n-vector in
Rn and, if x is an n-vector, the n-vector −x is called the negative x.

Of course, we have already encountered these n-vectors in Section 1.3 as the solutions to systems
of linear equations with n variables. In particular we defined the notion of a linear combination
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of vectors and showed that a linear combination of solutions to a homogeneous system is again a
solution. Clearly, a linear combination of n-vectors in Rn is again in Rn, a fact that we will be using.

Matrix-Vector Multiplication

Given a system of linear equations, the left sides of the equations depend only on the coefficient
matrix A and the column x of variables, and not on the constants. This observation leads to a
fundamental idea in linear algebra: We view the left sides of the equations as the “product” Ax of
the matrix A and the vector x. This simple change of perspective leads to a completely new way of
viewing linear systems—one that is very useful and will occupy our attention throughout this book.

To motivate the definition of the “product” Ax, consider first the following system of two equa-
tions in three variables:

ax1 + bx2 + cx3 = b1
a′x1 + b′x2 + c′x3 = b1

(2.2)

and let A=

[
a b c
a′ b′ c′

]
, x=

 x1
x2
x3

, b=

[
b1
b2

]
denote the coefficient matrix, the variable matrix,

and the constant matrix, respectively. The system (2.2) can be expressed as a single vector equation[
ax1 + bx2 + cx3
a′x1 + b′x2 + c′x3

]
=

[
b1
b2

]
which in turn can be written as follows:

x1

[
a
a′

]
+ x2

[
b
b′

]
+ x3

[
c
c′

]
=

[
b1
b2

]
Now observe that the vectors appearing on the left side are just the columns

a1 =

[
a
a′

]
, a2 =

[
b
b′

]
, and a3 =

[
c
c′

]
of the coefficient matrix A. Hence the system (2.2) takes the form

x1a1 + x2a2 + x3a3 = b (2.3)

This shows that the system (2.2) has a solution if and only if the constant matrix b is a linear
combination3 of the columns of A, and that in this case the entries of the solution are the coefficients
x1, x2, and x3 in this linear combination.

Moreover, this holds in general. If A is any m×n matrix, it is often convenient to view A as a
row of columns. That is, if a1, a2, . . . , an are the columns of A, we write

A =
[

a1 a2 · · · an
]

and say that A =
[

a1 a2 · · · an
]

is given in terms of its columns.
3Linear combinations were introduced in Section 1.3 to describe the solutions of homogeneous systems of linear

equations. They will be used extensively in what follows.
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Now consider any system of linear equations with m×n coefficient matrix A. If b is the constant

matrix of the system, and if x=


x1
x2
...

xn

 is the matrix of variables then, exactly as above, the system

can be written as a single vector equation

x1a1 + x2a2 + · · ·+ xnan = b (2.4)

Example 2.2.1

Write the system


3x1 + 2x2 − 4x3 = 0
x1 − 3x2 + x3 = 3

x2 − 5x3 =−1
in the form given in (2.4).

Solution.

x1

 3
1
0

+ x2

 2
−3

1

+ x3

 −4
1

−5

=

 0
3

−1



As mentioned above, we view the left side of (2.4) as the product of the matrix A and the vector
x. This basic idea is formalized in the following definition:

Definition 2.5 Matrix-Vector Multiplication

Let A =
[

a1 a2 · · · an
]

be an m×n matrix, written in terms of its columns

a1, a2, . . . , an. If x =


x1
x2
...

xn

 is any n-vector, the product Ax is defined to be the m-vector

given by:
Ax = x1a1 + x2a2 + · · ·+ xnan

In other words, if A is m×n and x is an n-vector, the product Ax is the linear combination of the
columns of A where the coefficients are the entries of x (in order).

Note that if A is an m×n matrix, the product Ax is only defined if x is an n-vector and then the
vector Ax is an m-vector because this is true of each column a j of A. But in this case the system of
linear equations with coefficient matrix A and constant vector b takes the form of a single matrix
equation

Ax = b
The following theorem combines Definition 2.5 and equation (2.4) and summarizes the above dis-
cussion. Recall that a system of linear equations is said to be consistent if it has at least one
solution.
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Theorem 2.2.1

1. Every system of linear equations has the form Ax = b where A is the coefficient
matrix, b is the constant matrix, and x is the matrix of variables.

2. The system Ax = b is consistent if and only if b is a linear combination of the
columns of A.

3. If a1, a2, . . . , an are the columns of A and if x =


x1
x2
...

xn

, then x is a solution to the

linear system Ax = b if and only if x1, x2, . . . , xn are a solution of the vector equation

x1a1 + x2a2 + · · ·+ xnan = b

A system of linear equations in the form Ax = b as in (1) of Theorem 2.2.1 is said to be written in
matrix form. This is a useful way to view linear systems as we shall see.

Theorem 2.2.1 transforms the problem of solving the linear system Ax = b into the problem of
expressing the constant matrix B as a linear combination of the columns of the coefficient matrix
A. Such a change in perspective is very useful because one approach or the other may be better in
a particular situation; the importance of the theorem is that there is a choice.

Example 2.2.2

If A =

 2 −1 3 5
0 2 −3 1

−3 4 1 2

 and x =


2
1
0

−2

, compute Ax.

Solution. By Definition 2.5: Ax = 2

 2
0

−3

+1

 −1
2
4

+0

 3
−3

1

−2

 5
1
2

=

 −7
0

−6

.

Example 2.2.3

Given columns a1, a2, a3, and a4 in R3, write 2a1 −3a2 +5a3 +a4 in the form Ax where A is
a matrix and x is a vector.

Solution. Here the column of coefficients is x =


2

−3
5
1

 . Hence Definition 2.5 gives

Ax = 2a1 −3a2 +5a3 +a4

where A =
[

a1 a2 a3 a4
]

is the matrix with a1, a2, a3, and a4 as its columns.
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Example 2.2.4

Let A =
[

a1 a2 a3 a4
]

be the 3×4 matrix given in terms of its columns a1 =

 2
0

−1

,

a2 =

 1
1
1

, a3 =

 3
−1
−3

, and a4 =

 3
1
0

. In each case below, either express b as a linear

combination of a1, a2, a3, and a4, or show that it is not such a linear combination. Explain
what your answer means for the corresponding system Ax = b of linear equations.

a. b =

 1
2
3

 b. b =

 4
2
1


Solution. By Theorem 2.2.1, b is a linear combination of a1, a2, a3, and a4 if and only if
the system Ax = b is consistent (that is, it has a solution). So in each case we carry the
augmented matrix [A|b] of the system Ax = b to reduced form.

a. Here

 2 1 3 3 1
0 1 −1 1 2

−1 1 −3 0 3

→

 1 0 2 1 0
0 1 −1 1 0
0 0 0 0 1

, so the system Ax = b has no

solution in this case. Hence b is not a linear combination of a1, a2, a3, and a4.

b. Now

 2 1 3 3 4
0 1 −1 1 2

−1 1 −3 0 1

→

 1 0 2 1 1
0 1 −1 1 2
0 0 0 0 0

, so the system Ax = b is

consistent.

Thus b is a linear combination of a1, a2, a3, and a4 in this case. In fact the general solution
is x1 = 1−2s− t, x2 = 2+ s− t, x3 = s, and x4 = t where s and t are arbitrary parameters.

Hence x1a1 + x2a2 + x3a3 + x4a4 = b =

 4
2
1

 for any choice of s and t. If we take s = 0 and

t = 0, this becomes a1 +2a2 = b, whereas taking s = 1 = t gives −2a1 +2a2 +a3 +a4 = b.

Example 2.2.5

Taking A to be the zero matrix, we have 0x = 0 for all vectors x by Definition 2.5 because
every column of the zero matrix is zero. Similarly, A0 = 0 for all matrices A because every
entry of the zero vector is zero.
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Example 2.2.6

If I =

 1 0 0
0 1 0
0 0 1

, show that Ix = x for any vector x in R3.

Solution. If x =

 x1
x2
x3

 then Definition 2.5 gives

Ix = x1

 1
0
0

+ x2

 0
1
0

+ x3

 0
0
1

=

 x1
0
0

+

 0
x2
0

+

 0
0

x3

=

 x1
x2
x3

= x

The matrix I in Example 2.2.6 is called the 3×3 identity matrix, and we will encounter such
matrices again in Example 2.2.11 below. Before proceeding, we develop some algebraic properties
of matrix-vector multiplication that are used extensively throughout linear algebra.

Theorem 2.2.2
Let A and B be m×n matrices, and let x and y be n-vectors in Rn. Then:

1. A(x+y) = Ax+Ay.

2. A(ax) = a(Ax) = (aA)x for all scalars a.

3. (A+B)x = Ax+Bx.

Proof. We prove (3); the other verifications are similar and are left as exercises. Let A=
[

a1 a2 · · · an
]

and B =
[

b1 b2 · · · bn
]

be given in terms of their columns. Since adding two matrices is the
same as adding their columns, we have

A+B =
[

a1 +b1 a2 +b2 · · · an +bn
]

If we write x =


x1
x2
...

xn

 Definition 2.5 gives

(A+B)x = x1(a1 +b1)+ x2(a2 +b2)+ · · ·+ xn(an +bn)

= (x1a1 + x2a2 + · · ·+ xnan)+(x1b1 + x2b2 + · · ·+ xnbn)

= Ax+Bx

Theorem 2.2.2 allows matrix-vector computations to be carried out much as in ordinary arithmetic.
For example, for any m×n matrices A and B and any n-vectors x and y, we have:

A(2x−5y) = 2Ax−5Ay and (3A−7B)x = 3Ax−7Bx
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We will use such manipulations throughout the book, often without mention.

Linear Equations

Theorem 2.2.2 also gives a useful way to describe the solutions to a system

Ax = b

of linear equations. There is a related system

Ax = 0

called the associated homogeneous system, obtained from the original system Ax = b by re-
placing all the constants by zeros. Suppose x1 is a solution to Ax = b and x0 is a solution to Ax = 0
(that is Ax1 = b and Ax0 = 0). Then x1+x0 is another solution to Ax = b. Indeed, Theorem 2.2.2
gives

A(x1 +x0) = Ax1 +Ax0 = b+0 = b

This observation has a useful converse.

Theorem 2.2.3
Suppose x1 is any particular solution to the system Ax = b of linear equations. Then every
solution x2 to Ax = b has the form

x2 = x0 +x1

for some solution x0 of the associated homogeneous system Ax = 0.

Proof. Suppose x2 is also a solution to Ax = b, so that Ax2 = b. Write x0 = x2 − x1. Then
x2 = x0 +x1 and, using Theorem 2.2.2, we compute

Ax0 = A(x2 −x1) = Ax2 −Ax1 = b−b = 0

Hence x0 is a solution to the associated homogeneous system Ax = 0.

Note that gaussian elimination provides one such representation.

Example 2.2.7

Express every solution to the following system as the sum of a specific solution plus a
solution to the associated homogeneous system.

x1 − x2 − x3 + 3x4 = 2
2x1 − x2 − 3x3 + 4x4 = 6

x1 − 2x3 + x4 = 4
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Solution. Gaussian elimination gives x1 = 4+2s− t, x2 = 2+ s+2t, x3 = s, and x4 = t where
s and t are arbitrary parameters. Hence the general solution can be written

x =


x1
x2
x3
x4

=


4+2s− t
2+ s+2t

s
t

=


4
2
0
0

+

s


2
1
1
0

+ t


−1

2
0
1




Thus x1 =


4
2
0
0

 is a particular solution (where s = 0 = t), and x0 = s


2
1
1
0

+ t


−1

2
0
1


gives all solutions to the associated homogeneous system. (To see why this is so, carry out
the gaussian elimination again but with all the constants set equal to zero.)

The following useful result is included with no proof.

Theorem 2.2.4
Let Ax = b be a system of equations with augmented matrix

[
A b

]
. Write rank A = r.

1. rank
[

A b
]

is either r or r+1.

2. The system is consistent if and only if rank
[

A b
]
= r.

3. The system is inconsistent if and only if rank
[

A b
]
= r+1.

The Dot Product

Definition 2.5 is not always the easiest way to compute a matrix-vector product Ax because it
requires that the columns of A be explicitly identified. There is another way to find such a product
which uses the matrix A as a whole with no reference to its columns, and hence is useful in practice.
The method depends on the following notion.

Definition 2.6 Dot Product in Rn

If (a1, a2, . . . , an) and (b1, b2, . . . , bn) are two ordered n-tuples, their dot product is
defined to be the number

a1b1 +a2b2 + · · ·+anbn

obtained by multiplying corresponding entries and adding the results.

To see how this relates to matrix products, let A denote a 3× 4 matrix and let x be a 4-vector.
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Writing

x =


x1
x2
x3
x4

 and A =

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34


in the notation of Section 2.1, we compute

Ax =

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34




x1
x2
x3
x4

= x1

 a11
a21
a31

+ x2

 a12
a22
a32

+ x3

 a13
a23
a33

+ x4

 a14
a24
a34



=

 a11x1 +a12x2 +a13x3 +a14x4
a21x1 +a22x2 +a23x3 +a24x4
a31x1 +a32x2 +a33x3 +a34x4


From this we see that each entry of Ax is the dot product of the corresponding row of A with x.
This computation goes through in general, and we record the result in Theorem 2.2.5.

Theorem 2.2.5: Dot Product Rule
Let A be an m×n matrix and let x be an n-vector. Then each entry of the vector Ax is the
dot product of the corresponding row of A with x.

This result is used extensively throughout linear algebra.
If A is m×n and x is an n-vector, the computation of Ax by the dot product rule is simpler than

using Definition 2.5 because the computation can be carried out directly with no explicit reference
to the columns of A (as in Definition 2.5). The first entry of Ax is the dot product of row 1 of A
with x. In hand calculations this is computed by going across row one of A, going down the column
x, multiplying corresponding entries, and adding the results. The other entries of Ax are computed
in the same way using the other rows of A with the column x.

  =

 

row ientry i

Ax
Ax

In general, compute entry i of Ax as follows (see the diagram):

Go across row i of A and down column x, multiply corre-
sponding entries, and add the results.

As an illustration, we rework Example 2.2.2 using the dot product
rule instead of Definition 2.5.

Example 2.2.8

If A =

 2 −1 3 5
0 2 −3 1

−3 4 1 2

 and x =


2
1
0

−2

, compute Ax.
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Solution. The entries of Ax are the dot products of the rows of A with x:

Ax=

 2 −1 3 5
0 2 −3 1

−3 4 1 2




2
1
0

−2

=

 2 ·2 + (−1)1 + 3 ·0 + 5(−2)
0 ·2 + 2 ·1 + (−3)0 + 1(−2)

(−3)2 + 4 ·1 + 1 ·0 + 2(−2)

=

 −7
0

−6


Of course, this agrees with the outcome in Example 2.2.2.

Example 2.2.9

Write the following system of linear equations in the form Ax = b.

5x1 − x2 + 2x3 + x4 − 3x5 = 8
x1 + x2 + 3x3 − 5x4 + 2x5 =−2

−x1 + x2 − 2x3 + − 3x5 = 0

Solution. Write A =

 5 −1 2 1 −3
1 1 3 −5 2

−1 1 −2 0 −3

, b =

 8
−2

0

, and x =


x1
x2
x3
x4
x5

. Then the

dot product rule gives Ax =

 5x1 − x2 + 2x3 + x4 − 3x5
x1 + x2 + 3x3 − 5x4 + 2x5

−x1 + x2 − 2x3 − 3x5

, so the entries of Ax are the left

sides of the equations in the linear system. Hence the system becomes Ax = b because
matrices are equal if and only corresponding entries are equal.

Example 2.2.10

If A is the zero m×n matrix, then Ax = 0 for each n-vector x.

Solution. For each k, entry k of Ax is the dot product of row k of A with x, and this is zero
because row k of A consists of zeros.

Definition 2.7 The Identity Matrix

For each n > 2, the identity matrix In is the n×n matrix with 1s on the main diagonal
(upper left to lower right), and zeros elsewhere.
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The first few identity matrices are

I2 =

[
1 0
0 1

]
, I3 =

 1 0 0
0 1 0
0 0 1

 , I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , . . .

In Example 2.2.6 we showed that I3x = x for each 3-vector x using Definition 2.5. The following
result shows that this holds in general, and is the reason for the name.

Example 2.2.11

For each n ≥ 2 we have Inx = x for each n-vector x in Rn.

Solution. We verify the case n = 4. Given the 4-vector x =


x1
x2
x3
x4

 the dot product rule

gives

I4x =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




x1
x2
x3
x4

=


x1 +0+0+0
0+ x2 +0+0
0+0+ x3 +0
0+0+0+ x4

=


x1
x2
x3
x4

= x

In general, Inx = x because entry k of Inx is the dot product of row k of In with x, and row k
of In has 1 in position k and zeros elsewhere.

Example 2.2.12

Let A =
[

a1 a2 · · · an
]

be any m×n matrix with columns a1, a2, . . . , an. If e j denotes
column j of the n×n identity matrix In, then Ae j = a j for each j = 1, 2, . . . , n.

Solution. Write e j =


t1
t2
...
tn

 where t j = 1, but ti = 0 for all i 6= j. Then Theorem 2.2.5 gives

Ae j = t1a1 + · · ·+ t ja j + · · ·+ tnan = 0+ · · ·+a j + · · ·+0 = a j

Example 2.2.12 will be referred to later; for now we use it to prove:

Theorem 2.2.6
Let A and B be m×n matrices. If Ax = Bx for all x in Rn, then A = B.

Proof. Write A =
[

a1 a2 · · · an
]

and B =
[

b1 b2 · · · bn
]

and in terms of their columns.
It is enough to show that ak = bk holds for all k. But we are assuming that Aek = Bek, which gives
ak = bk by Example 2.2.12.
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We have introduced matrix-vector multiplication as a new way to think about systems of linear
equations. But it has several other uses as well. It turns out that many geometric operations can
be described using matrix multiplication, and we now investigate how this happens. As a bonus,
this description provides a geometric “picture” of a matrix by revealing the effect on a vector when
it is multiplied by A. This “geometric view” of matrices is a fundamental tool in understanding
them.

Transformations

0 =

[
0
0

]

[
a1
a2

]

a1

a2

x1

x2

Figure 2.2.1

 a1
a2
a3


a1

a2

a3

0

x1

x2

x3

Figure 2.2.2

The set R2 has a geometrical interpretation as the euclidean plane
where a vector

[
a1
a2

]
in R2 represents the point (a1, a2) in the plane

(see Figure 2.2.1). In this way we regard R2 as the set of all points
in the plane. Accordingly, we will refer to vectors in R2 as points,
and denote their coordinates as a column rather than a row. To
enhance this geometrical interpretation of the vector

[
a1
a2

]
, it is de-

noted graphically by an arrow from the origin
[

0
0

]
to the vector as

in Figure 2.2.1.
Similarly we identify R3 with 3-dimensional space by writing a

point (a1, a2, a3) as the vector

 a1
a2
a3

 in R3, again represented by

an arrow4 from the origin to the point as in Figure 2.2.2. In this way
the terms “point” and “vector” mean the same thing in the plane or
in space.

We begin by describing a particular geometrical transformation of the plane R2.

Example 2.2.13

[
a1
a2

]

[
a1

−a2

]
0

x

y

Figure 2.2.3

Consider the transformation of R2 given by reflection in
the x axis. This operation carries the vector

[
a1
a2

]
to its

reflection
[

a1
−a2

]
as in Figure 2.2.3. Now observe that

[
a1

−a2

]
=

[
1 0
0 −1

][
a1
a2

]

so reflecting
[

a1
a2

]
in the x axis can be achieved by

4This “arrow” representation of vectors in R2 and R3 will be used extensively in Chapter 4.
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multiplying by the matrix
[

1 0
0 −1

]
.

If we write A =

[
1 0
0 −1

]
, Example 2.2.13 shows that reflection in the x axis carries each vector

x in R2 to the vector Ax in R2. It is thus an example of a function

T : R2 → R2 where T (x) = Ax for all x in R2

As such it is a generalization of the familiar functions f : R→ R that carry a number x to another
real number f (x).

x T (x)
T

Rn Rm

Figure 2.2.4

More generally, functions T : Rn → Rm are called transforma-
tions from Rn to Rm. Such a transformation T is a rule that assigns
to every vector x in Rn a uniquely determined vector T (x) in Rm

called the image of x under T . We denote this state of affairs by
writing

T : Rn → Rm or Rn T−→ Rm

The transformation T can be visualized as in Figure 2.2.4.
To describe a transformation T : Rn → Rm we must specify the vector T (x) in Rm for every x

in Rn. This is referred to as defining T , or as specifying the action of T . Saying that the action
defines the transformation means that we regard two transformations S : Rn →Rm and T : Rn →Rm

as equal if they have the same action; more formally

S = T if and only if S(x) = T (x) for all x in Rn.

Again, this what we mean by f = g where f , g : R→ R are ordinary functions.
Functions f : R→ R are often described by a formula, examples being f (x) = x2 +1 and f (x) =

sinx. The same is true of transformations; here is an example.

Example 2.2.14

The formula T


x1
x2
x3
x4

=

 x1 + x2
x2 + x3
x3 + x4

 defines a transformation R4 → R3.

Example 2.2.13 suggests that matrix multiplication is an important way of defining transforma-
tions Rn → Rm. If A is any m×n matrix, multiplication by A gives a transformation

TA : Rn → Rm defined by TA(x) = Ax for every x in Rn

Definition 2.8 Matrix Transformation TA

TA is called the matrix transformation induced by A.
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Thus Example 2.2.13 shows that reflection in the x axis is the matrix transformation R2 → R2

induced by the matrix
[

1 0
0 −1

]
. Also, the transformation R : R4 → R3 in Example 2.2.13 is the

matrix transformation induced by the matrix

A =

 1 1 0 0
0 1 1 0
0 0 1 1

 because

 1 1 0 0
0 1 1 0
0 0 1 1




x1
x2
x3
x4

=

 x1 + x2
x2 + x3
x3 + x4



Example 2.2.15

Let Rπ

2
: R2 →R2 denote counterclockwise rotation about the origin through π

2 radians (that

is, 90◦)5. Show that Rπ

2
is induced by the matrix

[
0 −1
1 0

]
.

Solution.

a

b

a
b

q

0 p x

y

R π

2
(x) =

[
−b

a

]

x =

[
a
b

]

Figure 2.2.5

The effect of Rπ

2
is to rotate the vector x =

[
a
b

]
counterclockwise through π

2 to produce the vector
Rπ

2
(x) shown in Figure 2.2.5. Since triangles 0px and

0qRπ

2
(x) are identical, we obtain Rπ

2
(x) =

[
−b

a

]
. But[

−b
a

]
=

[
0 −1
1 0

][
a
b

]
, so we obtain Rπ

2
(x) = Ax

for all x in R2 where A =

[
0 −1
1 0

]
. In other words,

Rπ

2
is the matrix transformation induced by A.

If A is the m×n zero matrix, then A induces the transformation

T : Rn → Rm given by T (x) = Ax = 0 for all x in Rn

This is called the zero transformation, and is denoted T = 0.
Another important example is the identity transformation

1Rn : Rn → Rn given by 1Rn(x) = x for all x in Rn

That is, the action of 1Rn on x is to do nothing to it. If In denotes the n× n identity matrix, we
showed in Example 2.2.11 that Inx = x for all x in Rn. Hence 1Rn(x) = Inx for all x in Rn; that is,
the identity matrix In induces the identity transformation.

Here are two more examples of matrix transformations with a clear geometric description.

5Radian measure for angles is based on the fact that 360◦ equals 2π radians. Hence π radians = 180◦ and
π

2 radians = 90◦.
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Example 2.2.16

If a > 0, the matrix transformation T
[

x
y

]
=

[
ax
y

]
induced by the matrix A =

[
a 0
0 1

]
is

called an x-expansion of R2 if a > 1, and an x-compression if 0 < a < 1. The reason for
the names is clear in the diagram below. Similarly, if b > 0 the matrix A =

[
1 0
0 b

]
gives

rise to y-expansions and y-compressions.

0
x

y

[
x
y

]

0
x

y

[ 1
2 x
y

]
x-compression

a = 1
2

0
x

y

[ 3
2 x
y

]
x-expansion

a = 3
2

Example 2.2.17

If a is a number, the matrix transformation T
[

x
y

]
=

[
x+ay

y

]
induced by the matrix

A =

[
1 a
0 1

]
is called an x-shear of R2 (positive if a > 0 and negative if a < 0). Its effect

is illustrated below when a = 1
4 and a =−1

4 .

0
x

y

[
x
y

]

0
x

y

[
x+ 1

4 y
y

]Positive x-shear

a = 1
4

0
x

y

[
x− 1

4 y
y

]Negative x-shear

a =−1
4

0

x =

[
x
y

]
x

y

Tw(x) =

[
x+2
y+1

]

Figure 2.2.6

We hasten to note that there are important geometric transfor-
mations that are not matrix transformations. For example, if w is a
fixed column in Rn, define the transformation Tw : Rn → Rn by

Tw(x) = x+w for all x in Rn

Then Tw is called translation by w. In particular, if w =

[
2
1

]
in
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R2, the effect of Tw on
[

x
y

]
is to translate it two units to the right

and one unit up (see Figure 2.2.6).
The translation Tw is not a matrix transformation unless w = 0. Indeed, if Tw were induced by

a matrix A, then Ax = Tw(x) = x+w would hold for every x in Rn. In particular, taking x = 0
gives w = A0 = 0.

Exercises for 2.2

Exercise 2.2.1 In each case find a system of equa-
tions that is equivalent to the given vector equation.
(Do not solve the system.)

a. x1

 2
−3

0

+ x2

 1
1
4

+ x3

 2
0

−1

=

 5
6

−3



b. x1


1
0
1
0

+ x2


−3

8
2
1

+ x3


−3

0
2
2

+ x4


3
2
0

−2

=


5
1
2
0



b. x1 − 3x2 − 3x3 + 3x4 = 5
8x2 + 2x4 = 1

x1 + 2x2 + 2x3 = 2
x2 + 2x3 − 5x4 = 0

Exercise 2.2.2 In each case find a vector equation
that is equivalent to the given system of equations.
(Do not solve the equation.)

a. x1 − x2 + 3x3 = 5
−3x1 + x2 + x3 =−6

5x1 − 8x2 = 9

b. x1 − 2x2 − x3 + x4 = 5
−x1 + x3 − 2x4 =−3
2x1 − 2x2 + 7x3 = 8
3x1 − 4x2 + 9x3 − 2x4 = 12

b. x1


1

−1
2
3

 + x2


−2

0
−2
−4

 + x3


−1

1
7
9

 +

x4


1

−2
0

−2

=


5

−3
8

12


Exercise 2.2.3 In each case compute Ax using: (i)
Definition 2.5. (ii) Theorem 2.2.5.

a. A =

[
3 −2 0
5 −4 1

]
and x =

 x1
x2
x3

.

b. A =

[
1 2 3
0 −4 5

]
and x =

 x1
x2
x3

.

c. A =

 −2 0 5 4
1 2 0 3

−5 6 −7 8

 and x =


x1
x2
x3
x4

.

d. A =

 3 −4 1 6
0 2 1 5

−8 7 −3 0

 and x =


x1
x2
x3
x4

.

b. Ax =

[
1 2 3
0 −4 5

] x1
x2
x3

 = x1

[
1
0

]
+

x2

[
2

−4

]
+ x3

[
3
5

]
=

[
x1 + 2x2 + 3x3

− 4x2 + 5x3

]

d. Ax =

 3 −4 1 6
0 2 1 5

−8 7 −3 0




x1
x2
x3
x4


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= x1

 3
0

−8

 + x2

 −4
2
7

 + x3

 1
1

−3

 +

x4

 6
5
0

=

 3x1 − 4x2 + x3 + 6x4
2x2 + x3 + 5x4

−8x1 + 7x2 − 3x3


Exercise 2.2.4 Let A =

[
a1 a2 a3 a4

]
be

the 3 × 4 matrix given in terms of its columns

a1 =

 1
1

−1

, a2 =

 3
0
2

, a3 =

 2
−1

3

, and a4 = 0
−3

5

. In each case either express b as a linear

combination of a1, a2, a3, and a4, or show that it is
not such a linear combination. Explain what your
answer means for the corresponding system Ax = b
of linear equations.

b =

 0
3
5

a) b =

 4
1
1

b)

b. To solve Ax = b the reduction is 1 3 2 0 4
1 0 −1 −3 1

−1 2 3 5 1


↓ 1 0 −1 −3 1

0 1 1 1 1
0 0 0 0 0

 .

So the general solution is


1+ s+3t
1− s− t

s
t

.

Hence (1+s+3t)a1+(1−s−t)a2+sa3+ta4 =
b for any choice of s and t. If s = t = 0, we
get a1 + a2 = b; if s = 1 and t = 0, we have
2a1 +a3 = b.

Exercise 2.2.5 In each case, express every solution
of the system as a sum of a specific solution plus a
solution of the associated homogeneous system.

x+ y+ z= 2
2x+ y = 3
x− y− 3z= 0

a) x− y− 4z=−4
x+ 2y+ 5z= 2
x+ y+ 2z= 0

b)

x1 + x2 − x3 − 5x5 = 2
x2 + x3 − 4x5 =−1
x2 + x3 + x4 − x5 =−1

2x1 − 4x3 + x4 + x5 = 6

c)

2x1 + x2 − x3 − x4 =−1
3x1 + x2 + x3 − 2x4 =−2
−x1 − x2 + 2x3 + x4 = 2
−2x1 − x2 + 2x4 = 3

d)

b.

 −2
2
0

+ t

 1
−3

1



d.


3

−9
−2

0

+ t


−1

4
1
1


Exercise 2.2.6 If x0 and x1 are solutions to the
homogeneous system of equations Ax = 0, use Theo-
rem 2.2.2 to show that sx0+ tx1 is also a solution for
any scalars s and t (called a linear combination of
x0 and x1).
We have Ax0 = 0 and Ax1 = 0 and so A(sx0 + tx1) =
s(Ax0)+ t(Ax1) = s ·0+ t ·0 = 0.

Exercise 2.2.7 Assume that A

 1
−1

2

 = 0 =

A

 2
0
3

. Show that x0 =

 2
−1

3

 is a solution to

Ax = b. Find a two-parameter family of solutions to
Ax = b.

Exercise 2.2.8 In each case write the system in
the form Ax= b, use the gaussian algorithm to solve
the system, and express the solution as a particular
solution plus a linear combination of basic solutions
to the associated homogeneous system Ax = 0.

a. x1 − 2x2 + x3 + 4x4 − x5 = 8
−2x1 + 4x2 + x3 − 2x4 − 4x5 =−1

3x1 − 6x2 + 8x3 + 4x4 − 13x5 = 1
8x1 − 16x2 + 7x3 + 12x4 − 6x5 = 11
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b. x1 − 2x2 + x3 + 2x4 + 3x5 =−4
−3x1 + 6x2 − 2x3 − 3x4 − 11x5 = 11
−2x1 + 4x2 − x3 + x4 − 8x5 = 7
−x1 + 2x2 + 3x4 − 5x5 = 3

b. x =


−3

0
−1

0
0

+

s


2
1
0
0
0

+ t


−5

0
2
0
1


 .

Exercise 2.2.9 Given vectors a1 =

 1
0
1

,

a2 =

 1
1
0

, and a3 =

 0
−1

1

, find a vector b that

is not a linear combination of a1, a2, and a3. Justify
your answer. [Hint: Part (2) of Theorem 2.2.1.]

Exercise 2.2.10 In each case either show that the
statement is true, or give an example showing that
it is false.

a.
[

3
2

]
is a linear combination of

[
1
0

]
and[

0
1

]
.

b. If Ax has a zero entry, then A has a row of
zeros.

c. If Ax = 0 where x 6= 0, then A = 0.

d. Every linear combination of vectors in Rn can
be written in the form Ax.

e. If A =
[

a1 a2 a3
]

in terms of its columns,
and if b = 3a1 −2a2, then the system Ax = b
has a solution.

f. If A =
[

a1 a2 a3
]

in terms of its columns,
and if the system Ax = b has a solution, then
b = sa1 + ta2 for some s, t.

g. If A is m× n and m < n, then Ax = b has a
solution for every column b.

h. If Ax = b has a solution for some column b,
then it has a solution for every column b.

i. If x1 and x2 are solutions to Ax = b, then
x1 −x2 is a solution to Ax = 0.

j. Let A =
[

a1 a2 a3
]

in terms of its
columns. If a3 = sa1+ ta2, then Ax = 0, where

x =

 s
t
−1

.

b. False.
[

1 2
2 4

][
2

−1

]
=

[
0
0

]
.

d. True. The linear combination x1a1+ · · ·+xnan

equals Ax where A =
[

a1 · · · an
]

by The-
orem 2.2.1.

f. False. If A =

[
1 1 −1
2 2 0

]
and x =

 2
0
1

,

then

Ax=

[
1
4

]
6= s

[
1
2

]
+t

[
1
2

]
for any s and t.

h. False. If A =

[
1 −1 1

−1 1 −1

]
, there is a so-

lution for b =

[
0
0

]
but not for b =

[
1
0

]
.

Exercise 2.2.11 Let T : R2 → R2 be a transfor-
mation. In each case show that T is induced by a
matrix and find the matrix.

a. T is a reflection in the y axis.

b. T is a reflection in the line y = x.

c. T is a reflection in the line y =−x.

d. T is a clockwise rotation through π

2 .

b. Here T
[

x
y

]
=

[
y
x

]
=

[
0 1
1 0

][
x
y

]
.

d. Here T
[

x
y

]
=

[
y
−x

]
=

[
0 1

−1 0

][
x
y

]
.
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Exercise 2.2.12 The projection P :R3 →R2 is de-

fined by P

 x
y
z

=

[
x
y

]
for all

 x
y
z

 in R3. Show

that P is induced by a matrix and find the matrix.

Exercise 2.2.13 Let T : R3 → R3 be a transfor-
mation. In each case show that T is induced by a
matrix and find the matrix.

a. T is a reflection in the x− y plane.

b. T is a reflection in the y− z plane.

b. Here

T

 x
y
z

=

 −x
y
z

=

 −1 0 0
0 1 0
0 0 1

 x
y
z

 ,

so the matrix is

 −1 0 0
0 1 0
0 0 1

.

Exercise 2.2.14 Fix a > 0 in R, and define Ta :
R4 → R4 by Ta(x) = ax for all x in R4. Show that
T is induced by a matrix and find the matrix. [T
is called a dilation if a > 1 and a contraction if
a < 1.]

Exercise 2.2.15 Let A be m× n and let x be in
Rn. If A has a row of zeros, show that Ax has a zero
entry.

Exercise 2.2.16 If a vector b is a linear combi-
nation of the columns of A, show that the system
Ax = b is consistent (that is, it has at least one so-
lution.)

Write A =
[

a1 a2 · · · an
]

in terms of its
columns. If b = x1a1 + x2a2 + · · ·+ xnan where the
xi are scalars, then Ax = b by Theorem 2.2.1 where
x =

[
x1 x2 · · · xn

]T . That is, x is a solution to
the system Ax = b.

Exercise 2.2.17 If a system Ax = b is inconsistent
(no solution), show that b is not a linear combina-
tion of the columns of A.

Exercise 2.2.18 Let x1 and x2 be solutions to the
homogeneous system Ax = 0.

a. Show that x1 +x2 is a solution to Ax = 0.

b. Show that tx1 is a solution to Ax = 0 for any
scalar t.

b. By Theorem 2.2.3, A(tx1) = t(Ax1) = t ·0 = 0;
that is, tx1 is a solution to Ax = 0.

Exercise 2.2.19 Suppose x1 is a solution to the
system Ax = b. If x0 is any nontrivial solution to
the associated homogeneous system Ax = 0, show
that x1 + tx0, t a scalar, is an infinite one parameter
family of solutions to Ax = b. [Hint: Example 2.1.7
Section 2.1.]

Exercise 2.2.20 Let A and B be matrices of the
same size. If x is a solution to both the system
Ax = 0 and the system Bx = 0, show that x is a
solution to the system (A+B)x = 0.

Exercise 2.2.21 If A is m×n and Ax = 0 for every
x in Rn, show that A = 0 is the zero matrix. [Hint:
Consider Ae j where e j is the jth column of In; that
is, e j is the vector in Rn with 1 as entry j and every
other entry 0.]

Exercise 2.2.22 Prove part (1) of Theorem 2.2.2.

If A is m × n and x and y are n-vectors, we
must show that A(x + y) = Ax + Ay. Denote the
columns of A by a1, a2, . . . , an, and write x =[

x1 x2 · · · xn
]T and y =

[
y1 y2 · · · yn

]T .
Then x+ y =

[
x1 + y1 x2 + y2 · · · xn + yn

]T , so
Definition 2.1 and Theorem 2.1.1 give A(x+ y) =
(x1 + y1)a1 +(x2 + y2)a2 + · · ·+(xn + yn)an = (x1a1 +
x2a2 + · · ·+ xnan)+ (y1a1 + y2a2 + · · ·+ ynan) = Ax+
Ay.

Exercise 2.2.23 Prove part (2) of Theorem 2.2.2.
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2.3 Matrix Multiplication

In Section 2.2 matrix-vector products were introduced. If A is an m× n matrix, the product Ax
was defined for any n-column x in Rn as follows: If A =

[
a1 a2 · · · an

]
where the a j are the

columns of A, and if x =


x1
x2
...

xn

, Definition 2.5 reads

Ax = x1a1 + x2a2 + · · ·+ xnan (2.5)

This was motivated as a way of describing systems of linear equations with coefficient matrix A.
Indeed every such system has the form Ax = b where b is the column of constants.

In this section we extend this matrix-vector multiplication to a way of multiplying matrices in
general, and then investigate matrix algebra for its own sake. While it shares several properties of
ordinary arithmetic, it will soon become clear that matrix arithmetic is different in a number of
ways.

Matrix multiplication is closely related to composition of transformations.

Composition and Matrix Multiplication

Sometimes two transformations “link” together as follows:

Rk T−→ Rn S−→ Rm

In this case we can apply T first and then apply S, and the result is a new transformation

S◦T : Rk → Rm

called the composite of S and T , defined by

(S◦T )(x) = S [T (x)] for all x in Rk

T S

S◦T

Rk Rn Rm

The action of S ◦T can be described as “first T then S ” (note the
order!)6. This new transformation is described in the diagram. The
reader will have encountered composition of ordinary functions: For
example, consider R g−→ R f−→ R where f (x) = x2 and g(x) = x+ 1 for
all x in R. Then

( f ◦g)(x) = f [g(x)] = f (x+1) = (x+1)2

(g◦ f )(x) = g [ f (x)] = g(x2) = x2 +1

6When reading the notation S ◦T , we read S first and then T even though the action is “first T then S ”. This
annoying state of affairs results because we write T (x) for the effect of the transformation T on x, with T on the
left. If we wrote this instead as (x)T , the confusion would not occur. However the notation T (x) is well established.
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for all x in R.
Our concern here is with matrix transformations. Suppose that A is an m× n matrix and B

is an n× k matrix, and let Rk TB−→ Rn TA−→ Rm be the matrix transformations induced by B and A
respectively, that is:

TB(x) = Bx for all x in Rk and TA(y) = Ay for all y in Rn

Write B =
[

b1 b2 · · · bk
]

where b j denotes column j of B for each j. Hence each b j is an
n-vector (B is n× k) so we can form the matrix-vector product Ab j. In particular, we obtain an
m× k matrix [

Ab1 Ab2 · · · Abk
]

with columns Ab1, Ab2, · · · , Abk. Now compute (TA ◦TB)(x) for any x =


x1
x2
...

xk

 in Rk:

(TA ◦TB)(x) = TA [TB(x)] Definition of TA ◦TB
= A(Bx) A and B induce TA and TB
= A(x1b1 + x2b2 + · · ·+ xkbk) Equation 2.5 above
= A(x1b1)+A(x2b2)+ · · ·+A(xkbk) Theorem 2.2.2
= x1(Ab1)+ x2(Ab2)+ · · ·+ xk(Abk) Theorem 2.2.2
=

[
Ab1 Ab2 · · · Abk

]
x Equation 2.5 above

Because x was an arbitrary vector in Rn, this shows that TA◦TB is the matrix transformation induced
by the matrix

[
Ab1 Ab2 · · · Abn

]
. This motivates the following definition.

Definition 2.9 Matrix Multiplication

Let A be an m×n matrix, let B be an n× k matrix, and write B =
[

b1 b2 · · · bk
]

where
b j is column j of B for each j. The product matrix AB is the m×k matrix defined as follows:

AB = A
[

b1 b2 · · · bk
]
=
[

Ab1 Ab2 · · · Abk
]

Thus the product matrix AB is given in terms of its columns Ab1, Ab2, . . . , Abn: Column j of
AB is the matrix-vector product Ab j of A and the corresponding column b j of B. Note that each
such product Ab j makes sense by Definition 2.5 because A is m× n and each b j is in Rn (since B
has n rows). Note also that if B is a column matrix, this definition reduces to Definition 2.5 for
matrix-vector multiplication.

Given matrices A and B, Definition 2.9 and the above computation give

A(Bx) =
[

Ab1 Ab2 · · · Abn
]
x = (AB)x

for all x in Rk. We record this for reference.
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Theorem 2.3.1
Let A be an m×n matrix and let B be an n×k matrix. Then the product matrix AB is m×k
and satisfies

A(Bx) = (AB)x for all x in Rk

Here is an example of how to compute the product AB of two matrices using Definition 2.9.

Example 2.3.1

Compute AB if A =

 2 3 5
1 4 7
0 1 8

 and B =

 8 9
7 2
6 1

.

Solution. The columns of B are b1 =

 8
7
6

 and b2 =

 9
2
1

, so Definition 2.5 gives

Ab1 =

 2 3 5
1 4 7
0 1 8

 8
7
6

=

 67
78
55

 and Ab2 =

 2 3 5
1 4 7
0 1 8

 9
2
1

=

 29
24
10



Hence Definition 2.9 above gives AB =
[

Ab1 Ab2
]
=

 67 29
78 24
55 10

.

Example 2.3.2

If A is m×n and B is n× k, Theorem 2.3.1 gives a simple formula for the composite of the
matrix transformations TA and TB:

TA ◦TB = TAB

Solution. Given any x in Rk,

(TA ◦TB)(x) = TA[TB(x)]
= A[Bx]
= (AB)x
= TAB(x)

While Definition 2.9 is important, there is another way to compute the matrix product AB that
gives a way to calculate each individual entry. In Section 2.2 we defined the dot product of two n-
tuples to be the sum of the products of corresponding entries. We went on to show (Theorem 2.2.5)
that if A is an m × n matrix and x is an n-vector, then entry j of the product Ax is the dot
product of row j of A with x. This observation was called the “dot product rule” for matrix-vector
multiplication, and the next theorem shows that it extends to matrix multiplication in general.
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Theorem 2.3.2: Dot Product Rule
Let A and B be matrices of sizes m×n and n× k, respectively. Then the (i, j)-entry of AB is
the dot product of row i of A with column j of B.

Proof. Write B =
[

b1 b2 · · · bn
]

in terms of its columns. Then Ab j is column j of AB for each
j. Hence the (i, j)-entry of AB is entry i of Ab j, which is the dot product of row i of A with b j.
This proves the theorem.

Thus to compute the (i, j)-entry of AB, proceed as follows (see the diagram):

Go across row i of A, and down column j of B, multiply corresponding entries, and add the results.

  =

 

row i
column j
(i, j)-entry

AB
AB

Note that this requires that the rows of A must be the same length as the columns of B. The
following rule is useful for remembering this and for deciding the size of the product matrix AB.
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Compatibility Rule

A B

m× n n′ × k

Let A and B denote matrices. If A is m×n and B is n′×k, the product
AB can be formed if and only if n = n′. In this case the size of the
product matrix AB is m× k, and we say that AB is defined, or that
A and B are compatible for multiplication.

The diagram provides a useful mnemonic for remembering this. We adopt the following convention:

Convention
Whenever a product of matrices is written, it is tacitly assumed that the sizes of the factors are
such that the product is defined.

To illustrate the dot product rule, we recompute the matrix product in Example 2.3.1.

Example 2.3.3

Compute AB if A =

 2 3 5
1 4 7
0 1 8

 and B =

 8 9
7 2
6 1

.

Solution. Here A is 3×3 and B is 3×2, so the product matrix AB is defined and will be of
size 3×2. Theorem 2.3.2 gives each entry of AB as the dot product of the corresponding row
of A with the corresponding column of B j that is,

AB =

 2 3 5
1 4 7
0 1 8

 8 9
7 2
6 1

=

 2 ·8+3 ·7+5 ·6 2 ·9+3 ·2+5 ·1
1 ·8+4 ·7+7 ·6 1 ·9+4 ·2+7 ·1
0 ·8+1 ·7+8 ·6 0 ·9+1 ·2+8 ·1

=

 67 29
78 24
55 10


Of course, this agrees with Example 2.3.1.

Example 2.3.4

Compute the (1, 3)- and (2, 4)-entries of AB where

A =

[
3 −1 2
0 1 4

]
and B =

 2 1 6 0
0 2 3 4

−1 0 5 8

 .

Then compute AB.

Solution. The (1, 3)-entry of AB is the dot product of row 1 of A and column 3 of B
(highlighted in the following display), computed by multiplying corresponding entries and
adding the results.

[
3 −1 2
0 1 4

] 2 1 6 0
0 2 3 4

−1 0 5 8

 (1, 3)-entry = 3 ·6+(−1) ·3+2 ·5 = 25
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Similarly, the (2, 4)-entry of AB involves row 2 of A and column 4 of B.

[
3 −1 2
0 1 4

] 2 1 6 0
0 2 3 4

−1 0 5 8

 (2, 4)-entry = 0 ·0+1 ·4+4 ·8 = 36

Since A is 2×3 and B is 3×4, the product is 2×4.

AB =

[
3 −1 2
0 1 4

] 2 1 6 0
0 2 3 4

−1 0 5 8

=

[
4 1 25 12

−4 2 23 36

]

Example 2.3.5

If A =
[

1 3 2
]

and B =

 5
6
4

, compute A2, AB, BA, and B2 when they are defined.7

Solution. Here, A is a 1×3 matrix and B is a 3×1 matrix, so A2 and B2 are not defined.
However, the compatibility rule reads

A B
1×3 3×1 and B A

3×1 1×3

so both AB and BA can be formed and these are 1×1 and 3×3 matrices, respectively.

AB =
[

1 3 2
] 5

6
4

=
[

1 ·5+3 ·6+2 ·4
]
=
[

31
]

BA =

 5
6
4

[
1 3 2

]
=

 5 ·1 5 ·3 5 ·2
6 ·1 6 ·3 6 ·2
4 ·1 4 ·3 4 ·2

=

 5 15 10
6 18 12
4 12 8



Unlike numerical multiplication, matrix products AB and BA need not be equal. In fact they
need not even be the same size, as Example 2.3.5 shows. It turns out to be rare that AB = BA
(although it is by no means impossible), and A and B are said to commute when this happens.

Example 2.3.6

Let A =

[
6 9

−4 −6

]
and B =

[
1 2

−1 0

]
. Compute A2, AB, BA.

7As for numbers, we write A2 = A ·A, A3 = A ·A ·A, etc. Note that A2 is defined if and only if A is of size n×n for
some n.



78 Matrix Algebra

Solution. A2 =

[
6 9

−4 −6

][
6 9

−4 −6

]
=

[
0 0
0 0

]
, so A2 = 0 can occur even if A 6= 0.

Next,

AB =

[
6 9

−4 −6

][
1 2

−1 0

]
=

[
−3 12

2 −8

]
BA =

[
1 2

−1 0

][
6 9

−4 −6

]
=

[
−2 −3
−6 −9

]
Hence AB 6= BA, even though AB and BA are the same size.

Example 2.3.7

If A is any matrix, then IA = A and AI = A, and where I denotes an identity matrix of a size
so that the multiplications are defined.

Solution. These both follow from the dot product rule as the reader should verify. For a
more formal proof, write A =

[
a1 a2 · · · an

]
where a j is column j of A. Then

Definition 2.9 and Example 2.2.11 give

IA =
[

Ia1 Ia2 · · · Ian
]
=
[

a1 a2 · · · an
]
= A

If e j denotes column j of I, then Ae j = a j for each j by Example 2.2.12. Hence
Definition 2.9 gives:

AI = A
[

e1 e2 · · · en
]
=
[

Ae1 Ae2 · · · Aen
]
=
[

a1 a2 · · · an
]
= A

The following theorem collects several results about matrix multiplication that are used every-
where in linear algebra.

Theorem 2.3.3
Assume that a is any scalar, and that A, B, and C are matrices of sizes such that the
indicated matrix products are defined. Then:

1. IA = A and AI = A where I denotes an
identity matrix.

2. A(BC) = (AB)C.

3. A(B+C) = AB+AC.

4. (B+C)A = BA+CA.

5. a(AB) = (aA)B = A(aB).

6. (AB)T = BT AT .

Proof. Condition (1) is Example 2.3.7; we prove (2), (4), and (6) and leave (3) and (5) as exercises.

1. If C =
[

c1 c2 · · · ck
]

in terms of its columns, then BC =
[

Bc1 Bc2 · · · Bck
]

by Defi-
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nition 2.9, so

A(BC) =
[

A(Bc1) A(Bc2) · · · A(Bck)
]

Definition 2.9

=
[
(AB)c1 (AB)c2 · · · (AB)ck)

]
Theorem 2.3.1

= (AB)C Definition 2.9

4. We know (Theorem 2.2.2) that (B+C)x = Bx+Cx holds for every column x. If we write
A =

[
a1 a2 · · · an

]
in terms of its columns, we get

(B+C)A =
[
(B+C)a1 (B+C)a2 · · · (B+C)an

]
Definition 2.9

=
[

Ba1 +Ca1 Ba2 +Ca2 · · · Ban +Can
]

Theorem 2.2.2

=
[

Ba1 Ba2 · · · Ban
]
+
[

Ca1 Ca2 · · · Can
]

Adding Columns

= BA+CA Definition 2.9

6. As in Section 2.1, write A = [ai j] and B = [bi j], so that AT = [a′i j] and BT = [b′i j] where a′i j = a ji

and b′ji = bi j for all i and j. If ci j denotes the (i, j)-entry of BT AT , then ci j is the dot product
of row i of BT with column j of AT . Hence

ci j = b′i1a′1 j +b′i2a′2 j + · · ·+b′ima′m j = b1ia j1 +b2ia j2 + · · ·+bmia jm

= a j1b1i +a j2b2i + · · ·+a jmbmi

But this is the dot product of row j of A with column i of B; that is, the ( j, i)-entry of AB;
that is, the (i, j)-entry of (AB)T . This proves (6).

Property 2 in Theorem 2.3.3 is called the associative law of matrix multiplication. It as-
serts that the equation A(BC) = (AB)C holds for all matrices (if the products are defined). Hence
this product is the same no matter how it is formed, and so is written simply as ABC. This ex-
tends: The product ABCD of four matrices can be formed several ways—for example, (AB)(CD),
[A(BC)]D, and A[B(CD)]—but the associative law implies that they are all equal and so are written
as ABCD. A similar remark applies in general: Matrix products can be written unambiguously with
no parentheses.

However, a note of caution about matrix multiplication must be taken: The fact that AB and
BA need not be equal means that the order of the factors is important in a product of matrices.
For example ABCD and ADCB may not be equal.

Warning

If the order of the factors in a product of matrices is changed, the product matrix may
change (or may not be defined). Ignoring this warning is a source of many errors by
students of linear algebra!



80 Matrix Algebra

Properties 3 and 4 in Theorem 2.3.3 are called distributive laws. They assert that A(B+C) =
AB+AC and (B+C)A = BA+CA hold whenever the sums and products are defined. These rules
extend to more than two terms and, together with Property 5, ensure that many manipulations
familiar from ordinary algebra extend to matrices. For example

A(2B−3C+D−5E) = 2AB−3AC+AD−5AE
(A+3C−2D)B = AB+3CB−2DB

Note again that the warning is in effect: For example A(B−C) need not equal AB−CA. These rules
make possible a lot of simplification of matrix expressions.

Example 2.3.8

Simplify the expression A(BC−CD)+A(C−B)D−AB(C−D).

Solution.

A(BC−CD)+A(C−B)D−AB(C−D) = A(BC)−A(CD)+(AC−AB)D− (AB)C+(AB)D
= ABC−ACD+ACD−ABD−ABC+ABD
= 0

Example 2.3.9 and Example 2.3.10 below show how we can use the properties in Theorem 2.3.2
to deduce other facts about matrix multiplication. Matrices A and B are said to commute if
AB = BA.

Example 2.3.9

Suppose that A, B, and C are n×n matrices and that both A and B commute with C; that
is, AC =CA and BC =CB. Show that AB commutes with C.

Solution. Showing that AB commutes with C means verifying that (AB)C =C(AB). The
computation uses the associative law several times, as well as the given facts that AC =CA
and BC =CB.

(AB)C = A(BC) = A(CB) = (AC)B = (CA)B =C(AB)

Example 2.3.10

Show that AB = BA if and only if (A−B)(A+B) = A2 −B2.

Solution. The following always holds:

(A−B)(A+B) = A(A+B)−B(A+B) = A2 +AB−BA−B2 (2.6)

Hence if AB = BA, then (A−B)(A+B) = A2 −B2 follows. Conversely, if this last equation
holds, then equation (2.6) becomes

A2 −B2 = A2 +AB−BA−B2
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This gives 0 = AB−BA, and AB = BA follows.

In Section 2.2 we saw (in Theorem 2.2.1) that every system of linear equations has the form

Ax = b

where A is the coefficient matrix, x is the column of variables, and b is the constant matrix. Thus
the system of linear equations becomes a single matrix equation. Matrix multiplication can yield
information about such a system.

Example 2.3.11

Consider a system Ax = b of linear equations where A is an m×n matrix. Assume that a
matrix C exists such that CA = In. If the system Ax = b has a solution, show that this
solution must be Cb. Give a condition guaranteeing that Cb is in fact a solution.

Solution. Suppose that x is any solution to the system, so that Ax = b. Multiply both
sides of this matrix equation by C to obtain, successively,

C(Ax) =Cb, (CA)x =Cb, Inx =Cb, x =Cb

This shows that if the system has a solution x, then that solution must be x =Cb, as
required. But it does not guarantee that the system has a solution. However, if we write
x1 =Cb, then

Ax1 = A(Cb) = (AC)b

Thus x1 =Cb will be a solution if the condition AC = Im is satisfied.

The ideas in Example 2.3.11 lead to important information about matrices; this will be pursued
in the next section.

Block Multiplication

Definition 2.10 Block Partition of a Matrix
It is often useful to consider matrices whose entries are themselves matrices (called blocks).
A matrix viewed in this way is said to be partitioned into blocks.

For example, writing a matrix B in the form

B =
[

b1 b2 · · · bk
]

where the b j are the columns of B

is such a block partition of B. Here is another example.
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Consider the matrices

A =


1 0 0 0 0
0 1 0 0 0
2 −1 4 2 1
3 1 −1 7 5

=

[
I2 023
P Q

]
and B =


4 −2
5 6
7 3

−1 0
1 6

=

[
X
Y

]

where the blocks have been labelled as indicated. This is a natural way to partition A into blocks in
view of the blocks I2 and 023 that occur. This notation is particularly useful when we are multiplying
the matrices A and B because the product AB can be computed in block form as follows:

AB =

[
I 0
P Q

][
X
Y

]
=

[
IX +0Y
PX +QY

]
=

[
X

PX +QY

]
=


4 −2
5 6

30 8
8 27


This is easily checked to be the product AB, computed in the conventional manner.

In other words, we can compute the product AB by ordinary matrix multiplication, using blocks
as entries. The only requirement is that the blocks be compatible. That is, the sizes of the blocks
must be such that all (matrix) products of blocks that occur make sense. This means that the number
of columns in each block of A must equal the number of rows in the corresponding block of B.

Theorem 2.3.4: Block Multiplication

If matrices A and B are partitioned compatibly into blocks, the product AB can be
computed by matrix multiplication using blocks as entries.

We omit the proof.
We have been using two cases of block multiplication. If B =

[
b1 b2 · · · bk

]
is a matrix

where the b j are the columns of B, and if the matrix product AB is defined, then we have

AB = A
[

b1 b2 · · · bk
]
=
[

Ab1 Ab2 · · · Abk
]

This is Definition 2.9 and is a block multiplication where A = [A] has only one block. As another
illustration,

Bx =
[

b1 b2 · · · bk
]


x1
x2
...

xk

= x1b1 + x2b2 + · · ·+ xkbk

where x is any k×1 column matrix (this is Definition 2.5).
It is not our intention to pursue block multiplication in detail here. However, we give one more

example because it will be used below.
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Theorem 2.3.5

Suppose matrices A =

[
B X
0 C

]
and A1 =

[
B1 X1
0 C1

]
are partitioned as shown where B and

B1 are square matrices of the same size, and C and C1 are also square of the same size.
These are compatible partitionings and block multiplication gives

AA1 =

[
B X
0 C

][
B1 X1
0 C1

]
=

[
BB1 BX1 +XC1

0 CC1

]

Example 2.3.12

Obtain a formula for Ak where A =

[
I X
0 0

]
is square and I is an identity matrix.

Solution. We have A2 =

[
I X
0 0

][
I X
0 0

]
=

[
I2 IX +X0
0 02

]
=

[
I X
0 0

]
= A. Hence

A3 = AA2 = AA = A2 = A. Continuing in this way, we see that Ak = A for every k ≥ 1.

Block multiplication has theoretical uses as we shall see. However, it is also useful in computing
products of matrices in a computer with limited memory capacity. The matrices are partitioned
into blocks in such a way that each product of blocks can be handled. Then the blocks are stored
in auxiliary memory and their products are computed one by one.

Directed Graphs

The study of directed graphs illustrates how matrix multiplication arises in ways other than the
study of linear equations or matrix transformations.

A directed graph consists of a set of points (called vertices) connected by arrows (called
edges). For example, the vertices could represent cities and the edges available flights. If the graph
has n vertices v1, v2, . . . , vn, the adjacency matrix A =

[
ai j

]
is the n×n matrix whose (i, j)-entry

ai j is 1 if there is an edge from v j to vi (note the order), and zero otherwise. For example, the

adjacency matrix of the directed graph shown is A =

 1 1 0
1 0 1
1 0 0

.

v1 v2

v3

A path of length r (or an r-path) from vertex j to vertex i is a
sequence of r edges leading from v j to vi. Thus v1 → v2 → v1 → v1 → v3
is a 4-path from v1 to v3 in the given graph. The edges are just the
paths of length 1, so the (i, j)-entry ai j of the adjacency matrix A is the
number of 1-paths from v j to vi. This observation has an important

extension:
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Theorem 2.3.6
If A is the adjacency matrix of a directed graph with n vertices, then the (i, j)-entry of Ar is
the number of r-paths v j → vi.

As an illustration, consider the adjacency matrix A in the graph shown. Then

A =

 1 1 0
1 0 1
1 0 0

 , A2 =

 2 1 1
2 1 0
1 1 0

 , and A3 =

 4 2 1
3 2 1
2 1 1


Hence, since the (2, 1)-entry of A2 is 2, there are two 2-paths v1 → v2 (in fact they are v1 → v1 → v2
and v1 → v3 → v2). Similarly, the (2, 3)-entry of A2 is zero, so there are no 2-paths v3 → v2, as the
reader can verify. The fact that no entry of A3 is zero shows that it is possible to go from any vertex
to any other vertex in exactly three steps.

To see why Theorem 2.3.6 is true, observe that it asserts that

the (i, j)-entry of Ar equals the number of r-paths v j → vi (2.7)

holds for each r ≥ 1. We proceed by induction on r (see Appendix ??). The case r = 1 is the
definition of the adjacency matrix. So assume inductively that (2.7) is true for some r ≥ 1; we must
prove that (2.7) also holds for r+1. But every (r+1)-path v j → vi is the result of an r-path v j → vk
for some k, followed by a 1-path vk → vi. Writing A =

[
ai j

]
and Ar =

[
bi j

]
, there are bk j paths of

the former type (by induction) and aik of the latter type, and so there are aikbk j such paths in all.
Summing over k, this shows that there are

ai1b1 j +ai2b2 j + · · ·+ainbn j (r+1)-paths v j → vi

But this sum is the dot product of the ith row
[

ai1 ai2 · · · ain
]

of A with the jth column
[

b1 j b2 j · · · bn j
]T

of Ar. As such, it is the (i, j)-entry of the matrix product ArA = Ar+1. This shows that (2.7) holds
for r+1, as required.

Exercises for 2.3

Exercise 2.3.1 Compute the following matrix
products.

[
1 3
0 −2

][
2 −1
0 1

]
a)

[
1 −1 2
2 0 4

] 2 3 1
1 9 7

−1 0 2

b)

[
5 0 −7
1 5 9

] 3
1

−1

c)

[
1 3 −3

] 3 0
−2 1

0 6

d)

 1 0 0
0 1 0
0 0 1

 3 −2
5 −7
9 7

e)
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[
1 −1 3

] 2
1

−8

f)

 2
1

−7

[
1 −1 3

]
g)

[
3 1
5 2

][
2 −1

−5 3

]
h)

[
2 3 1
5 7 4

] a 0 0
0 b 0
0 0 c

i)

 a 0 0
0 b 0
0 0 c

 a′ 0 0
0 b′ 0
0 0 c′

j)

b.
[
−1 −6 −2

0 6 10

]
d.

[
−3 −15

]
f. [−23]

h.
[

1 0
0 1

]

j.

 aa′ 0 0
0 bb′ 0
0 0 cc′


Exercise 2.3.2 In each of the following cases, find
all possible products A2, AB, AC, and so on.

a. A =

[
1 2 3

−1 0 0

]
, B =

[
1 −2
1
2 3

]
,

C =

 −1 0
2 5
0 5


b. A =

[
1 2 4
0 1 −1

]
, B =

[
−1 6

1 0

]
,

C =

 2 0
−1 1

1 2



b. BA =

[
−1 4 −10

1 2 4

]
, B2 =

[
7 −6

−1 6

]
,

CB =

 −2 12
2 −6
1 6


AC =

[
4 10

−2 −1

]
, CA =

 2 4 8
−1 −1 −5

1 4 2


Exercise 2.3.3 Find a, b, a1, and b1 if:

a.
[

a b
a1 b1

][
3 −5

−1 2

]
=

[
1 −1
2 0

]
b.

[
2 1

−1 2

][
a b
a1 b1

]
=

[
7 2

−1 4

]

b. (a, b, a1, b1) = (3, 0, 1, 2)

Exercise 2.3.4 Verify that A2 −A−6I = 0 if:[
3 −1
0 −2

]
a)

[
2 2
2 −1

]
b)

b. A2 − A − 6I =

[
8 2
2 5

]
−

[
2 2
2 −1

]
−[

6 0
0 6

]
=

[
0 0
0 0

]

Exercise 2.3.5 Given A =

[
1 −1
0 1

]
, B =[

1 0 −2
3 1 0

]
,

C =

 1 0
2 1
5 8

, and D =

[
3 −1 2
1 0 5

]
, verify the

following facts from Theorem 2.3.1.

A(B−D) = AB−ADa) A(BC) = (AB)Cb)
(CD)T = DTCTc)

b. A(BC)=

[
1 −1
0 1

][
−9 −16

5 1

]
=

[
−14 −17

5 1

]
=[

−2 −1 −2
3 1 0

] 1 0
2 1
5 8

= (AB)C
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Exercise 2.3.6 Let A be a 2×2 matrix.

a. If A commutes with
[

0 1
0 0

]
, show that

A =

[
a b
0 a

]
for some a and b.

b. If A commutes with
[

0 0
1 0

]
, show that

A =

[
a 0
c a

]
for some a and c.

c. Show that A commutes with every 2× 2 ma-
trix
if and only if A =

[
a 0
0 a

]
for some a.

b. If A =

[
a b
c d

]
and E =

[
0 0
1 0

]
, compare

entries an AE and EA.

Exercise 2.3.7

a. If A2 can be formed, what can be said about
the size of A?

b. If AB and BA can both be formed, describe the
sizes of A and B.

c. If ABC can be formed, A is 3×3, and C is 5×5,
what size is B?

b. m×n and n×m for some m and n

Exercise 2.3.8

a. Find two 2×2 matrices A such that A2 = 0.

b. Find three 2×2 matrices A such that (i) A2 = I;
(ii) A2 = A.

c. Find 2×2 matrices A and B such that AB = 0
but BA 6= 0.

b. i.
[

1 0
0 1

]
,
[

1 0
0 −1

]
,
[

1 1
0 −1

]
ii.

[
1 0
0 0

]
,
[

1 0
0 1

]
,
[

1 1
0 0

]

Exercise 2.3.9 Write P =

 1 0 0
0 0 1
0 1 0

, and let A

be 3×n and B be m×3.

a. Describe PA in terms of the rows of A.

b. Describe BP in terms of the columns of B.

Exercise 2.3.10 Let A, B, and C be as in Exer-
cise 2.3.5. Find the (3, 1)-entry of CAB using exactly
six numerical multiplications.

Exercise 2.3.11 Compute AB, using the indicated
block partitioning.

A =


2 −1 3 1
1 0 1 2
0 0 1 0
0 0 0 1

 B =


1 2 0

−1 0 0
0 5 1
1 −1 0


Exercise 2.3.12 In each case give formulas for all
powers A, A2, A3, . . . of A using the block decompo-
sition indicated.

a. A =

 1 0 0
1 1 −1
1 −1 1



b. A =


1 −1 2 −1
0 1 0 0
0 0 −1 1
0 0 0 1



b. A2k =


1 −2k 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 for k = 0, 1, 2, . . . ,

A2k+1 = A2kA =


1 −(2k+1) 2 −1
0 1 0 0
0 0 −1 1
0 0 0 1


for k = 0, 1, 2, . . .

Exercise 2.3.13 Compute the following using
block multiplication (all blocks are k× k).
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[
I X

−Y I

][
I 0

Y I

]
a)

[
I X
0 I

][
I −X
0 I

]
b)[

I X
][

I X
]Tc)

[
I XT

][
−X I

]Td)[
I X
0 −I

]n

any n ≥ 1e) [
0 X
I 0

]n

any n ≥ 1f)

b.
[

I 0
0 I

]
= I2k

d. 0k

f.
[

Xm 0
0 Xm

]
if n = 2m;

[
0 Xm+1

Xm 0

]
if n =

2m+1

Exercise 2.3.14 Let A denote an m×n matrix.

a. If AX = 0 for every n×1 matrix X , show that
A = 0.

b. If YA = 0 for every 1×m matrix Y , show that
A = 0.

b. If Y is row i of the identity matrix I, then YA
is row i of IA = A.

Exercise 2.3.15

a. If U =

[
1 2
0 −1

]
, and AU = 0, show that

A = 0.

b. Let U be such that AU = 0 implies that A = 0.
If PU = QU , show that P = Q.

Exercise 2.3.16 Simplify the following expressions
where A, B, and C represent matrices.

a. A(3B−C)+(A−2B)C+2B(C+2A)

b. A(B+C−D)+B(C−A+D)− (A+B)C
+(A−B)D

c. AB(BC−CB)+(CA−AB)BC+CA(A−B)C

d. (A−B)(C−A)+(C−B)(A−C)+(C−A)2

b. AB−BA

d. 0

Exercise 2.3.17 If A=

[
a b
c d

]
where a 6= 0, show

that A factors in the form A =

[
1 0
x 1

][
y z
0 w

]
.

Exercise 2.3.18 If A and B commute with C, show
that the same is true of:

A+Ba) kA, k any scalarb)

b. (kA)C = k(AC) = k(CA) =C(kA)

Exercise 2.3.19 If A is any matrix, show that both
AAT and AT A are symmetric.

Exercise 2.3.20 If A and B are symmetric, show
that AB is symmetric if and only if AB = BA.

We have AT = A and BT = B, so (AB)T = BT AT = BA.
Hence AB is symmetric if and only if AB = BA.

Exercise 2.3.21 If A is a 2×2 matrix, show that
AT A = AAT if and only if A is symmetric or

A =

[
a b
−b a

]
for some a and b.

Exercise 2.3.22

a. Find all symmetric 2×2 matrices A such that
A2 = 0.

b. Repeat (a) if A is 3×3.

c. Repeat (a) if A is n×n.

b. A = 0



88 Matrix Algebra

Exercise 2.3.23 Show that there exist no 2× 2
matrices A and B such that AB−BA = I. [Hint: Ex-
amine the (1, 1)- and (2, 2)-entries.]

Exercise 2.3.24 Let B be an n× n matrix. Sup-
pose AB = 0 for some nonzero m×n matrix A. Show
that no n × n matrix C exists such that BC = I.

If BC = I, then AB = 0 gives 0 = 0C = (AB)C =
A(BC) = AI = A, contrary to the assumption that
A 6= 0.

Exercise 2.3.25 An autoparts manufacturer
makes fenders, doors, and hoods. Each requires
assembly and packaging carried out at factories:
Plant 1, Plant 2, and Plant 3. Matrix A be-
low gives the number of hours for assembly and
packaging, and matrix B gives the hourly rates
at the three plants. Explain the meaning of the
(3, 2)-entry in the matrix AB. Which plant is
the most economical to operate? Give reasons.

Assembly Packaging
Fenders
Doors
Hoods

 12 2
21 3
10 2

 = A

Plant 1 Plant 2 Plant 3
Assembly
Packaging

[
21 18 20
14 10 13

]
= B

Exercise 2.3.26 For the directed graph below, find
the adjacency matrix A, compute A3, and determine
the number of paths of length 3 from v1 to v4 and
from v2 to v3.

v1 v2

v3v4

3 paths v1 → v4, 0 paths v2 → v3

Exercise 2.3.27 In each case either show the state-
ment is true, or give an example showing that it is
false.

a. If A2 = I, then A = I.

b. If AJ = A, then J = I.

c. If A is square, then (AT )3 = (A3)T .

d. If A is symmetric, then I +A is symmetric.

e. If AB = AC and A 6= 0, then B =C.

f. If A 6= 0, then A2 6= 0.

g. If A has a row of zeros, so also does BA for all
B.

h. If A commutes with A+B, then A commutes
with B.

i. If B has a column of zeros, so also does AB.

j. If AB has a column of zeros, so also does B.

k. If A has a row of zeros, so also does AB.

l. If AB has a row of zeros, so also does A.

b. False. If A =

[
1 0
0 0

]
= J, then AJ = A but

J 6= I.

d. True. Since AT = A, we have (I +AT = IT +
AT = I +A.

f. False. If A =

[
0 1
0 0

]
, then A 6= 0 but A2 = 0.

h. True. We have A(A + B) = (A + B)A; that
is, A2 + AB = A2 + BA. Subtracting A2 gives
AB = BA.

j. False. A =

[
1 −2
2 4

]
, B =

[
2 4
1 2

]
l. False. See (j).

Exercise 2.3.28

a. If A and B are 2×2 matrices whose rows sum
to 1, show that the rows of AB also sum to 1.

b. Repeat part (a) for the case where A and B
are n×n.
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b. If A = [ai j] and B = [bi j] and ∑ j ai j = 1 = ∑ j bi j,
then the (i, j)-entry of AB is ci j = ∑k aikbk j,
whence ∑ j ci j = ∑ j ∑k aikbk j = ∑k aik(∑ j bk j) =

∑k aik = 1. Alternatively: If e = (1, 1, . . . , 1),
then the rows of A sum to 1 if and only if Ae=
e. If also Be= e then (AB)e= A(Be) = Ae= e.

Exercise 2.3.29 Let A and B be n×n matrices for
which the systems of equations Ax = 0 and Bx = 0
each have only the trivial solution x = 0. Show that
the system (AB)x = 0 has only the trivial solution.

Exercise 2.3.30 The trace of a square matrix A,
denoted tr A, is the sum of the elements on the main
diagonal of A. Show that, if A and B are n× n ma-
trices:

tr (A+B) = tr A+ tr B.a)

tr (kA) = k tr (A) for any number k.b)

tr (AT ) = tr (A).c) tr (AB) = tr (BA).d)

tr (AAT ) is the sum of the squares of all entries
of A.

e)

b. If A = [ai j], then tr (kA) = tr [kai j] = ∑
n
i=1 kaii =

k ∑
n
i=1 aii = k tr (A).

e. Write AT =
[
a′i j

]
, where a′i j = a ji. Then AAT =(

∑
n
k=1 aika′k j

)
, so tr (AAT )=∑

n
i=1

[
∑

n
k=1 aika′ki

]
=

∑
n
i=1 ∑

n
k=1 a2

ik.

Exercise 2.3.31 Show that AB−BA = I is impos-
sible. [Hint: See the preceding exercise.]

Exercise 2.3.32 A square matrix P is called an
idempotent if P2 = P. Show that:

a. 0 and I are idempotents.

b.
[

1 1
0 0

]
,
[

1 0
1 0

]
, and 1

2

[
1 1
1 1

]
, are idem-

potents.

c. If P is an idempotent, so is I−P. Show further
that P(I −P) = 0.

d. If P is an idempotent, so is PT .

e. If P is an idempotent, so is Q = P+AP−PAP
for any square matrix A (of the same size as
P).

f. If A is n×m and B is m× n, and if AB = In,
then BA is an idempotent.

e. Observe that PQ = P2 +PAP−P2AP = P, so
Q2 = PQ+APQ−PAPQ = P+AP−PAP = Q.

Exercise 2.3.33 Let A and B be n× n diagonal
matrices (all entries off the main diagonal are zero).

a. Show that AB is diagonal and AB = BA.

b. Formulate a rule for calculating XA if X is
m×n.

c. Formulate a rule for calculating AY if Y is n×k.

Exercise 2.3.34 If A and B are n× n matrices,
show that:

a. AB = BA if and only if

(A+B)2 = A2 +2AB+B2

b. AB = BA if and only if

(A+B)(A−B) = (A−B)(A+B)

b. (A+B)(A−B) = A2 −AB+BA−B2, and (A−
B)(A+B) =A2+AB−BA−B2. These are equal
if and only if −AB+ BA = AB− BA; that is,
2BA = 2AB; that is, BA = AB.

Exercise 2.3.35 In Theorem 2.3.3, prove

part 3;a) part 5.b)

b. (A+B)(A−B) = A2 −AB+BA−B2 and (A−
B)(A+B) =A2−BA+AB−B2. These are equal
if and only if −AB+BA = −BA+AB, that is
2AB = 2BA, that is AB = BA.
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Exercise 2.3.36 Show that the product of two
reduced row-echelon matrices is also reduced row-
echelon.

See V. Camillo, Communications in Algebra 25(6),
(1997), 1767–1782; Theorem 2.3.2.
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2.4 Matrix Inverses

Three basic operations on matrices, addition, multiplication, and subtraction, are analogs for matri-
ces of the same operations for numbers. In this section we introduce the matrix analog of numerical
division.

To begin, consider how a numerical equation ax = b is solved when a and b are known numbers.
If a = 0, there is no solution (unless b = 0). But if a 6= 0, we can multiply both sides by the inverse
a−1 = 1

a to obtain the solution x = a−1b. Of course multiplying by a−1 is just dividing by a, and the
property of a−1 that makes this work is that a−1a = 1. Moreover, we saw in Section 2.2 that the
role that 1 plays in arithmetic is played in matrix algebra by the identity matrix I. This suggests
the following definition.

Definition 2.11 Matrix Inverses
If A is a square matrix, a matrix B is called an inverse of A if and only if

AB = I and BA = I

A matrix A that has an inverse is called an invertible matrix.8

Example 2.4.1

Show that B =

[
−1 1

1 0

]
is an inverse of A =

[
0 1
1 1

]
.

Solution. Compute AB and BA.

AB =

[
0 1
1 1

][
−1 1

1 0

]
=

[
1 0
0 1

]
BA =

[
−1 1

1 0

][
0 1
1 1

]
=

[
1 0
0 1

]
Hence AB = I = BA, so B is indeed an inverse of A.

Example 2.4.2

Show that A =

[
0 0
1 3

]
has no inverse.

Solution. Let B =

[
a b
c d

]
denote an arbitrary 2×2 matrix. Then

AB =

[
0 0
1 3

][
a b
c d

]
=

[
0 0

a+3c b+3d

]
so AB has a row of zeros. Hence AB cannot equal I for any B.

8Only square matrices have inverses. Even though it is plausible that nonsquare matrices A and B could exist
such that AB = Im and BA = In, where A is m× n and B is n×m, we claim that this forces n = m. Indeed, if m < n
there exists a nonzero column x such that Ax = 0 (by Theorem 1.3.1), so x = Inx = (BA)x = B(Ax) = B(0) = 0, a
contradiction. Hence m ≥ n. Similarly, the condition AB = Im implies that n ≥ m. Hence m = n so A is square.
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The argument in Example 2.4.2 shows that no zero matrix has an inverse. But Example 2.4.2
also shows that, unlike arithmetic, it is possible for a nonzero matrix to have no inverse. However,
if a matrix does have an inverse, it has only one.

Theorem 2.4.1
If B and C are both inverses of A, then B =C.

Proof. Since B and C are both inverses of A, we have CA = I = AB. Hence

B = IB = (CA)B =C(AB) =CI =C

If A is an invertible matrix, the (unique) inverse of A is denoted A−1. Hence A−1 (when it exists)
is a square matrix of the same size as A with the property that

AA−1 = I and A−1A = I

These equations characterize A−1 in the following sense:

Inverse Criterion: If somehow a matrix B can be found such that AB = I and BA = I,
then A is invertible and B is the inverse of A; in symbols, B = A−1.

This is a way to verify that the inverse of a matrix exists. Example 2.4.3 and Example 2.4.4 offer
illustrations.

Example 2.4.3

If A =

[
0 −1
1 −1

]
, show that A3 = I and so find A−1.

Solution. We have A2 =

[
0 −1
1 −1

][
0 −1
1 −1

]
=

[
−1 1
−1 0

]
, and so

A3 = A2A =

[
−1 1
−1 0

][
0 −1
1 −1

]
=

[
1 0
0 1

]
= I

Hence A3 = I, as asserted. This can be written as A2A = I = AA2, so it shows that A2 is the
inverse of A. That is, A−1 = A2 =

[
−1 1
−1 0

]
.

The next example presents a useful formula for the inverse of a 2×2 matrix A =

[
a b
c d

]
when

it exists. To state it, we define the determinant det A and the adjugate adj A of the matrix A as
follows:

det
[

a b
c d

]
= ad −bc, and adj

[
a b
c d

]
=

[
d −b

−c a

]
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Example 2.4.4

If A =

[
a b
c d

]
, show that A has an inverse if and only if det A 6= 0, and in this case

A−1 = 1
det A adj A

Solution. For convenience, write e = det A = ad −bc and B = adj A =

[
d −b

−c a

]
. Then

AB = eI = BA as the reader can verify. So if e 6= 0, scalar multiplication by 1
e gives

A(1
e B) = I = (1

e B)A

Hence A is invertible and A−1 = 1
e B. Thus it remains only to show that if A−1 exists, then

e 6= 0.
We prove this by showing that assuming e = 0 leads to a contradiction. In fact, if e = 0,
then AB = eI = 0, so left multiplication by A−1 gives A−1AB = A−10; that is, IB = 0, so
B = 0. But this implies that a, b, c, and d are all zero, so A = 0, contrary to the assumption
that A−1 exists.

As an illustration, if A =

[
2 4

−3 8

]
then det A = 2 ·8−4 · (−3) = 28 6= 0. Hence A is invertible and

A−1 = 1
det A adj A = 1

28

[
8 −4
3 2

]
, as the reader is invited to verify.

The determinant and adjugate will be defined in Chapter 3 for any square matrix, and the
conclusions in Example 2.4.4 will be proved in full generality.

Inverses and Linear Systems

Matrix inverses can be used to solve certain systems of linear equations. Recall that a system of
linear equations can be written as a single matrix equation

Ax = b

where A and b are known and x is to be determined. If A is invertible, we multiply each side of the
equation on the left by A−1 to get

A−1Ax = A−1b
Ix = A−1b
x = A−1b

This gives the solution to the system of equations (the reader should verify that x = A−1b really
does satisfy Ax = b). Furthermore, the argument shows that if x is any solution, then necessarily
x = A−1b, so the solution is unique. Of course the technique works only when the coefficient matrix
A has an inverse. This proves Theorem 2.4.2.
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Theorem 2.4.2
Suppose a system of n equations in n variables is written in matrix form as

Ax = b

If the n×n coefficient matrix A is invertible, the system has the unique solution

x = A−1b

Example 2.4.5

Use Example 2.4.4 to solve the system
{

5x1 − 3x2 =−4
7x1 + 4x2 = 8 .

Solution. In matrix form this is Ax = b where A =

[
5 −3
7 4

]
, x =

[
x1
x2

]
, and b =

[
−4

8

]
.

Then det A = 5 ·4− (−3) ·7 = 41, so A is invertible and A−1 = 1
41

[
4 3

−7 5

]
by

Example 2.4.4. Thus Theorem 2.4.2 gives

x = A−1b = 1
41

[
4 3

−7 5

][
−4

8

]
= 1

41

[
8

68

]
so the solution is x1 =

8
41 and x2 =

68
41 .

An Inversion Method

If a matrix A is n× n and invertible, it is desirable to have an efficient technique for finding the
inverse. The following procedure will be justified in Section 2.5.

Matrix Inversion Algorithm

If A is an invertible (square) matrix, there exists a sequence of elementary row operations
that carry A to the identity matrix I of the same size, written A → I. This same series of row
operations carries I to A−1; that is, I → A−1. The algorithm can be summarized as follows:[

A I
]
→

[
I A−1 ]

where the row operations on A and I are carried out simultaneously.
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Example 2.4.6

Use the inversion algorithm to find the inverse of the matrix

A =

 2 7 1
1 4 −1
1 3 0



Solution. Apply elementary row operations to the double matrix

[
A I

]
=

 2 7 1 1 0 0
1 4 −1 0 1 0
1 3 0 0 0 1


so as to carry A to I. First interchange rows 1 and 2. 1 4 −1 0 1 0

2 7 1 1 0 0
1 3 0 0 0 1


Next subtract 2 times row 1 from row 2, and subtract row 1 from row 3. 1 4 −1 0 1 0

0 −1 3 1 −2 0
0 −1 1 0 −1 1


Continue to reduced row-echelon form. 1 0 11 4 −7 0

0 1 −3 −1 2 0
0 0 −2 −1 1 1




1 0 0 −3
2

−3
2

11
2

0 1 0 1
2

1
2

−3
2

0 0 1 1
2

−1
2

−1
2


Hence A−1 = 1

2

 −3 −3 11
1 1 −3
1 −1 −1

, as is readily verified.

Given any n × n matrix A, Theorem 1.2.1 shows that A can be carried by elementary row
operations to a matrix R in reduced row-echelon form. If R = I, the matrix A is invertible (this
will be proved in the next section), so the algorithm produces A−1. If R 6= I, then R has a row of
zeros (it is square), so no system of linear equations Ax = b can have a unique solution. But then
A is not invertible by Theorem 2.4.2. Hence, the algorithm is effective in the sense conveyed in
Theorem 2.4.3.
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Theorem 2.4.3
If A is an n×n matrix, either A can be reduced to I by elementary row operations or it
cannot. In the first case, the algorithm produces A−1; in the second case, A−1 does not exist.

Properties of Inverses

The following properties of an invertible matrix are used everywhere.

Example 2.4.7: Cancellation Laws

Let A be an invertible matrix. Show that:

1. If AB = AC, then B =C.

2. If BA =CA, then B =C.

Solution. Given the equation AB = AC, left multiply both sides by A−1 to obtain
A−1AB = A−1AC. Thus IB = IC, that is B =C. This proves (1) and the proof of (2) is left to
the reader.

Properties (1) and (2) in Example 2.4.7 are described by saying that an invertible matrix can be
“left cancelled” and “right cancelled”, respectively. Note however that “mixed” cancellation does
not hold in general: If A is invertible and AB =CA, then B and C may not be equal, even if both
are 2×2. Here is a specific example:

A =

[
1 1
0 1

]
, B =

[
0 0
1 2

]
, C =

[
1 1
1 1

]
Sometimes the inverse of a matrix is given by a formula. Example 2.4.4 is one illustration; Exam-
ple 2.4.8 and Example 2.4.9 provide two more. The idea is the Inverse Criterion: If a matrix B can
be found such that AB = I = BA, then A is invertible and A−1 = B.

Example 2.4.8

If A is an invertible matrix, show that the transpose AT is also invertible. Show further that
the inverse of AT is just the transpose of A−1; in symbols, (AT )−1 = (A−1)T .

Solution. A−1 exists (by assumption). Its transpose (A−1)T is the candidate proposed for
the inverse of AT . Using the inverse criterion, we test it as follows:

AT (A−1)T =(A−1A)T = IT = I
(A−1)T AT =(AA−1)T = IT = I

Hence (A−1)T is indeed the inverse of AT ; that is, (AT )−1 = (A−1)T .
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Example 2.4.9

If A and B are invertible n×n matrices, show that their product AB is also invertible and
(AB)−1 = B−1A−1.

Solution. We are given a candidate for the inverse of AB, namely B−1A−1. We test it as
follows:

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

Hence B−1A−1 is the inverse of AB; in symbols, (AB)−1 = B−1A−1.

We now collect several basic properties of matrix inverses for reference.

Theorem 2.4.4
All the following matrices are square matrices of the same size.

1. I is invertible and I−1 = I.

2. If A is invertible, so is A−1, and (A−1)−1 = A.

3. If A and B are invertible, so is AB, and (AB)−1 = B−1A−1.

4. If A1, A2, . . . , Ak are all invertible, so is their product A1A2 · · ·Ak, and

(A1A2 · · ·Ak)
−1 = A−1

k · · ·A−1
2 A−1

1 .

5. If A is invertible, so is Ak for any k ≥ 1, and (Ak)−1 = (A−1)k.

6. If A is invertible and a 6= 0 is a number, then aA is invertible and (aA)−1 = 1
aA−1.

7. If A is invertible, so is its transpose AT , and (AT )−1 = (A−1)T .

Proof.
1. This is an immediate consequence of the fact that I2 = I.

2. The equations AA−1 = I = A−1A show that A is the inverse of A−1; in symbols, (A−1)−1 = A.

3. This is Example 2.4.9.

4. Use induction on k. If k = 1, there is nothing to prove, and if k = 2, the result is property
3. If k > 2, assume inductively that (A1A2 · · ·Ak−1)

−1 = A−1
k−1 · · ·A

−1
2 A−1

1 . We apply this fact
together with property 3 as follows:

[A1A2 · · ·Ak−1Ak]
−1 = [(A1A2 · · ·Ak−1)Ak]

−1

= A−1
k (A1A2 · · ·Ak−1)

−1

= A−1
k

(
A−1

k−1 · · ·A
−1
2 A−1

1
)
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So the proof by induction is complete.

5. This is property 4 with A1 = A2 = · · ·= Ak = A.

6. This is left as Exercise 2.4.29.

7. This is Example 2.4.8.

The reversal of the order of the inverses in properties 3 and 4 of Theorem 2.4.4 is a consequence
of the fact that matrix multiplication is not commutative. Another manifestation of this comes
when matrix equations are dealt with. If a matrix equation B =C is given, it can be left-multiplied
by a matrix A to yield AB = AC. Similarly, right-multiplication gives BA =CA. However, we cannot
mix the two: If B = C, it need not be the case that AB = CA even if A is invertible, for example,
A =

[
1 1
0 1

]
, B =

[
0 0
1 0

]
=C.

Part 7 of Theorem 2.4.4 together with the fact that (AT )T = A gives

Corollary 2.4.1

A square matrix A is invertible if and only if AT is invertible.

Example 2.4.10

Find A if (AT −2I)−1 =

[
2 1

−1 0

]
.

Solution. By Theorem 2.4.4(2) and Example 2.4.4, we have

(AT −2I) =
[(

AT −2I
)−1

]−1
=

[
2 1

−1 0

]−1

=

[
0 −1
1 2

]

Hence AT = 2I +
[

0 −1
1 2

]
=

[
2 −1
1 4

]
, so A =

[
2 1

−1 4

]
by Theorem 2.4.4(7).

The following important theorem collects a number of conditions all equivalent9 to invertibility.
It will be referred to frequently below.

Theorem 2.4.5: Inverse Theorem
The following conditions are equivalent for an n×n matrix A:

1. A is invertible.

2. The homogeneous system Ax = 0 has only the trivial solution x = 0.

9If p and q are statements, we say that p implies q (written p ⇒ q) if q is true whenever p is true. The statements
are called equivalent if both p ⇒ q and q ⇒ p (written p ⇔ q, spoken “p if and only if q”). See Appendix ??.
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3. A can be carried to the identity matrix In by elementary row operations.

4. The system Ax = b has at least one solution x for every choice of column b.

5. There exists an n×n matrix C such that AC = In.

Proof. We show that each of these conditions implies the next, and that (5) implies (1).
(1) ⇒ (2). If A−1 exists, then Ax = 0 gives x = Inx = A−1Ax = A−10 = 0.
(2) ⇒ (3). Assume that (2) is true. Certainly A → R by row operations where R is a reduced,

row-echelon matrix. It suffices to show that R = In. Suppose that this is not the case. Then R has
a row of zeros (being square). Now consider the augmented matrix

[
A 0

]
of the system Ax = 0.

Then
[

A 0
]
→

[
R 0

]
is the reduced form, and

[
R 0

]
also has a row of zeros. Since R is

square there must be at least one nonleading variable, and hence at least one parameter. Hence the
system Ax = 0 has infinitely many solutions, contrary to (2). So R = In after all.

(3) ⇒ (4). Consider the augmented matrix
[

A b
]

of the system Ax= b. Using (3), let A → In
by a sequence of row operations. Then these same operations carry

[
A b

]
→

[
In c

]
for some

column c. Hence the system Ax = b has a solution (in fact unique) by gaussian elimination. This
proves (4).

(4) ⇒ (5). Write In =
[

e1 e2 · · · en
]

where e1, e2, . . . , en are the columns of In. For each
j = 1, 2, . . . , n, the system Ax= e j has a solution c j by (4), so Ac j = e j. Now let C =

[
c1 c2 · · · cn

]
be the n×n matrix with these matrices c j as its columns. Then Definition 2.9 gives (5):

AC = A
[

c1 c2 · · · cn
]
=
[

Ac1 Ac2 · · · Acn
]
=
[

e1 e2 · · · en
]
= In

(5) ⇒ (1). Assume that (5) is true so that AC = In for some matrix C. Then Cx = 0 implies x = 0
(because x = Inx = ACx = A0 = 0). Thus condition (2) holds for the matrix C rather than A. Hence
the argument above that (2) ⇒ (3) ⇒ (4) ⇒ (5) (with A replaced by C) shows that a matrix C′

exists such that CC′ = In. But then

A = AIn = A(CC′) = (AC)C′ = InC′ =C′

Thus CA =CC′ = In which, together with AC = In, shows that C is the inverse of A. This proves (1).

The proof of (5) ⇒ (1) in Theorem 2.4.5 shows that if AC = I for square matrices, then necessarily
CA = I, and hence that C and A are inverses of each other. We record this important fact for
reference.

Corollary 2.4.1

If A and C are square matrices such that AC = I, then also CA = I. In particular, both A and
C are invertible, C = A−1, and A =C−1.

Here is a quick way to remember Corollary 2.4.1. If A is a square matrix, then

1. If AC = I then C = A−1.
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2. If CA = I then C = A−1.

Observe that Corollary 2.4.1 is false if A and C are not square matrices. For example, we have

[
1 2 1
1 1 1

] −1 1
1 −1
0 1

= I2 but

 −1 1
1 −1
0 1

[
1 2 1
1 1 1

]
6= I3

In fact, it is verified in the footnote on page 91 that if AB = Im and BA = In, where A is m×n and
B is n×m, then m = n and A and B are (square) inverses of each other.

An n×n matrix A has rank n if and only if (3) of Theorem 2.4.5 holds. Hence

Corollary 2.4.2

An n×n matrix A is invertible if and only if rank A = n.

Here is a useful fact about inverses of block matrices.

Example 2.4.11

Let P =

[
A X
0 B

]
and Q =

[
A 0
Y B

]
be block matrices where A is m×m and B is n×n

(possibly m 6= n).

a. Show that P is invertible if and only if A and B are both invertible. In this case, show
that

P−1 =

[
A−1 −A−1XB−1

0 B−1

]
b. Show that Q is invertible if and only if A and B are both invertible. In this case, show

that
Q−1 =

[
A−1 0

−B−1YA−1 B−1

]

Solution. We do (a.) and leave (b.) for the reader.

a. If A−1 and B−1 both exist, write R =

[
A−1 −A−1XB−1

0 B−1

]
. Using block

multiplication, one verifies that PR = Im+n = RP, so P is invertible, and P−1 = R.
Conversely, suppose that P is invertible, and write P−1 =

[
C V
W D

]
in block form,

where C is m×m and D is n×n.
Then the equation PP−1 = In+m becomes[

A X
0 B

][
C V
W D

]
=

[
AC+XW AV +XD

BW BD

]
= Im+n =

[
Im 0
0 In

]
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using block notation. Equating corresponding blocks, we find

AC+XW = Im, BW = 0, and BD = In

Hence B is invertible because BD = In (by Corollary 2.4.1), then W = 0 because
BW = 0, and finally, AC = Im (so A is invertible, again by Corollary 2.4.1).

Inverses of Matrix Transformations

Let T = TA : Rn → Rn denote the matrix transformation induced by the n×n matrix A. Since A is
square, it may very well be invertible, and this leads to the question:

What does it mean geometrically for T that A is invertible?

To answer this, let T ′ = TA−1 : Rn → Rn denote the transformation induced by A−1. Then

T ′ [T (x)] = A−1 [Ax] = Ix = x
for all x in Rn

T [T ′(x)] = A
[
A−1x

]
= Ix = x

(2.8)

The first of these equations asserts that, if T carries x to a vector T (x), then T ′ carries T (x) right
back to x; that is T ′ “reverses” the action of T . Similarly T “reverses” the action of T ′. Conditions
(2.8) can be stated compactly in terms of composition:

T ′ ◦T = 1Rn and T ◦T ′ = 1Rn (2.9)

When these conditions hold, we say that the matrix transformation T ′ is an inverse of T , and we
have shown that if the matrix A of T is invertible, then T has an inverse (induced by A−1).

The converse is also true: If T has an inverse, then its matrix A must be invertible. Indeed,
suppose S : Rn → Rn is any inverse of T , so that S ◦T = 1Rn and T ◦S = 1Rn . It can be shown that
S is also a matrix transformation. If B is the matrix of S, we have

BAx = S [T (x)] = (S◦T )(x) = 1Rn(x) = x = Inx for all x in Rn

It follows by Theorem 2.2.6 that BA = In, and a similar argument shows that AB = In. Hence A is
invertible with A−1 = B. Furthermore, the inverse transformation S has matrix A−1, so S = T ′ using
the earlier notation. This proves the following important theorem.

Theorem 2.4.6
Let T : Rn → Rn denote the matrix transformation induced by an n×n matrix A. Then

A is invertible if and only if T has an inverse.

In this case, T has exactly one inverse (which we denote as T−1), and T−1 : Rn → Rn is the
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transformation induced by the matrix A−1. In other words

(TA)
−1 = TA−1

The geometrical relationship between T and T−1 is embodied in equations (2.8) above:

T−1 [T (x)] = x and T
[
T−1(x)

]
= x for all x in Rn

These equations are called the fundamental identities relating T and T−1. Loosely speaking,
they assert that each of T and T−1 “reverses” or “undoes” the action of the other.

This geometric view of the inverse of a linear transformation provides a new way to find the
inverse of a matrix A. More precisely, if A is an invertible matrix, we proceed as follows:

1. Let T be the linear transformation induced by A.

2. Obtain the linear transformation T−1 which “reverses” the action of T .

3. Then A−1 is the matrix of T−1.

Here is an example.

Example 2.4.12

0

y = x

Q1

[
x
y

]
=

[
y
x

]

[
x
y

]

x

y
Find the inverse of A =

[
0 1
1 0

]
by viewing it as a linear

transformation R2 → R2.

Solution. If x =

[
x
y

]
the vector Ax =

[
0 1
1 0

][
x
y

]
=

[
y
x

]
is the result of reflecting x in the line y = x (see the diagram).
Hence, if Q1 : R2 → R2 denotes reflection in the line y = x,
then A is the matrix of Q1. Now observe that Q1 reverses itself
because reflecting a vector x twice results in x. Consequently

Q−1
1 = Q1. Since A−1 is the matrix of Q−1

1 and A is the matrix of Q, it follows that A−1 = A.
Of course this conclusion is clear by simply observing directly that A2 = I, but the geometric
method can often work where these other methods may be less straightforward.

Exercises for 2.4
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Exercise 2.4.1 In each case, show that the matri-
ces are inverses of each other.

a.
[

3 5
1 2

]
,
[

2 −5
−1 3

]

b.
[

3 0
1 −4

]
, 1

2

[
4 0
1 −3

]

c.

 1 2 0
0 2 3
1 3 1

,

 7 2 −6
−3 −1 3

2 1 −2


d.

[
3 0
0 5

]
,
[ 1

3 0
0 1

5

]

Exercise 2.4.2 Find the inverse of each of the fol-
lowing matrices.[

1 −1
−1 3

]
a)

[
4 1
3 2

]
b) 1 0 −1

3 2 0
−1 −1 0

c)

 1 −1 2
−5 7 −11
−2 3 −5

d)

 3 5 0
3 7 1
1 2 1

e)

 3 1 −1
2 1 0
1 5 −1

f)

 2 4 1
3 3 2
4 1 4

g)

 3 1 −1
5 2 0
1 1 −1

h)

 3 1 2
1 −1 3
1 2 4

i)


−1 4 5 2

0 0 0 −1
1 −2 −2 0
0 −1 −1 0

j)


1 0 7 5
0 1 3 6
1 −1 5 2
1 −1 5 1

k)


1 2 0 0 0
0 1 3 0 0
0 0 1 5 0
0 0 0 1 7
0 0 0 0 1

l)

b. 1
5

[
2 −1

−3 4

]

d.

 2 −1 3
3 1 −1
1 1 −2



f. 1
10

 1 4 −1
−2 2 2
−9 14 −1



h. 1
4

 2 0 −2
−5 2 5
−3 2 −1



j.


0 0 1 −2

−1 −2 −1 −3
1 2 1 2
0 −1 0 0



l.


1 −2 6 −30 210
0 1 −3 15 −105
0 0 1 −5 35
0 0 0 1 −7
0 0 0 0 1


Exercise 2.4.3 In each case, solve the systems
of equations by finding the inverse of the coefficient
matrix.

3x− y= 5
2x+ 2y= 1

a) 2x− 3y= 0
x− 4y= 1

b)

x+ y+ 2z= 5
x+ y+ z= 0
x+ 2y+ 4z=−2

c) x+ 4y+ 2z= 1
2x+ 3y+ 3z=−1
4x+ y+ 4z= 0

d)

b.
[

x
y

]
= 1

5

[
4 −3
1 −2

][
0
1

]
= 1

5

[
−3
−2

]

d.

 x
y
z

 = 1
5

 9 −14 6
4 −4 1

−10 15 −5

 1
−1

0

 =

1
5

 23
8

−25



Exercise 2.4.4 Given A−1 =

 1 −1 3
2 0 5

−1 1 0

:

a. Solve the system of equations Ax =

 1
−1

3

.

b. Find a matrix B such that

AB =

 1 −1 2
0 1 1
1 0 0

.
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c. Find a matrix C such that
CA =

[
1 2 −1
3 1 1

]
.

b. B = A−1AB =

 4 −2 1
7 −2 4

−1 2 −1


Exercise 2.4.5 Find A when

(3A)−1 =

[
1 −1
0 1

]
a) (2A)T =

[
1 −1
2 3

]−1

b)

(I +3A)−1 =

[
2 0
1 −1

]
c)

(I −2AT )−1 =

[
2 1
1 1

]
d) (

A
[

1 −1
0 1

])−1

=

[
2 3
1 1

]
e) ([

1 0
2 1

]
A
)−1

=

[
1 0
2 2

]
f)

(
AT −2I

)−1
= 2

[
1 1
2 3

]
g)

(
A−1 −2I

)T
=−2

[
1 1
1 0

]
h)

b. 1
10

[
3 −2
1 1

]

d. 1
2

[
0 1
1 −1

]

f. 1
2

[
2 0

−6 1

]

h. −1
2

[
1 1
1 0

]
Exercise 2.4.6 Find A when:

A−1 =

 1 −1 3
2 1 1
0 2 −2

a) A−1 =

 0 1 −1
1 2 1
1 0 1

b)

b. A = 1
2

 2 −1 3
0 1 −1

−2 1 −1



Exercise 2.4.7 Given

 x1
x2
x3

=

 3 −1 2
1 0 4
2 1 0

 y1
y2
y3


and

 z1
z2
z3

=

 1 −1 1
2 −3 0

−1 1 −2

 y1
y2
y3

, express the

variables x1, x2, and x3 in terms of z1, z2, and z3.

Exercise 2.4.8

a. In the system 3x+ 4y= 7
4x+ 5y= 1

, substitute the new

variables x′ and y′ given by x=−5x′ + 4y′

y= 4x′ − 3y′
.

Then find x and y.

b. Explain part (a) by writing the equations as

A
[

x
y

]
=

[
7
1

]
and

[
x
y

]
= B

[
x′

y′

]
. What

is the relationship between A and B?

b. A and B are inverses.

Exercise 2.4.9 In each case either prove the as-
sertion or give an example showing that it is false.

a. If A 6= 0 is a square matrix, then A is invertible.

b. If A and B are both invertible, then A+B is
invertible.

c. If A and B are both invertible, then (A−1B)T

is invertible.

d. If A4 = 3I, then A is invertible.

e. If A2 = A and A 6= 0, then A is invertible.

f. If AB = B for some B 6= 0, then A is invertible.

g. If A is invertible and skew symmetric (AT =
−A), the same is true of A−1.

h. If A2 is invertible, then A is invertible.

i. If AB = I, then A and B commute.
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b. False.
[

1 0
0 1

]
+

[
1 0
0 −1

]
d. True. A−1 = 1

3 A3

f. False. A = B =

[
1 0
0 0

]
h. True. If (A2)B = I, then A(AB) = I; use Theo-

rem 2.4.5.

Exercise 2.4.10

a. If A, B, and C are square matrices and AB = I,
I =CA, show that A is invertible and B =C =
A−1.

b. If C−1 = A, find the inverse of CT in terms of
A.

b. (CT )−1 = (C−1)T = AT because C−1 =
(A−1)−1 = A.

Exercise 2.4.11 Suppose CA= Im, where C is m×n
and A is n×m. Consider the system Ax = b of n
equations in m variables.

a. Show that this system has a unique solution
CB if it is consistent.

b. If C =

[
0 −5 1
3 0 −1

]
and A =

 2 −3
1 −2
6 −10

,

find x (if it exists) when

(i) b =

 1
0
3

; and (ii) b =

 7
4

22

.

b. (i) Inconsistent. (ii)
[

x1
x2

]
=

[
2

−1

]

Exercise 2.4.12 Verify that A =

[
1 −1
0 2

]
satis-

fies A2 −3A+2I = 0, and use this fact to show that
A−1 = 1

2(3I −A).

Exercise 2.4.13 Let Q =


a −b −c −d
b a −d c
c d a −b
d −c b a

.

Compute QQT and so find Q−1 if Q 6= 0.

Exercise 2.4.14 Let U =

[
0 1
1 0

]
. Show that

each of U , −U , and −I2 is its own inverse and that
the product of any two of these is the third.

Exercise 2.4.15 Consider A =

[
1 1

−1 0

]
,

B =

[
0 −1
1 0

]
, C =

 0 1 0
0 0 1
5 0 0

. Find the in-

verses by computing (a) A6; (b) B4; and (c) C3.

b. B4 = I, so B−1 = B3 =

[
0 1

−1 0

]

Exercise 2.4.16 Find the inverse of

 1 0 1
c 1 c
3 c 2


in terms of c. c2 −2 −c 1

−c 1 0
3− c2 c −1


Exercise 2.4.17 If c 6= 0, find the inverse of 1 −1 1

2 −1 2
0 2 c

 in terms of c.

Exercise 2.4.18 Show that A has no inverse when:

a. A has a row of zeros.

b. A has a column of zeros.

c. each row of A sums to 0.
[Hint: Theorem 2.4.5(2).]

d. each column of A sums to 0. [Hint: Corol-
lary 2.4.1, Theorem 2.4.4.]

b. If column j of A is zero, Ay = 0 where y is
column j of the identity matrix. Use Theo-
rem 2.4.5.
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d. If each column of A sums to 0, XA = 0 where
X is the row of 1s. Hence AT XT = 0 so A has
no inverse by Theorem 2.4.5 (XT 6= 0).

Exercise 2.4.19 Let A denote a square matrix.

a. Let YA = 0 for some matrix Y 6= 0. Show that
A has no inverse. [Hint: Corollary 2.4.1, The-
orem 2.4.4.]

b. Use part (a) to show that (i)

 1 −1 1
0 1 1
1 0 2

;

and (ii)

 2 1 −1
1 1 0
1 0 −1

 have no inverse. [Hint:

For part (ii) compare row 3 with the difference
between row 1 and row 2.]

b. (ii) (−1, 1, 1)A = 0

Exercise 2.4.20 If A is invertible, show that

A2 6= 0.a) Ak 6= 0 for all
k = 1, 2, . . . .

b)

b. Each power Ak is invertible by Theorem 2.4.4
(because A is invertible). Hence Ak cannot be
0.

Exercise 2.4.21 Suppose AB = 0, where A and B
are square matrices. Show that:

a. If one of A and B has an inverse, the other is
zero.

b. It is impossible for both A and B to have in-
verses.

c. (BA)2 = 0.

b. By (a), if one has an inverse the other is zero
and so has no inverse.

Exercise 2.4.22 Find the inverse of the x-
expansion in Example 2.2.16 and describe it geomet-
rically.

If A =

[
a 0
0 1

]
, a > 1, then A−1 =

[ 1
a 0
0 1

]
is an

x-compression because 1
a < 1.

Exercise 2.4.23 Find the inverse of the shear
transformation in Example 2.2.17 and describe it ge-
ometrically.

Exercise 2.4.24 In each case assume that A is
a square matrix that satisfies the given condition.
Show that A is invertible and find a formula for A−1

in terms of A.

a. A3 −3A+2I = 0.

b. A4 +2A3 −A−4I = 0.

b. A−1 = 1
4(A

3 +2A2 −1)

Exercise 2.4.25 Let A and B denote n×n matrices.

a. If A and AB are invertible, show that B is
invertible using only (2) and (3) of Theo-
rem 2.4.4.

b. If AB is invertible, show that both A and B are
invertible using Theorem 2.4.5.

b. If Bx = 0, then (AB)x = (A)Bx = 0, so x = 0
because AB is invertible. Hence B is invertible
by Theorem 2.4.5. But then A = (AB)B−1 is
invertible by Theorem 2.4.4.

Exercise 2.4.26 In each case find the inverse of
the matrix A using Example 2.4.11.

A=

 −1 1 2
0 2 −1
0 1 −1

a) A =

 3 1 0
5 2 0
1 3 −1

b)

A =


3 4 0 0
2 3 0 0
1 −1 1 3
3 1 1 4

c)
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A =


2 1 5 2
1 1 −1 0
0 0 1 −1
0 0 1 −2

d)

b.

 2 −1 0
−5 3 0

−13 8 −1



d.


1 −1 −14 8

−1 2 16 −9
0 0 2 −1
0 0 1 −1


Exercise 2.4.27 If A and B are invertible symmet-
ric matrices such that AB = BA, show that A−1, AB,
AB−1, and A−1B−1 are also invertible and symmet-
ric.

Exercise 2.4.28 Let A be an n×n matrix and let
I be the n×n identity matrix.

a. If A2 = 0, verify that (I −A)−1 = I +A.

b. If A3 = 0, verify that (I −A)−1 = I +A+A2.

c. Find the inverse of

 1 2 −1
0 1 3
0 0 1

.

d. If An = 0, find the formula for (I −A)−1.

d. If An = 0, (I −A)−1 = I +A+ · · ·+An−1.

Exercise 2.4.29 Prove property 6 of Theo-
rem 2.4.4: If A is invertible and a 6= 0, then aA is
invertible and (aA)−1 = 1

a A−1

Exercise 2.4.30 Let A, B, and C denote n×n ma-
trices. Using only Theorem 2.4.4, show that:

a. If A, C, and ABC are all invertible, B is invert-
ible.

b. If AB and BA are both invertible, A and B are
both invertible.

b. A[B(AB)−1] = I = [(BA)−1B]A, so A is invertible
by Exercise 2.4.10.

Exercise 2.4.31 Let A and B denote invertible
n×n matrices.

a. If A−1 = B−1, does it mean that A = B? Ex-
plain.

b. Show that A = B if and only if A−1B = I.

Exercise 2.4.32 Let A, B, and C be n×n matrices,
with A and B invertible. Show that

a. If A commutes with C, then A−1 commutes
with C.

b. If A commutes with B, then A−1 commutes
with B−1.

a. Have AC = CA. Left-multiply by A−1 to get
C = A−1CA. Then right-multiply by A−1 to
get CA−1 = A−1C.

Exercise 2.4.33 Let A and B be square matrices
of the same size.

a. Show that (AB)2 = A2B2 if AB = BA.

b. If A and B are invertible and (AB)2 = A2B2,
show that AB = BA.

c. If A =

[
1 0
0 0

]
and B =

[
1 1
0 0

]
, show that

(AB)2 = A2B2 but AB 6= BA.

b. Given ABAB = AABB. Left multiply by A−1,
then right multiply by B−1.

Exercise 2.4.34 Let A and B be n×n matrices for
which AB is invertible. Show that A and B are both
invertible.
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If Bx = 0 where x is n× 1, then ABx = 0 so x = 0
as AB is invertible. Hence B is invertible by Theo-
rem 2.4.5, so A = (AB)B−1 is invertible.

Exercise 2.4.35 Consider A =

 1 3 −1
2 1 5
1 −7 13

,

B =

 1 1 2
3 0 −3

−2 5 17

.

a. Show that A is not invertible by finding a
nonzero 1 × 3 matrix Y such that YA = 0.
[Hint: Row 3 of A equals 2(row 2) −3(row 1).]

b. Show that B is not invertible. [Hint: Column
3 = 3(column 2) − column 1.]

b. B

 −1
3

−1

 = 0 so B is not invertible by Theo-

rem 2.4.5.

Exercise 2.4.36 Show that a square matrix A
is invertible if and only if it can be left-cancelled:
AB = AC implies B =C.

Exercise 2.4.37 If U2 = I, show that I +U is not
invertible unless U = I.

Exercise 2.4.38

a. If J is the 4×4 matrix with every entry 1, show
that I − 1

2 J is self-inverse and symmetric.

b. If X is n×m and satisfies XT X = Im, show that
In −2XXT is self-inverse and symmetric.

b. Write U = In − 2XXT . Then UT = IT
n −

2XT T XT = U , and U2 = I2
n − (2XXT )In −

In(2XXT ) + 4(XXT )(XXT ) = In − 4XXT +
4XXT = In.

Exercise 2.4.39 An n× n matrix P is called an
idempotent if P2 = P. Show that:

a. I is the only invertible idempotent.

b. P is an idempotent if and only if I−2P is self-
inverse.

c. U is self-inverse if and only if U = I − 2P for
some idempotent P.

d. I −aP is invertible for any a 6= 1, and that
(I −aP)−1 = I +

( a
1−a

)P.

b. (I − 2P)2 = I − 4P+ 4P2, and this equals I if
and only if P2 = P.

Exercise 2.4.40 If A2 = kA, where k 6= 0, show that
A is invertible if and only if A = kI.

Exercise 2.4.41 Let A and B denote n×n invert-
ible matrices.

a. Show that A−1 +B−1 = A−1(A+B)B−1.

b. If A+B is also invertible, show that A−1+B−1

is invertible and find a formula for (A−1 +
B−1)−1.

b. (A−1 +B−1)−1 = B(A+B)−1A

Exercise 2.4.42 Let A and B be n× n matrices,
and let I be the n×n identity matrix.

a. Verify that A(I +BA) = (I +AB)A and that
(I +BA)B = B(I +AB).

b. If I + AB is invertible, verify that I + BA is
also invertible and that (I +BA)−1 = I −B(I +
AB)−1A.
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2.5 Elementary Matrices

It is now clear that elementary row operations are important in linear algebra: They are essential
in solving linear systems (using the gaussian algorithm) and in inverting a matrix (using the ma-
trix inversion algorithm). It turns out that they can be performed by left multiplying by certain
invertible matrices. These matrices are the subject of this section.

Definition 2.12 Elementary Matrices

An n×n matrix E is called an elementary matrix if it can be obtained from the identity
matrix In by a single elementary row operation (called the operation corresponding to E).
We say that E is of type I, II, or III if the operation is of that type (see Definition 1.2).

Hence
E1 =

[
0 1
1 0

]
, E2 =

[
1 0
0 9

]
, and E3 =

[
1 5
0 1

]
are elementary of types I, II, and III, respectively, obtained from the 2× 2 identity matrix by
interchanging rows 1 and 2, multiplying row 2 by 9, and adding 5 times row 2 to row 1.

Suppose now that the matrix A=

[
a b c
p q r

]
is left multiplied by the above elementary matrices

E1, E2, and E3. The results are:

E1A =

[
0 1
1 0

][
a b c
p q r

]
=

[
p q r
a b c

]
E2A =

[
1 0
0 9

][
a b c
p q r

]
=

[
a b c

9p 9q 9r

]
E3A =

[
1 5
0 1

][
a b c
p q r

]
=

[
a+5p b+5q c+5r

p q r

]
In each case, left multiplying A by the elementary matrix has the same effect as doing the corre-
sponding row operation to A. This works in general.

Lemma 2.5.1: 10

If an elementary row operation is performed on an m×n matrix A, the result is EA where E
is the elementary matrix obtained by performing the same operation on the m×m identity
matrix.

Proof. We prove it for operations of type III; the proofs for types I and II are left as exercises. Let
E be the elementary matrix corresponding to the operation that adds k times row p to row q 6= p.
The proof depends on the fact that each row of EA is equal to the corresponding row of E times

10A lemma is an auxiliary theorem used in the proof of other theorems.
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A. Let K1, K2, . . . , Km denote the rows of Im. Then row i of E is Ki if i 6= q, while row q of E is
Kq + kKp. Hence:

If i 6= q then row i of EA = KiA = (row i of A).
Row q of EA = (Kq + kKp)A = KqA+ k(KpA)

= (row q of A) plus k (row p of A).

Thus EA is the result of adding k times row p of A to row q, as required.

The effect of an elementary row operation can be reversed by another such operation (called its
inverse) which is also elementary of the same type (see the discussion following (Example 1.1.3).
It follows that each elementary matrix E is invertible. In fact, if a row operation on I produces E,
then the inverse operation carries E back to I. If F is the elementary matrix corresponding to the
inverse operation, this means FE = I (by Lemma 2.5.1). Thus F = E−1 and we have proved

Lemma 2.5.2
Every elementary matrix E is invertible, and E−1 is also a elementary matrix (of the same
type). Moreover, E−1 corresponds to the inverse of the row operation that produces E.

The following table gives the inverse of each type of elementary row operation:

Type Operation Inverse Operation
I Interchange rows p and q Interchange rows p and q
II Multiply row p by k 6= 0 Multiply row p by 1/k, k 6= 0
III Add k times row p to row q 6= p Subtract k times row p from row q, q 6= p

Note that elementary matrices of type I are self-inverse.

Example 2.5.1

Find the inverse of each of the elementary matrices

E1 =

 0 1 0
1 0 0
0 0 1

 , E2 =

 1 0 0
0 1 0
0 0 9

 , and E3 =

 1 0 5
0 1 0
0 0 1

 .

Solution. E1, E2, and E3 are of type I, II, and III respectively, so the table gives

E−1
1 =

 0 1 0
1 0 0
0 0 1

= E1, E−1
2 =

 1 0 0
0 1 0
0 0 1

9

 , and E−1
3 =

 1 0 −5
0 1 0
0 0 1

 .
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Inverses and Elementary Matrices

Suppose that an m×n matrix A is carried to a matrix B (written A → B) by a series of k elementary
row operations. Let E1, E2, . . . , Ek denote the corresponding elementary matrices. By Lemma 2.5.1,
the reduction becomes

A → E1A → E2E1A → E3E2E1A → ··· → EkEk−1 · · ·E2E1A = B

In other words,
A →UA = B where U = EkEk−1 · · ·E2E1

The matrix U =EkEk−1 · · ·E2E1 is invertible, being a product of invertible matrices by Lemma 2.5.2.
Moreover, U can be computed without finding the Ei as follows: If the above series of operations
carrying A → B is performed on Im in place of A, the result is Im → UIm = U . Hence this series of
operations carries the block matrix

[
A Im

]
→

[
B U

]
. This, together with the above discussion,

proves

Theorem 2.5.1
Suppose A is m×n and A → B by elementary row operations.

1. B =UA where U is an m×m invertible matrix.

2. U can be computed by
[

A Im
]
→

[
B U

]
using the operations carrying A → B.

3. U = EkEk−1 · · ·E2E1 where E1, E2, . . . , Ek are the elementary matrices corresponding
(in order) to the elementary row operations carrying A to B.

Example 2.5.2

If A =

[
2 3 1
1 2 1

]
, express the reduced row-echelon form R of A as R =UA where U is

invertible.

Solution. Reduce the double matrix
[

A I
]
→

[
R U

]
as follows:

[
A I

]
=

[
2 3 1 1 0
1 2 1 0 1

]
→

[
1 2 1 0 1
2 3 1 1 0

]
→

[
1 2 1 0 1
0 −1 −1 1 −2

]
→

[
1 0 −1 2 −3
0 1 1 −1 2

]

Hence R =

[
1 0 −1
0 1 1

]
and U =

[
2 −3

−1 2

]
.

Now suppose that A is invertible. We know that A→ I by Theorem 2.4.5, so taking B= I in Theo-
rem 2.5.1 gives

[
A I

]
→

[
I U

]
where I =UA. Thus U =A−1, so we have

[
A I

]
→

[
I A−1 ]

.
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This is the matrix inversion algorithm in Section 2.4. However, more is true: Theorem 2.5.1 gives
A−1 = U = EkEk−1 · · ·E2E1 where E1, E2, . . . , Ek are the elementary matrices corresponding (in
order) to the row operations carrying A → I. Hence

A =
(
A−1)−1

= (EkEk−1 · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k−1E−1
k (2.10)

By Lemma 2.5.2, this shows that every invertible matrix A is a product of elementary matrices.
Since elementary matrices are invertible (again by Lemma 2.5.2), this proves the following important
characterization of invertible matrices.

Theorem 2.5.2
A square matrix is invertible if and only if it is a product of elementary matrices.

It follows from Theorem 2.5.1 that A → B by row operations if and only if B = UA for some
invertible matrix B. In this case we say that A and B are row-equivalent. (See Exercise 2.5.17.)

Example 2.5.3

Express A =

[
−2 3

1 0

]
as a product of elementary matrices.

Solution. Using Lemma 2.5.1, the reduction of A → I is as follows:

A =

[
−2 3

1 0

]
→ E1A =

[
1 0

−2 3

]
→ E2E1A =

[
1 0
0 3

]
→ E3E2E1A =

[
1 0
0 1

]
where the corresponding elementary matrices are

E1 =

[
0 1
1 0

]
, E2 =

[
1 0
2 1

]
, E3 =

[
1 0
0 1

3

]
Hence (E3 E2 E1)A = I, so:

A = (E3E2E1)
−1 = E−1

1 E−1
2 E−1

3 =

[
0 1
1 0

][
1 0

−2 1

][
1 0
0 3

]

Smith Normal Form

Let A be an m×n matrix of rank r, and let R be the reduced row-echelon form of A. Theorem 2.5.1
shows that R =UA where U is invertible, and that U can be found from

[
A Im

]
→

[
R U

]
.

The matrix R has r leading ones (since rank A = r) so, as R is reduced, the n×m matrix RT

contains each row of Ir in the first r columns. Thus row operations will carry RT →
[

Ir 0
0 0

]
n×m

.

Hence Theorem 2.5.1 (again) shows that
[

Ir 0
0 0

]
n×m

=U1RT where U1 is an n×n invertible matrix.
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Writing V =UT
1 , we obtain

UAV = RV = RUT
1 =

(
U1RT)T

=

([
Ir 0
0 0

]
n×m

)T

=

[
Ir 0
0 0

]
m×n

Moreover, the matrix U1 =V T can be computed by
[

RT In
]
→

[[
Ir 0
0 0

]
n×m

V T
]
. This proves

Theorem 2.5.3
Let A be an m×n matrix of rank r. There exist invertible matrices U and V of size m×m
and n×n, respectively, such that

UAV =

[
Ir 0
0 0

]
m×n

Moreover, if R is the reduced row-echelon form of A, then:

1. U can be computed by
[

A Im
]
→

[
R U

]
;

2. V can be computed by
[

RT In
]
→

[[
Ir 0
0 0

]
n×m

V T
]
.

If A is an m×n matrix of rank r, the matrix
[

Ir 0
0 0

]
is called the Smith normal form11 of

A. Whereas the reduced row-echelon form of A is the “nicest” matrix to which A can be carried
by row operations, the Smith canonical form is the “nicest” matrix to which A can be carried by
row and column operations. This is because doing row operations to RT amounts to doing column
operations to R and then transposing.

Example 2.5.4

Given A =

 1 −1 1 2
2 −2 1 −1

−1 1 0 3

, find invertible matrices U and V such that

UAV =

[
Ir 0
0 0

]
, where r = rank A.

Solution. The matrix U and the reduced row-echelon form R of A are computed by the row
reduction

[
A I3

]
→

[
R U

]
: 1 −1 1 2 1 0 0

2 −2 1 −1 0 1 0
−1 1 0 3 0 0 1

→

 1 −1 0 −3 −1 1 0
0 0 1 5 2 −1 0
0 0 0 0 −1 1 1


11Named after Henry John Stephen Smith (1826–83).



114 Matrix Algebra

Hence

R =

 1 −1 0 −3
0 0 1 5
0 0 0 0

 and U =

 −1 1 0
2 −1 0

−1 1 1


In particular, r = rank R = 2. Now row-reduce

[
RT I4

]
→

[ [
Ir 0
0 0

]
V T

]
:


1 0 0 1 0 0 0

−1 0 0 0 1 0 0
0 1 0 0 0 1 0

−3 5 0 0 0 0 1

→


1 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 0 1 1 0 0
0 0 0 3 0 −5 1


whence

V T =


1 0 0 0
0 0 1 0
1 1 0 0
3 0 −5 −1

 so V =


1 0 1 3
0 0 1 0
0 1 0 −5
0 0 0 1


Then UAV =

[
I2 0
0 0

]
as is easily verified.

Uniqueness of the Reduced Row-echelon Form

In this short subsection, Theorem 2.5.1 is used to prove the following important theorem.

Theorem 2.5.4
If a matrix A is carried to reduced row-echelon matrices R and S by row operations, then
R = S.

Proof. Observe first that UR = S for some invertible matrix U (by Theorem 2.5.1 there exist
invertible matrices P and Q such that R = PA and S = QA; take U = QP−1). We show that R = S
by induction on the number m of rows of R and S. The case m = 1 is left to the reader. If R j and
S j denote column j in R and S respectively, the fact that UR = S gives

UR j = S j for each j (2.11)

Since U is invertible, this shows that R and S have the same zero columns. Hence, by passing to the
matrices obtained by deleting the zero columns from R and S, we may assume that R and S have
no zero columns.

But then the first column of R and S is the first column of Im because R and S are row-echelon,
so (2.11) shows that the first column of U is column 1 of Im. Now write U , R, and S in block form
as follows.

U =

[
1 X
0 V

]
, R =

[
1 X
0 R′

]
, and S =

[
1 Z
0 S′

]
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Since UR = S, block multiplication gives V R′ = S′ so, since V is invertible (U is invertible) and both
R′ and S′ are reduced row-echelon, we obtain R′ = S′ by induction. Hence R and S have the same
number (say r) of leading 1s, and so both have m–r zero rows.

In fact, R and S have leading ones in the same columns, say r of them. Applying (2.11) to these
columns shows that the first r columns of U are the first r columns of Im. Hence we can write U ,
R, and S in block form as follows:

U =

[
Ir M
0 W

]
, R =

[
R1 R2
0 0

]
, and S =

[
S1 S2
0 0

]
where R1 and S1 are r× r. Then block multiplication gives UR = R; that is, S = R. This completes
the proof.

Exercises for 2.5

Exercise 2.5.1 For each of the following elemen-
tary matrices, describe the corresponding elemen-
tary row operation and write the inverse.

E =

 1 0 3
0 1 0
0 0 1

a) E =

 0 0 1
0 1 0
1 0 0

b)

E =

 1 0 0
0 1

2 0
0 0 1

c) E =

 1 0 0
−2 1 0

0 0 1

d)

E =

 0 1 0
1 0 0
0 0 1

e) E =

 1 0 0
0 1 0
0 0 5

f)

b. Interchange rows 1 and 3 of I. E−1 = E.

d. Add (−2) times row 1 of I to row 2. E−1 = 1 0 0
2 1 0
0 0 1



f. Multiply row 3 of I by 5. E−1 =

 1 0 0
0 1 0
0 0 1

5


Exercise 2.5.2 In each case find an elementary
matrix E such that B = EA.

a. A =

[
2 1
3 −1

]
, B =

[
2 1
1 −2

]

b. A =

[
−1 2

0 1

]
, B =

[
1 −2
0 1

]

c. A =

[
1 1

−1 2

]
, B =

[
−1 2

1 1

]

d. A =

[
4 1
3 2

]
, B =

[
1 −1
3 2

]

e. A =

[
−1 1

1 −1

]
, B =

[
−1 1
−1 1

]

f. A =

[
2 1

−1 3

]
, B =

[
−1 3

2 1

]

b.
[
−1 0

0 1

]

d.
[

1 −1
0 1

]

f.
[

0 1
1 0

]

Exercise 2.5.3 Let A =

[
1 2

−1 1

]
and

C =

[
−1 1

2 1

]
.
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a. Find elementary matrices E1 and E2 such that
C = E2E1A.

b. Show that there is no elementary matrix E
such that C = EA.

b. The only possibilities for E are
[

0 1
1 0

]
,[

k 0
0 1

]
,
[

1 0
0 k

]
,
[

1 k
0 1

]
, and

[
1 0
k 1

]
.

In each case, EA has a row different from C.

Exercise 2.5.4 If E is elementary, show that A and
EA differ in at most two rows.

Exercise 2.5.5

a. Is I an elementary matrix? Explain.

b. Is 0 an elementary matrix? Explain.

b. No, 0 is not invertible.

Exercise 2.5.6 In each case find an invertible ma-
trix U such that UA = R is in reduced row-echelon
form, and express U as a product of elementary ma-
trices.

A =

[
1 −1 2

−2 1 0

]
a) A =

[
1 2 1
5 12 −1

]
b)

A =

 1 2 −1 0
3 1 1 2
1 −3 3 2

c)

A =

 2 1 −1 0
3 −1 2 1
1 −2 3 1

d)

b.
[

1 −2
0 1

][
1 0
0 1

2

][
1 0

−5 1

]
A =

[
1 0 7
0 1 −3

]
. Alternatively,[

1 0
0 1

2

][
1 −1
0 1

][
1 0

−5 1

]
A =

[
1 0 7
0 1 −3

]
.

d.

 1 2 0
0 1 0
0 0 1

 1 0 0
0 1

5 0
0 0 1

 1 0 0
0 1 0
0 −1 1


 1 0 0

0 1 0
−2 0 1

 1 0 0
−3 1 0

0 0 1

  0 0 1
0 1 0
1 0 0

A=
1 0 1

5
1
5

0 1 −7
5 −2

5

0 0 0 0


Exercise 2.5.7 In each case find an invertible ma-
trix U such that UA = B, and express U as a product
of elementary matrices.

a. A =

[
2 1 3

−1 1 2

]
, B =

[
1 −1 −2
3 0 1

]

b. A =

[
2 −1 0
1 1 1

]
, B =

[
3 0 1
2 −1 0

]

b. U =

[
1 1
1 0

]
=

[
1 1
0 1

][
0 1
1 0

]

Exercise 2.5.8 In each case factor A as a product
of elementary matrices.

A =

[
1 1
2 1

]
a) A =

[
2 3
1 2

]
b)

A =

 1 0 2
0 1 1
2 1 6

c) A=

 1 0 −3
0 1 4

−2 2 15

d)

b. A =

[
0 1
1 0

][
1 0
2 1

][
1 0
0 −1

]
[

1 2
0 1

]

d. A =

 1 0 0
0 1 0

−2 0 1

 1 0 0
0 1 0
0 2 1


 1 0 −3

0 1 0
0 0 1

 1 0 0
0 1 4
0 0 1





2.5. Elementary Matrices 117

Exercise 2.5.9 Let E be an elementary matrix.

a. Show that ET is also elementary of the same
type.

b. Show that ET = E if E is of type I or II.

Exercise 2.5.10 Show that every matrix A can be
factored as A =UR where U is invertible and R is in
reduced row-echelon form.
UA = R by Theorem 2.5.1, so A =U−1R.

Exercise 2.5.11 If A =

[
1 2
1 −3

]
and

B =

[
5 2

−5 −3

]
find an elementary matrix F such

that AF = B. [Hint: See Exercise 2.5.9.]

Exercise 2.5.12 In each case find invertible U and
V such that UAV =

[
Ir 0
0 0

]
, where r = rank A.

A=

[
1 1 −1

−2 −2 4

]
a) A =

[
3 2
2 1

]
b)

A =

 1 −1 2 1
2 −1 0 3
0 1 −4 1

c)

A =

 1 1 0 −1
3 2 1 1
1 0 1 3

d)

b. U = A−1, V = I2; rank A = 2

d. U =

 −2 1 0
3 −1 0
2 −1 1

,

V =


1 0 −1 −3
0 1 1 4
0 0 1 0
0 0 0 1

; rank A = 2

Exercise 2.5.13 Prove Lemma 2.5.1 for elemen-
tary matrices of:

type I;a) type II.b)

Exercise 2.5.14 While trying to invert A,
[

A I
]

is carried to
[

P Q
]

by row operations. Show that
P = QA.

Exercise 2.5.15 If A and B are n×n matrices and
AB is a product of elementary matrices, show that
the same is true of A.

Exercise 2.5.16 If U is invertible, show that the
reduced row-echelon form of a matrix

[
U A

]
is[

I U−1A
]
.

Write U−1 = EkEk−1 · · ·E2E1, Ei elementary. Then[
I U−1A

]
=
[

U−1U U−1A
]

= U−1
[

U A
]
= EkEk−1 · · ·E2E1

[
U A

]
. So[

U A
]
→

[
I U−1A

]
by row operations

(Lemma 2.5.1).

Exercise 2.5.17 Two matrices A and B are called
row-equivalent (written A r∼ B) if there is a se-
quence of elementary row operations carrying A to
B.

a. Show that A r∼B if and only if A=UB for some
invertible matrix U .

b. Show that:

i. A r∼ A for all matrices A.
ii. If A r∼ B, then B r∼ A

iii. If A r∼ B and B r∼C, then A r∼C.

c. Show that, if A and B are both row-equivalent
to some third matrix, then A r∼ B.

d. Show that

 1 −1 3 2
0 1 4 1
1 0 8 6

 and 1 −1 4 5
−2 1 −11 −8
−1 2 2 2

 are row-equivalent.

[Hint: Consider (c) and Theorem 1.2.1.]

b. (i) A r∼ A because A = IA. (ii) If A r∼ B, then
A = UB, U invertible, so B = U−1A. Thus
B r∼ A. (iii) If A r∼ B and B r∼ C, then A = UB
and B = VC, U and V invertible. Hence A =
U(VC) = (UV )C, so A r∼C.

Exercise 2.5.18 If U and V are invertible n× n
matrices, show that U r∼V . (See Exercise 2.5.17.)

Exercise 2.5.19 (See Exercise 2.5.17.) Find all
matrices that are row-equivalent to:
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[
0 0 0
0 0 0

]
a)

[
0 0 0
0 0 1

]
b)[

1 0 0
0 1 0

]
c)

[
1 2 0
0 0 1

]
d)

b. If B r∼ A, let B = UA, U invertible. If U =[
d b

−b d

]
, B = UA =

[
0 0 b
0 0 d

]
where b

and d are not both zero (as U is invert-
ible). Every such matrix B arises in this way:

Use U =

[
a b

−b a

]
–it is invertible by Exam-

ple 2.3.5.

Exercise 2.5.20 Let A and B be m× n and n×m
matrices, respectively. If m > n, show that AB is not
invertible. [Hint: Use Theorem 1.3.1 to find x 6= 0
with Bx = 0.]

Exercise 2.5.21 Define an elementary column op-
eration on a matrix to be one of the following: (I)
Interchange two columns. (II) Multiply a column by
a nonzero scalar. (III) Add a multiple of a column
to another column. Show that:

a. If an elementary column operation is done to
an m× n matrix A, the result is AF , where F
is an n×n elementary matrix.

b. Given any m× n matrix A, there exist m×m
elementary matrices E1, . . . , Ek and n× n el-
ementary matrices F1, . . . , Fp such that, in

block form,

Ek · · ·E1AF1 · · ·Fp =

[
Ir 0
0 0

]

Exercise 2.5.22 Suppose B is obtained from A by:

a. interchanging rows i and j;

b. multiplying row i by k 6= 0;

c. adding k times row i to row j (i 6= j).

In each case describe how to obtain B−1 from
A−1. [Hint: See part (a) of the preceding exer-
cise.]

b. Multiply column i by 1/k.

Exercise 2.5.23 Two m×n matrices A and B are
called equivalent (written A e∼ B) if there exist in-
vertible matrices U and V (sizes m×m and n× n)
such that A =UBV .

a. Prove the following the properties of equiva-
lence.

i. A e∼ A for all m×n matrices A.
ii. If A e∼ B, then B e∼ A.
iii. If A e∼ B and B e∼C, then A e∼C.

b. Prove that two m× n matrices are equivalent
if they have the same rank . [Hint: Use part
(a) and Theorem 2.5.3.]
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2.6 Linear Transformations

If A is an m×n matrix, recall that the transformation TA : Rn → Rm defined by

TA(x) = Ax for all x in Rn

is called the matrix transformation induced by A. In Section 2.2, we saw that many important
geometric transformations were in fact matrix transformations. These transformations can be char-
acterized in a different way. The new idea is that of a linear transformation, one of the basic notions
in linear algebra. We define these transformations in this section, and show that they are really just
the matrix transformations looked at in another way. Having these two ways to view them turns
out to be useful because, in a given situation, one perspective or the other may be preferable.

Linear Transformations

Definition 2.13 Linear Transformations Rn → Rm

A transformation T : Rn → Rm is called a linear transformation if it satisfies the
following two conditions for all vectors x and y in Rn and all scalars a:

T1 T (x+y) = T (x)+T (y)

T2 T (ax) = aT (x)

Of course, x+y and ax here are computed in Rn, while T (x)+T (y) and aT (x) are in Rm. We
say that T preserves addition if T1 holds, and that T preserves scalar multiplication if T2 holds.
Moreover, taking a = 0 and a =−1 in T2 gives

T (0) = 0 and T (−x) =−T (x) for all x

Hence T preserves the zero vector and the negative of a vector. Even more is true.
Recall that a vector y in Rn is called a linear combination of vectors x1, x2, . . . , xk if y has

the form
y = a1x1 +a2x2 + · · ·+akxk

for some scalars a1, a2, . . . , ak. Conditions T1 and T2 combine to show that every linear transfor-
mation T preserves linear combinations in the sense of the following theorem. This result is used
repeatedly in linear algebra.

Theorem 2.6.1: Linearity Theorem

If T : Rn → Rm is a linear transformation, then for each k = 1, 2, . . .

T (a1x1 +a2x2 + · · ·+akxk) = a1T (x1)+a2T (x2)+ · · ·+akT (xk)

for all scalars ai and all vectors xi in Rn.
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Proof. If k = 1, it reads T (a1x1) = a1T (x1) which is Condition T1. If k = 2, we have

T (a1x1 +a2x2) = T (a1x1)+T (a2x2) by Condition T1
= a1T (x1)+a2T (x2) by Condition T2

If k = 3, we use the case k = 2 to obtain

T (a1x1 +a2x2 +a3x3) = T [(a1x1 +a2x2)+a3x3] collect terms
= T (a1x1 +a2x2)+T (a3x3) by Condition T1
= [a1T (x1)+a2T (x2)]+T (a3x3) by the case k = 2
= [a1T (x1)+a2T (x2)]+a3T (x3) by Condition T2

The proof for any k is similar, using the previous case k−1 and Conditions T1 and T2.

The method of proof in Theorem 2.6.1 is called mathematical induction (Appendix ??).
Theorem 2.6.1 shows that if T is a linear transformation and T (x1), T (x2), . . . , T (xk) are all

known, then T (y) can be easily computed for any linear combination y of x1, x2, . . . , xk. This is
a very useful property of linear transformations, and is illustrated in the next example.

Example 2.6.1

If T : R2 → R2 is a linear transformation, T
[

1
1

]
=

[
2

−3

]
and T

[
1

−2

]
=

[
5
1

]
, find

T
[

4
3

]
.

Solution. Write z =

[
4
3

]
, x =

[
1
1

]
, and y =

[
1

−2

]
for convenience. Then we know

T (x) and T (y) and we want T (z), so it is enough by Theorem 2.6.1 to express z as a linear
combination of x and y. That is, we want to find numbers a and b such that z = ax+by.
Equating entries gives two equations 4 = a+b and 3 = a−2b. The solution is, a = 11

3 and
b = 1

3 , so z = 11
3 x+ 1

3y. Thus Theorem 2.6.1 gives

T (z) = 11
3 T (x)+ 1

3T (y) = 11
3

[
2

−3

]
+ 1

3

[
5
1

]
= 1

3

[
27

−32

]
This is what we wanted.

Example 2.6.2

If A is m×n, the matrix transformation TA : Rn → Rm, is a linear transformation.

Solution. We have TA(x) = Ax for all x in Rn, so Theorem 2.2.2 gives

TA(x+y) = A(x+y) = Ax+Ay = TA(x)+TA(y)

and
TA(ax) = A(ax) = a(Ax) = aTA(x)
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hold for all x and y in Rn and all scalars a. Hence TA satisfies T1 and T2, and so is linear.

The remarkable thing is that the converse of Example 2.6.2 is true: Every linear transformation
T : Rn → Rm is actually a matrix transformation. To see why, we define the standard basis of Rn

to be the set of columns
{e1, e2, . . . , en}

of the identity matrix In. Then each ei is in Rn and every vector x =


x1
x2
...

xn

 in Rn is a linear

combination of the ei. In fact:
x = x1e1 + x2e2 + · · ·+ xnen

as the reader can verify. Hence Theorem 2.6.1 shows that

T (x) = T (x1e1 + x2e2 + · · ·+ xnen) = x1T (e1)+ x2T (e2)+ · · ·+ xnT (en)

Now observe that each T (ei) is a column in Rm, so

A =
[

T (e1) T (e2) · · · T (en)
]

is an m×n matrix. Hence we can apply Definition 2.5 to get

T (x) = x1T (e1)+ x2T (e2)+ · · ·+ xnT (en) =
[

T (e1) T (e2) · · · T (en)
]


x1
x2
...

xn

= Ax

Since this holds for every x in Rn, it shows that T is the matrix transformation induced by A, and
so proves most of the following theorem.

Theorem 2.6.2
Let T : Rn → Rm be a transformation.

1. T is linear if and only if it is a matrix transformation.

2. In this case T = TA is the matrix transformation induced by a unique m×n matrix A,
given in terms of its columns by

A =
[

T (e1) T (e2) · · · T (en)
]

where {e1, e2, . . . , en} is the standard basis of Rn.

Proof. It remains to verify that the matrix A is unique. Suppose that T is induced by another
matrix B. Then T (x) = Bx for all x in Rn. But T (x) = Ax for each x, so Bx = Ax for every x.
Hence A = B by Theorem 2.2.6.
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Hence we can speak of the matrix of a linear transformation. Because of Theorem 2.6.2 we may
(and shall) use the phrases “linear transformation” and “matrix transformation” interchangeably.

Example 2.6.3

Define T : R3 → R2 by T

 x1
x2
x3

=

[
x1
x2

]
for all

 x1
x2
x3

 in R3. Show that T is a linear

transformation and use Theorem 2.6.2 to find its matrix.

Solution. Write x =

 x1
x2
x3

 and y =

 y1
y2
y3

, so that x+y =

 x1 + y1
x2 + y2
x3 + y3

. Hence

T (x+y) =
[

x1 + y1
x2 + y2

]
=

[
x1
x2

]
+

[
y1
y2

]
= T (x)+T (y)

Similarly, the reader can verify that T (ax) = aT (x) for all a in R, so T is a linear
transformation. Now the standard basis of R3 is

e1 =

 1
0
0

 , e2 =

 0
1
0

 , and e3 =

 0
0
1


so, by Theorem 2.6.2, the matrix of T is

A =
[

T (e1) T (e2) T (e3)
]
=

[
1 0 0
0 1 0

]

Of course, the fact that T

 x1
x2
x3

=

[
x1
x2

]
=

[
1 0 0
0 1 0

] x1
x2
x3

 shows directly that T is a

matrix transformation (hence linear) and reveals the matrix.

To illustrate how Theorem 2.6.2 is used, we rederive the matrices of the transformations in
Examples 2.2.13 and 2.2.15.

Example 2.6.4

Let Q0 : R2 → R2 denote reflection in the x axis (as in Example 2.2.13) and let Rπ

2
: R2 → R2

denote counterclockwise rotation through π

2 about the origin (as in Example 2.2.15). Use
Theorem 2.6.2 to find the matrices of Q0 and Rπ

2
.

0 e1

e2

[
0
1

]
[

1
0

]
x

y

Figure 2.6.1

Solution. Observe that Q0 and Rπ

2
are linear by

Example 2.6.2 (they are matrix transformations), so
Theorem 2.6.2 applies to them. The standard basis of R2 is
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{e1, e2} where e1 =

[
1
0

]
points along the positive x axis, and

e2 =

[
0
1

]
points along the positive y axis (see Figure 2.6.1).

The reflection of e1 in the x axis is e1 itself because e1 points along the x axis, and the
reflection of e2 in the x axis is −e2 because e2 is perpendicular to the x axis. In other words,
Q0(e1) = e1 and Q0(e2) =−e2. Hence Theorem 2.6.2 shows that the matrix of Q0 is

[
Q0(e1) Q0(e2)

]
=
[

e1 −e2
]
=

[
1 0
0 −1

]
which agrees with Example 2.2.13.

Similarly, rotating e1 through π

2 counterclockwise about the origin produces e2, and
rotating e2 through π

2 counterclockwise about the origin gives −e1. That is, Rπ

2
(e1) = e2

and Rπ

2
(e2) =−e2. Hence, again by Theorem 2.6.2, the matrix of Rπ

2
is

[
Rπ

2
(e1) Rπ

2
(e2)

]
=
[

e2 −e1
]
=

[
0 −1
1 0

]
agreeing with Example 2.2.15.

Example 2.6.5

e1

e2

0

y = x

T
[

x
y

]
=

[
y
x

]

[
x
y

]

x

y

Figure 2.6.2

Let Q1 : R2 → R2 denote reflection in the line y = x. Show
that Q1 is a matrix transformation, find its matrix, and
use it to illustrate Theorem 2.6.2.

Solution. Figure 2.6.2 shows that Q1

[
x
y

]
=

[
y
x

]
. Hence

Q1

[
x
y

]
=

[
0 1
1 0

][
y
x

]
, so Q1 is the matrix transformation

induced by the matrix A =

[
0 1
1 0

]
. Hence Q1 is linear (by

Example 2.6.2) and so Theorem 2.6.2 applies. If e1 =

[
1
0

]
and e2 =

[
0
1

]
are the standard

basis of R2, then it is clear geometrically that Q1(e1) = e2 and Q1(e2) = e1. Thus (by
Theorem 2.6.2) the matrix of Q1 is

[
Q1(e1) Q1(e2)

]
=
[

e2 e1
]
= A as before.

Recall that, given two “linked” transformations

Rk T−→ Rn S−→ Rm

we can apply T first and then apply S, and so obtain a new transformation

S◦T : Rk → Rm
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called the composite of S and T , defined by
(S◦T )(x) = S [T (x)] for all x in Rk

If S and T are linear, the action of S◦T can be computed by multiplying their matrices.

Theorem 2.6.3

Let Rk T−→ Rn S−→ Rm be linear transformations, and let A and B be the matrices of S and T
respectively. Then S◦T is linear with matrix AB.

Proof. (S◦T )(x) = S [T (x)] = A [Bx] = (AB)x for all x in Rk.

Theorem 2.6.3 shows that the action of the composite S ◦T is determined by the matrices of S
and T . But it also provides a very useful interpretation of matrix multiplication. If A and B are
matrices, the product matrix AB induces the transformation resulting from first applying B and
then applying A. Thus the study of matrices can cast light on geometrical transformations and
vice-versa. Here is an example.

Example 2.6.6

Show that reflection in the x axis followed by rotation through π

2 is reflection in the line
y = x.

Solution. The composite in question is Rπ

2
◦Q0 where Q0 is reflection in the x axis and Rπ

2

is rotation through π

2 . By Example 2.6.4, Rπ

2
has matrix A =

[
0 −1
1 0

]
and Q0 has matrix

B =

[
1 0
0 −1

]
. Hence Theorem 2.6.3 shows that the matrix of Rπ

2
◦Q0 is

AB =

[
0 −1
1 0

][
1 0
0 −1

]
=

[
0 1
1 0

]
, which is the matrix of reflection in the line y = x by

Example 2.6.3.

This conclusion can also be seen geometrically. Let x be a typical point in R2, and assume that
x makes an angle α with the positive x axis. The effect of first applying Q0 and then applying Rπ

2
is shown in Figure 2.6.3. The fact that Rπ

2
[Q0(x)] makes the angle α with the positive y axis shows

that Rπ

2
[Q0(x)] is the reflection of x in the line y = x.

α

x

0 x

y

α

Q0(x)

x

0 x

y

α

α

y = xR π

2
[Q0(x)]

Q0(x)

x

0 x

y

Figure 2.6.3
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In Theorem 2.6.3, we saw that the matrix of the composite of two linear transformations is the
product of their matrices (in fact, matrix products were defined so that this is the case). We are
going to apply this fact to rotations, reflections, and projections in the plane. Before proceeding,
we pause to present useful geometrical descriptions of vector addition and scalar multiplication in
the plane, and to give a short review of angles and the trigonometric functions.

− 1
2 x =

[
− 1

2
−1

]0

1
2 x =

[ 1
2
1

]x =

[
1
2

]
2x =

[
2
4

]

x1

x2

Figure 2.6.4

Some Geometry
As we have seen, it is convenient to view a vector x in R2 as an arrow
from the origin to the point x (see Section 2.2). This enables us to
visualize what sums and scalar multiples mean geometrically. For

example consider x =

[
1
2

]
in R2. Then 2x =

[
2
4

]
, 1

2x =

[ 1
2
1

]
and

−1
2x =

[
−1

2
−1

]
, and these are shown as arrows in Figure 2.6.4.

Observe that the arrow for 2x is twice as long as the arrow for x
and in the same direction, and that the arrows for 1

2x is also in the
same direction as the arrow for x, but only half as long. On the other
hand, the arrow for −1

2x is half as long as the arrow for x, but in the
opposite direction. More generally, we have the following geometrical
description of scalar multiplication in R2:

0

x =
[

2
1

]

y =
[

1
3

] x+y =
[

3
4

]

x1

x2

Figure 2.6.5

Scalar Multiple Law

Let x be a vector in R2. The arrow for kx is |k| times12as long
as the arrow for x, and is in the same direction as the arrow
for x if k > 0, and in the opposite direction if k < 0.

0

x

y

x+y

x1

x2

Figure 2.6.6

Now consider two vectors x =

[
2
1

]
and y =

[
1
3

]
in R2. They

are plotted in Figure 2.6.5 along with their sum x+y =

[
3
4

]
. It is a

routine matter to verify that the four points 0, x, y, and x+y form
the vertices of a parallelogram–that is opposite sides are parallel
and of the same length. (The reader should verify that the side from
0 to x has slope of 1

2 , as does the side from y to x+y, so these sides
are parallel.) We state this as follows:

θ1

0

Radian
measure

of θp

x

y

Figure 2.6.7

Parallelogram Law

Consider vectors x and y in R2. If the arrows for x and y are
drawn (see Figure 2.6.6), the arrow for x+y corresponds to
the fourth vertex of the parallelogram determined by the

12If k is a real number, |k| denotes the absolute value of k; that is, |k|= k if k ≥ 0 and |k|=−k if k < 0.
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points x, y, and 0.

We will have more to say about this in Chapter 4.
Before proceeding we turn to a brief review of angles and the trigonometric functions. Recall

that an angle θ is said to be in standard position if it is measured counterclockwise from the
positive x axis (as in Figure 2.6.7). Then θ uniquely determines a point p on the unit circle (radius
1, centre at the origin). The radian measure of θ is the length of the arc on the unit circle from
the positive x axis to p. Thus 360◦ = 2π radians, 180◦ = π, 90◦ = π

2 , and so on.
The point p in Figure 2.6.7 is also closely linked to the trigonometric functions cosine and sine,

written cosθ and sinθ respectively. In fact these functions are defined to be the x and y coordinates
of p; that is p=

[
cosθ

sinθ

]
. This defines cosθ and sinθ for the arbitrary angle θ (possibly negative),

and agrees with the usual values when θ is an acute angle
(
0 ≤ θ ≤ π

2

)
as the reader should verify.

For more discussion of this, see Appendix ??.

Rotations

θ

Rθ (x)

x

0
x

y

Figure 2.6.8

We can now describe rotations in the plane. Given an angle θ , let

Rθ : R2 → R2

denote counterclockwise rotation of R2 about the origin through the
angle θ . The action of Rθ is depicted in Figure 2.6.8. We have
already looked at Rπ

2
(in Example 2.2.15) and found it to be a matrix

transformation. It turns out that Rθ is a matrix transformation for
every angle θ (with a simple formula for the matrix), but it is not
clear how to find the matrix. Our approach is to first establish the
(somewhat surprising) fact that Rθ is linear, and then obtain the

matrix from Theorem 2.6.2.

θ x
y

x+yRθ (x)

Rθ (y)

Rθ (x+y)

0
x

y

Figure 2.6.9

Let x and y be two vectors in R2. Then x+y is the diagonal of
the parallelogram determined by x and y as in Figure 2.6.9.
The effect of Rθ is to rotate the entire parallelogram to obtain the
new parallelogram determined by Rθ (x) and Rθ (y), with diagonal
Rθ (x+y). But this diagonal is Rθ (x)+Rθ (y) by the parallelogram
law (applied to the new parallelogram). It follows that

Rθ (x+y) = Rθ (x)+Rθ (y)

A similar argument shows that Rθ (ax) = aRθ (x) for any scalar a,
so Rθ : R2 → R2 is indeed a linear transformation.
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θ

θ

0 e1

e2

Rθ (e1)
Rθ (e2)

cos θ

sin θ

cos θ
sin θ

11
x

y

Figure 2.6.10

With linearity established we can find the matrix of Rθ . Let
e1 =

[
1
0

]
and e2 =

[
0
1

]
denote the standard basis of R2. By Fig-

ure 2.6.10 we see that

Rθ (e1) =

[
cosθ

sinθ

]
and Rθ (e2) =

[
−sinθ

cosθ

]
Hence Theorem 2.6.2 shows that Rθ is induced by the matrix[

Rθ (e1) Rθ (e2)
]
=

[
cosθ −sinθ

sinθ cosθ

]
We record this as

Theorem 2.6.4

The rotation Rθ : R2 → R2 is the linear transformation with matrix
[

cosθ −sinθ

sinθ cosθ

]
.

For example, Rπ

2
and Rπ have matrices

[
0 −1
1 0

]
and

[
−1 0

0 −1

]
, respectively, by Theo-

rem 2.6.4. The first of these confirms the result in Example 2.2.15. The second shows that rotating
a vector x =

[
x
y

]
through the angle π results in Rπ(x) =

[
−1 0

0 −1

][
x
y

]
=

[
−x
−y

]
=−x. Thus

applying Rπ is the same as negating x, a fact that is evident without Theorem 2.6.4.

Example 2.6.7

φ

θ

Rθ

[
Rφ (x)

]
Rφ (x)

x

0
x

y

Figure 2.6.11

Let θ and φ be angles. By finding the matrix of the composite
Rθ ◦Rφ , obtain expressions for cos(θ +φ) and sin(θ +φ).

Solution. Consider the transformations R2 Rφ−→ R2 Rθ−→ R2.
Their composite Rθ ◦Rφ is the transformation that first rotates
the plane through φ and then rotates it through θ , and
so is the rotation through the angle θ +φ (see Figure 2.6.11).
In other words

Rθ+φ = Rθ ◦Rφ

Theorem 2.6.3 shows that the corresponding equation holds for
the matrices of these transformations, so Theorem 2.6.4 gives:[

cos(θ +φ) −sin(θ +φ)
sin(θ +φ) cos(θ +φ)

]
=

[
cosθ −sinθ

sinθ cosθ

][
cosφ −sinφ

sinφ cosφ

]
If we perform the matrix multiplication on the right, and then compare first column entries,
we obtain

cos(θ +φ) = cosθ cosφ − sinθ sinφ

sin(θ +φ) = sinθ cosφ − cosθ sinφ
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These are the two basic identities from which most of trigonometry can be derived.

Reflections

Qm(x)

x

0

y = mx

x

y

Figure 2.6.12

The line through the origin with slope m has equation y = mx, and we
let Qm : R2 → R2 denote reflection in the line y = mx.

This transformation is described geometrically in Figure 2.6.12. In
words, Qm(x) is the “mirror image” of x in the line y = mx. If m = 0
then Q0 is reflection in the x axis, so we already know Q0 is linear.
While we could show directly that Qm is linear (with an argument like
that for Rθ ), we prefer to do it another way that is instructive and
derives the matrix of Qm directly without using Theorem 2.6.2.

Let θ denote the angle between the positive x axis and the line
y = mx. The key observation is that the transformation Qm can be

accomplished in three steps: First rotate through −θ (so our line coincides with the x axis), then
reflect in the x axis, and finally rotate back through θ . In other words:

Qm = Rθ ◦Q0 ◦R−θ

Since R−θ , Q0, and Rθ are all linear, this (with Theorem 2.6.3) shows that Qm is linear and that
its matrix is the product of the matrices of Rθ , Q0, and R−θ . If we write c = cosθ and s = sinθ for
simplicity, then the matrices of Rθ , R−θ , and Q0 are[

c −s
s c

]
,

[
c s

−s c

]
, and

[
1 0
0 −1

]
respectively.13

Hence, by Theorem 2.6.3, the matrix of Qm = Rθ ◦Q0 ◦R−θ is[
c −s
s c

][
1 0
0 −1

][
c s

−s c

]
=

[
c2 − s2 2sc

2sc s2 − c2

]

θ

m

1

[
1
m

]

0

√
1+m2 y = mx

x

y

Figure 2.6.13

We can obtain this matrix in terms of m alone. Figure 2.6.13 shows
that

cosθ = 1√
1+m2 and sinθ = m√

1+m2

so the matrix
[

c2 − s2 2sc
2sc s2 − c2

]
of Qm becomes 1

1+m2

[
1−m2 2m

2m m2 −1

]
.

Theorem 2.6.5
Let Qm denote reflection in the line y = mx. Then Qm is a

13The matrix of R−θ comes from the matrix of Rθ using the fact that, for all angles θ , cos(−θ) = cosθ and
sin(−θ) =−sin(θ).
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linear transformation with matrix 1
1+m2

[
1−m2 2m

2m m2 −1

]
.

Note that if m = 0, the matrix in Theorem 2.6.5 becomes
[

1 0
0 −1

]
, as expected. Of course

this analysis fails for reflection in the y axis because vertical lines have no slope. However it is an
easy exercise to verify directly that reflection in the y axis is indeed linear with matrix

[
−1 0

0 1

]
.14

Example 2.6.8

Let T : R2 → R2 be rotation through −π

2 followed by reflection in the y axis. Show that T is
a reflection in a line through the origin and find the line.

Solution. The matrix of R−π

2
is

 cos(−π

2 ) −sin(−π

2 )

sin(−π

2 ) cos(−π

2 )

=

[
0 1

−1 0

]
and the matrix of

reflection in the y axis is
[
−1 0

0 1

]
. Hence the matrix of T is[

−1 0
0 1

][
0 1

−1 0

]
=

[
0 −1

−1 0

]
and this is reflection in the line y =−x (take m =−1 in

Theorem 2.6.5).

Projections

Pm(x)

x

y = mx

0
x

y

Figure 2.6.14

The method in the proof of Theorem 2.6.5 works more generally. Let
Pm : R2 → R2 denote projection on the line y = mx. This transforma-
tion is described geometrically in Figure 2.6.14.

If m = 0, then P0

[
x
y

]
=

[
x
0

]
for all

[
x
y

]
in R2, so P0 is linear

with matrix
[

1 0
0 0

]
. Hence the argument above for Qm goes through

for Pm. First observe that

Pm = Rθ ◦P0 ◦R−θ

as before. So, Pm is linear with matrix[
c −s
s c

][
1 0
0 0

][
c s

−s c

]
=

[
c2 sc
sc s2

]
where c = cosθ = 1√

1+m2 and s = sinθ = m√
1+m2 .

14Note that
[

−1 0
0 1

]
= lim

m→∞

1
1+m2

[
1−m2 2m

2m m2 −1

]
.
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This gives:

Theorem 2.6.6
Let Pm : R2 → R2 be projection on the line y = mx. Then Pm is a linear transformation with

matrix 1
1+m2

[
1 m
m m2

]
.

Again, if m = 0, then the matrix in Theorem 2.6.6 reduces to
[

1 0
0 0

]
as expected. As the y

axis has no slope, the analysis fails for projection on the y axis, but this transformation is indeed
linear with matrix

[
0 0
0 1

]
as is easily verified directly.

Note that the formula for the matrix of Qm in Theorem 2.6.5 can be derived from the above
formula for the matrix of Pm. Using Figure 2.6.12, observe that Qm(x) = x+2[Pm(x)−x] so Qm(x) =
2Pm(x)−x. Substituting the matrices for Pm(x) and 1R2(x) gives the desired formula.

Example 2.6.9

Given x in R2, write y = Pm(x). The fact that y lies on the line y = mx means that
Pm(y) = y. But then

(Pm ◦Pm)(x) = Pm(y) = y = Pm(x) for all x in R2, that is, Pm ◦Pm = Pm.

In particular, if we write the matrix of Pm as A = 1
1+m2

[
1 m
m m2

]
, then A2 = A. The reader

should verify this directly.

Exercises for 2.6

Exercise 2.6.1 Let T : R3 → R2 be a linear trans-
formation.

a. Find T

 8
3
7

 if T

 1
0

−1

=

[
2
3

]

and T

 2
1
3

=

[
−1

0

]
.

b. Find T

 5
6

−13

 if T

 3
2

−1

=

[
3
5

]

and T

 2
0
5

=

[
−1

2

]
.

b.

 5
6

−13

= 3

 3
2

−1

−2

 2
0
5

, so

T

 5
6

−13

 = 3T

 3
2

−1

 − 2T

 2
0
5

 =

3
[

3
5

]
−2

[
−1

2

]
=

[
11
11

]
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Exercise 2.6.2 Let T : R4 → R3 be a linear trans-
formation.

a. Find T


1
3

−2
−3

 if T


1
1
0

−1

=

 2
3

−1



and T


0

−1
1
1

=

 5
0
1

.

b. Find T


5

−1
2

−4

 if T


1
1
1
1

=

 5
1

−3



and T


−1

1
0
2

=

 2
0
1

.

b. As in 1(b), T


5

−1
2

−4

=

 4
2

−9

.

Exercise 2.6.3 In each case assume that the trans-
formation T is linear, and use Theorem 2.6.2 to ob-
tain the matrix A of T .

a. T : R2 → R2 is reflection in the line y =−x.

b. T : R2 → R2 is given by T (x) = −x for each x in
R2.

c. T : R2 → R2 is clockwise rotation through π

4 .

d. T : R2 → R2 is counterclockwise rotation through
π

4 .

b. T (e1) = −e2 and T (e2) = −e1. So
A
[

T (e1) T (e2)
]

=
[
−e2 −e1

]
=[

−1 0
0 −1

]
.

d. T (e1) =

 √
2

2
√

2
2

 and T (e2) =

 −
√

2
2
√

2
2

 So

A =
[

T (e1) T (e2)
]
=

√
2

2

[
1 −1
1 1

]
.

Exercise 2.6.4 In each case use Theorem 2.6.2 to
obtain the matrix A of the transformation T . You
may assume that T is linear in each case.

a. T : R3 → R3 is reflection in the x− z plane.

b. T : R3 → R3 is reflection in the y− z plane.

b. T (e1) = −e1, T (e2) = e2 and T (e3) =
e3. Hence Theorem 2.6.2 gives
A
[

T (e1) T (e2) T (e3)
]
=
[
−e1 e2 e3

]
= −1 0 0

0 1 0
0 0 1

.

Exercise 2.6.5 Let T : Rn →Rm be a linear trans-
formation.

a. If x is in Rn, we say that x is in the kernel of
T if T (x) = 0. If x1 and x2 are both in the
kernel of T , show that ax1 +bx2 is also in the
kernel of T for all scalars a and b.

b. If y is in Rn, we say that y is in the image of T
if y = T (x) for some x in Rn. If y1 and y2 are
both in the image of T , show that ay1+by2 is
also in the image of T for all scalars a and b.

b. We have y1 = T (x1) for some x1 in Rn, and
y2 = T (x2) for some x2 in Rn. So ay1 +
by2 = aT (x1)+bT (x2) = T (ax1 +bx2). Hence
ay1 +by2 is also in the image of T .

Exercise 2.6.6 Use Theorem 2.6.2 to find the ma-
trix of the identity transformation 1Rn : Rn → Rn

defined by 1Rn(x) = x for each x in Rn.

Exercise 2.6.7 In each case show that T : R2 →R2

is not a linear transformation.

T
[

x
y

]
=

[
xy
0

]
a) T

[
x
y

]
=

[
0
y2

]
b)
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b. T
(

2
[

0
1

])
6= 2

[
0

−1

]
.

Exercise 2.6.8 In each case show that T is either
reflection in a line or rotation through an angle, and
find the line or angle.

a. T
[

x
y

]
= 1

5

[
−3x+4y
4x+3y

]

b. T
[

x
y

]
= 1√

2

[
x+ y
−x+ y

]

c. T
[

x
y

]
= 1√

3

[
x−

√
3y√

3x+ y

]

d. T
[

x
y

]
=− 1

10

[
8x+6y
6x−8y

]

b. A = 1√
2

[
1 1

−1 1

]
, rotation through θ =−π

4 .

d. A = 1
10

[
−8 −6
−6 8

]
, reflection in the line y =

−3x.

Exercise 2.6.9 Express reflection in the line y=−x
as the composition of a rotation followed by reflec-
tion in the line y = x.

Exercise 2.6.10 Find the matrix of T : R3 → R3

in each case:

a. T is rotation through θ about the x axis (from
the y axis to the z axis).

b. T is rotation through θ about the y axis (from
the x axis to the z axis).

b.

 cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ


Exercise 2.6.11 Let Tθ : R2 → R2 denote reflec-
tion in the line making an angle θ with the positive
x axis.

a. Show that the matrix of Tθ is[
cos2θ sin2θ

sin2θ −cos2θ

]
for all θ .

b. Show that Tθ ◦R2φ = Tθ−φ for all θ and φ .

Exercise 2.6.12 In each case find a rotation or
reflection that equals the given transformation.

a. Reflection in the y axis followed by rotation
through π

2 .

b. Rotation through π followed by reflection in
the x axis.

c. Rotation through π

2 followed by reflection in
the line y = x.

d. Reflection in the x axis followed by rotation
through π

2 .

e. Reflection in the line y = x followed by reflec-
tion in the x axis.

f. Reflection in the x axis followed by reflection
in the line y = x.

b. Reflection in the y axis

d. Reflection in y = x

f. Rotation through π

2

Exercise 2.6.13 Let R and S be matrix transfor-
mations Rn → Rm induced by matrices A and B re-
spectively. In each case, show that T is a matrix
transformation and describe its matrix in terms of A
and B.

a. T (x) = R(x)+S(x) for all x in Rn.

b. T (x) = aR(x) for all x in Rn (where a is a fixed
real number).

b. T (x) = aR(x) = a(Ax) = (aA)x for all x in R.
Hence T is induced by aA.

Exercise 2.6.14 Show that the following hold for
all linear transformations T : Rn → Rm:
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T (0) = 0a) T (−x) = −T (x) for all x
in Rn

b)

b. If x is in Rn, then T (−x) = T [(−1)x] =
(−1)T (x) =−T (x).

Exercise 2.6.15 The transformation T : Rn → Rm

defined by T (x) = 0 for all x in Rn is called the zero
transformation.

a. Show that the zero transformation is linear
and find its matrix.

b. Let e1, e2, . . . , en denote the columns of the
n×n identity matrix. If T : Rn → Rm is linear
and T (ei) = 0 for each i, show that T is the
zero transformation. [Hint: Theorem 2.6.1.]

Exercise 2.6.16 Write the elements of Rn and Rm

as rows. If A is an m×n matrix, define T : Rm → Rn

by T (y) = yA for all rows y in Rm. Show that:

a. T is a linear transformation.

b. the rows of A are T (f1), T (f2), . . . , T (fm) where
fi denotes row i of Im. [Hint: Show that fiA is
row i of A.]

Exercise 2.6.17 Let S : Rn → Rn and T : Rn → Rn

be linear transformations with matrices A and B re-
spectively.

a. Show that B2 = B if and only if T 2 = T (where
T 2 means T ◦T ).

b. Show that B2 = I if and only if T 2 = 1Rn .

c. Show that AB = BA if and only if S◦T = T ◦S.

[Hint: Theorem 2.6.3.]

b. If B2 = I then T 2(x) = T [T (x)] = B(Bx) =
B2x = Ix = x = 1R2(x) for all x in Rn. Hence
T 2 = 1R2 . If T 2 = 1R2 , then B2x = T 2(x) =
1R2(x) = x = Ix for all x, so B2 = I by Theo-
rem 2.2.6.

Exercise 2.6.18 Let Q0 : R2 → R2 be reflection
in the x axis, let Q1 : R2 → R2 be reflection in the
line y = x, let Q−1 : R2 → R2 be reflection in the line
y = −x, and let R π

2
: R2 → R2 be counterclockwise

rotation through π

2 .

a. Show that Q1 ◦R π

2
= Q0.

b. Show that Q1 ◦Q0 = R π

2
.

c. Show that R π

2
◦Q0 = Q1.

d. Show that Q0 ◦R π

2
= Q−1.

b. The matrix of Q1◦Q0 is
[

0 1
1 0

][
1 0
0 −1

]
=[

0 −1
1 0

]
, which is the matrix of R π

2
.

d. The matrix of Q0 ◦R π

2
is[

1 0
0 −1

][
0 −1
1 0

]
=

[
0 −1

−1 0

]
, which

is the matrix of Q−1.

Exercise 2.6.19 For any slope m, show that:

Qm ◦Pm = Pma) Pm ◦Qm = Pmb)

Exercise 2.6.20 Define T : Rn → R by
T (x1, x2, . . . , xn) = x1 + x2 + · · ·+ xn. Show that
T is a linear transformation and find its matrix.

We have T (x)= x1+x2+· · ·+xn =
[

1 1 · · · 1
]


x1
x2
...

xn

,

so T is the matrix transformation induced by the ma-
trix A =

[
1 1 · · · 1

]
. In particular, T is linear.

On the other hand, we can use Theorem 2.6.2 to get
A, but to do this we must first show directly that T

is linear. If we write x =


x1
x2
...

xn

 and y =


y1
y2
...

yn

.



134 Matrix Algebra

Then

T (x+y) = T


x1 + y1
x2 + y2

...
xn + yn


= (x1 + y1)+(x2 + y2)+ · · ·+(xn + yn)

= (x1 + x2 + · · ·+ xn)+(y1 + y2 + · · ·+ yn)

= T (x)+T (y)

Similarly, T (ax) = aT (x) for any scalar a, so T
is linear. By Theorem 2.6.2, T has matrix A =[

T (e1) T (e2) · · · T (en)
]
=

[
1 1 · · · 1

]
, as

before.

Exercise 2.6.21 Given c in R, define Tc : Rn → R
by Tc(x) = cx for all x in Rn. Show that Tc is a linear
transformation and find its matrix.

Exercise 2.6.22 Given vectors w and x in Rn,
denote their dot product by w ·x.

a. Given w in Rn, define Tw : Rn →R by Tw(x) =
w ·x for all x in Rn. Show that Tw is a linear
transformation.

b. Show that every linear transformation T :
Rn → R is given as in (a); that is T = Tw for
some w in Rn.

b. If T : Rn → R is linear, write T (e j) = w j for
each j = 1, 2, . . . , n where {e1, e2, . . . , en}
is the standard basis of Rn. Since x = x1e1 +
x2e2 + · · ·+ xnen, Theorem 2.6.1 gives

T (x) = T (x1e1 + x2e2 + · · ·+ xnen)

= x1T (e1)+ x2T (e2)+ · · ·+ xnT (en)

= x1w1 + x2w2 + · · ·+ xnwn

= w ·x = Tw(x)

where w =


w1
w2
...

wn

. Since this holds for

all x in Rn, it shows that T = TW. This
also follows from Theorem 2.6.2, but we
have first to verify that T is linear. (This
comes to showing that w · (x + y) = w · s +
w · y and w · (ax) = a(w · x) for all x and
y in Rn and all a in R.) Then T has
matrix A =

[
T (e1) T (e2) · · · T (en)

]
=[

w1 w2 · · · wn
]

by Theorem 2.6.2. Hence

if x =


x1
x2
...

xn

 in R, then T (x) = Ax = w ·x, as

required.

Exercise 2.6.23 If x 6= 0 and y are vectors
in Rn, show that there is a linear transformation
T : Rn → Rn such that T (x) = y. [Hint: By Def-
inition 2.5, find a matrix A such that Ax = y.]

b. Given x in R and a in R, we have
(S◦T )(ax) = S [T (ax)] Definition of S◦T

= S [aT (x)] Because T is linear.
= a [S [T (x)]] Because S is linear.
= a [S◦T (x)] Definition of S◦T

Exercise 2.6.24 Let Rn T−→ Rm S−→ Rk be two linear
transformations. Show directly that S ◦T is linear.
That is:

a. Show that (S ◦T )(x+y) = (S ◦T )x+(S ◦T )y
for all x, y in Rn.

b. Show that (S◦T )(ax) = a[(S◦T )x] for all x in
Rn and all a in R.

Exercise 2.6.25 Let Rn T−→ Rm S−→ Rk R−→ Rk be lin-
ear. Show that R ◦ (S ◦ T ) = (R ◦ S) ◦ T by showing
directly that [R ◦ (S ◦T )](x) = [(R ◦ S) ◦T )](x) holds
for each vector x in Rn.
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2.7 LU-Factorization15

The solution to a system Ax = b of linear equations can be solved quickly if A can be factored
as A = LU where L and U are of a particularly nice form. In this section we show that gaussian
elimination can be used to find such factorizations.

Triangular Matrices

As for square matrices, if A =
[
ai j

]
is an m×n matrix, the elements a11, a22, a33, . . . form the main

diagonal of A. Then A is called upper triangular if every entry below and to the left of the main
diagonal is zero. Every row-echelon matrix is upper triangular, as are the matrices 1 −1 0 3

0 2 1 1
0 0 −3 0

  0 2 1 0 5
0 0 0 3 1
0 0 1 0 1




1 1 1
0 −1 1
0 0 0
0 0 0


By analogy, a matrix A is called lower triangular if its transpose is upper triangular, that is if
each entry above and to the right of the main diagonal is zero. A matrix is called triangular if it
is upper or lower triangular.

Example 2.7.1

Solve the system
x1 + 2x2 − 3x3 − x4 + 5x5 = 3

5x3 + x4 + x5 = 8
2x5 = 6

where the coefficient matrix is upper triangular.

Solution. As in gaussian elimination, let the “non-leading” variables be parameters: x2 = s
and x4 = t. Then solve for x5, x3, and x1 in that order as follows. The last equation gives

x5 =
6
2 = 3

Substitution into the second last equation gives

x3 = 1− 1
5t

Finally, substitution of both x5 and x3 into the first equation gives

x1 =−9−2s+ 2
5t

The method used in Example 2.7.1 is called back substitution because later variables are
substituted into earlier equations. It works because the coefficient matrix is upper triangular.

15This section is not used later and so may be omitted with no loss of continuity.
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Similarly, if the coefficient matrix is lower triangular the system can be solved by forward sub-
stitution where earlier variables are substituted into later equations. As observed in Section 1.2,
these procedures are more numerically efficient than gaussian elimination.

Now consider a system Ax = b where A can be factored as A = LU where L is lower triangular
and U is upper triangular. Then the system Ax = b can be solved in two stages as follows:

1. First solve Ly = b for y by forward substitution.

2. Then solve Ux = y for x by back substitution.

Then x is a solution to Ax = b because Ax = LUx = Ly = b. Moreover, every solution x arises this
way (take y =Ux). Furthermore the method adapts easily for use in a computer.

This focuses attention on efficiently obtaining such factorizations A = LU . The following result
will be needed; the proof is straightforward and is left as Exercises 2.7.7 and 2.7.8.

Lemma 2.7.1
Let A and B denote matrices.

1. If A and B are both lower (upper) triangular, the same is true of AB.

2. If A is n×n and lower (upper) triangular, then A is invertible if and only if every main
diagonal entry is nonzero. In this case A−1 is also lower (upper) triangular.

LU-Factorization

Let A be an m× n matrix. Then A can be carried to a row-echelon matrix U (that is, upper
triangular). As in Section 2.5, the reduction is

A → E1A → E2E1A → E3E2E1A → ··· → EkEk−1 · · ·E2E1A =U

where E1, E2, . . . , Ek are elementary matrices corresponding to the row operations used. Hence

A = LU

where L = (EkEk−1 · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k−1E−1
k . If we do not insist that U is reduced then,

except for row interchanges, none of these row operations involve adding a row to a row above it.
Thus, if no row interchanges are used, all the Ei are lower triangular, and so L is lower triangular
(and invertible) by Lemma 2.7.1. This proves the following theorem. For convenience, let us say
that A can be lower reduced if it can be carried to row-echelon form using no row interchanges.

Theorem 2.7.1
If A can be lower reduced to a row-echelon matrix U , then

A = LU
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where L is lower triangular and invertible and U is upper triangular and row-echelon.

Definition 2.14 LU-factorization
A factorization A = LU as in Theorem 2.7.1 is called an LU-factorization of A.

Such a factorization may not exist (Exercise 2.7.4) because A cannot be carried to row-echelon
form using no row interchange. A procedure for dealing with this situation will be outlined later.
However, if an LU-factorization A = LU does exist, then the gaussian algorithm gives U and also
leads to a procedure for finding L. Example 2.7.2 provides an illustration. For convenience, the first
nonzero column from the left in a matrix A is called the leading column of A.

Example 2.7.2

Find an LU-factorization of A =

 0 2 −6 −2 4
0 −1 3 3 2
0 −1 3 7 10

.

Solution. We lower reduce A to row-echelon form as follows:

A =

 0 2 −6 −2 4
0 −1 3 3 2
0 −1 3 7 10

→

 0 1 −3 −1 2
0 0 0 2 4
0 0 0 6 12

→

 0 1 −3 −1 2
0 0 0 1 2
0 0 0 0 0

=U

The circled columns are determined as follows: The first is the leading column of A, and is
used (by lower reduction) to create the first leading 1 and create zeros below it. This
completes the work on row 1, and we repeat the procedure on the matrix consisting of the
remaining rows. Thus the second circled column is the leading column of this smaller
matrix, which we use to create the second leading 1 and the zeros below it. As the
remaining row is zero here, we are finished. Then A = LU where

L =

 2 0 0
−1 2 0
−1 6 1


This matrix L is obtained from I3 by replacing the bottom of the first two columns by the
circled columns in the reduction. Note that the rank of A is 2 here, and this is the number of
circled columns.

The calculation in Example 2.7.2 works in general. There is no need to calculate the elementary
matrices Ei, and the method is suitable for use in a computer because the circled columns can be
stored in memory as they are created. The procedure can be formally stated as follows:
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LU-Algorithm

Let A be an m×n matrix of rank r, and suppose that A can be lower reduced to a
row-echelon matrix U . Then A = LU where the lower triangular, invertible matrix L is
constructed as follows:

1. If A = 0, take L = Im and U = 0.

2. If A 6= 0, write A1 = A and let c1 be the leading column of A1. Use c1 to create the first
leading 1 and create zeros below it (using lower reduction). When this is completed,
let A2 denote the matrix consisting of rows 2 to m of the matrix just created.

3. If A2 6= 0, let c2 be the leading column of A2 and repeat Step 2 on A2 to create A3.

4. Continue in this way until U is reached, where all rows below the last leading 1 consist
of zeros. This will happen after r steps.

5. Create L by placing c1, c2, . . . , cr at the bottom of the first r columns of Im.

A proof of the LU-algorithm is given at the end of this section.
LU-factorization is particularly important if, as often happens in business and industry, a series

of equations Ax = B1, Ax = B2, . . . , Ax = Bk, must be solved, each with the same coefficient matrix
A. It is very efficient to solve the first system by gaussian elimination, simultaneously creating an
LU-factorization of A, and then using the factorization to solve the remaining systems by forward
and back substitution.

Example 2.7.3

Find an LU-factorization for A =


5 −5 10 0 5

−3 3 2 2 1
−2 2 0 −1 0

1 −1 10 2 5

.

Solution. The reduction to row-echelon form is
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
5 −5 10 0 5

−3 3 2 2 1
−2 2 0 −1 0

1 −1 10 2 5

→


1 −1 2 0 1
0 0 8 2 4
0 0 4 −1 2
0 0 8 2 4



→


1 −1 2 0 1

0 0 1 1
4

1
2

0 0 0 −2 0

0 0 0 0 0



→


1 −1 2 0 1

0 0 1 1
4

1
2

0 0 0 1 0

0 0 0 0 0

=U

If U denotes this row-echelon matrix, then A = LU , where

L =


5 0 0 0

−3 8 0 0
−2 4 −2 0

1 8 0 1



The next example deals with a case where no row of zeros is present in U (in fact, A is invertible).

Example 2.7.4

Find an LU-factorization for A =

 2 4 2
1 1 2

−1 0 2

.

Solution. The reduction to row-echelon form is 2 4 2
1 1 2

−1 0 2

→

 1 2 1
0 −1 1
0 2 3

→

 1 2 1
0 1 −1
0 0 5

→

 1 2 1
0 1 −1
0 0 1

=U

Hence A = LU where L =

 2 0 0
1 −1 0

−1 2 5

.
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There are matrices (for example
[

0 1
1 0

]
) that have no LU-factorization and so require at least

one row interchange when being carried to row-echelon form via the gaussian algorithm. However,
it turns out that, if all the row interchanges encountered in the algorithm are carried out first, the
resulting matrix requires no interchanges and so has an LU-factorization. Here is the precise result.

Theorem 2.7.2
Suppose an m×n matrix A is carried to a row-echelon matrix U via the gaussian algorithm.
Let P1, P2, . . . , Ps be the elementary matrices corresponding (in order) to the row
interchanges used, and write P = Ps · · ·P2P1. (If no interchanges are used take P = Im.) Then:

1. PA is the matrix obtained from A by doing these interchanges (in order) to A.

2. PA has an LU-factorization.

The proof is given at the end of this section.
A matrix P that is the product of elementary matrices corresponding to row interchanges is

called a permutation matrix. Such a matrix is obtained from the identity matrix by arranging
the rows in a different order, so it has exactly one 1 in each row and each column, and has zeros
elsewhere. We regard the identity matrix as a permutation matrix. The elementary permutation
matrices are those obtained from I by a single row interchange, and every permutation matrix is a
product of elementary ones.

Example 2.7.5

If A =


0 0 −1 2

−1 −1 1 2
2 1 −3 6
0 1 −1 4

, find a permutation matrix P such that PA has an

LU-factorization, and then find the factorization.

Solution. Apply the gaussian algorithm to A:

A ∗−→


−1 −1 1 2

0 0 −1 2
2 1 −3 6
0 1 −1 4

→


1 1 −1 −2
0 0 −1 2
0 −1 −1 10
0 1 −1 4

 ∗−→


1 1 −1 −2
0 −1 −1 10
0 0 −1 2
0 1 −1 4



→


1 1 −1 −2
0 1 1 −10
0 0 −1 2
0 0 −2 14

→


1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 10


Two row interchanges were needed (marked with ∗), first rows 1 and 2 and then rows 2 and
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3. Hence, as in Theorem 2.7.2,

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

=


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1


If we do these interchanges (in order) to A, the result is PA. Now apply the LU-algorithm to
PA:

PA =


−1 −1 1 2

2 1 −3 6
0 0 −1 2
0 1 −1 4

→


1 1 −1 −2
0 −1 −1 10
0 0 −1 2
0 1 −1 4

→


1 1 −1 −2
0 1 1 −10
0 0 −1 2
0 0 −2 14



→


1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 10

→


1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 1

=U

Hence, PA = LU , where L =


−1 0 0 0

2 −1 0 0
0 0 −1 0
0 1 −2 10

 and U =


1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 1

.

Theorem 2.7.2 provides an important general factorization theorem for matrices. If A is any
m×n matrix, it asserts that there exists a permutation matrix P and an LU-factorization PA = LU .
Moreover, it shows that either P = I or P = Ps · · ·P2P1, where P1, P2, . . . , Ps are the elementary
permutation matrices arising in the reduction of A to row-echelon form. Now observe that P−1

i = Pi
for each i (they are elementary row interchanges). Thus, P−1 = P1P2 · · ·Ps, so the matrix A can be
factored as

A = P−1LU

where P−1 is a permutation matrix, L is lower triangular and invertible, and U is a row-echelon
matrix. This is called a PLU-factorization of A.

The LU-factorization in Theorem 2.7.1 is not unique. For example,[
1 0
3 2

][
1 −2 3
0 0 0

]
=

[
1 0
3 1

][
1 −2 3
0 0 0

]
However, it is necessary here that the row-echelon matrix has a row of zeros. Recall that the rank
of a matrix A is the number of nonzero rows in any row-echelon matrix U to which A can be carried
by row operations. Thus, if A is m×n, the matrix U has no row of zeros if and only if A has rank m.
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Theorem 2.7.3
Let A be an m×n matrix that has an LU-factorization

A = LU

If A has rank m (that is, U has no row of zeros), then L and U are uniquely determined by A.

Proof. Suppose A = MV is another LU-factorization of A, so M is lower triangular and invertible
and V is row-echelon. Hence LU = MV , and we must show that L = M and U = V . We write
N = M−1L. Then N is lower triangular and invertible (Lemma 2.7.1) and NU =V , so it suffices to
prove that N = I. If N is m×m, we use induction on m. The case m = 1 is left to the reader. If
m > 1, observe first that column 1 of V is N times column 1 of U . Thus if either column is zero, so is
the other (N is invertible). Hence, we can assume (by deleting zero columns) that the (1, 1)-entry
is 1 in both U and V .

Now we write N =

[
a 0
X N1

]
, U =

[
1 Y
0 U1

]
, and V =

[
1 Z
0 V1

]
in block form. Then NU =V

becomes
[

a aY
X XY +N1U1

]
=

[
1 Z
0 V1

]
. Hence a = 1, Y = Z, X = 0, and N1U1 =V1. But N1U1 =V1

implies N1 = I by induction, whence N = I.

If A is an m×m invertible matrix, then A has rank m by Theorem 2.4.5. Hence, we get the
following important special case of Theorem 2.7.3.

Corollary 2.7.1

If an invertible matrix A has an LU-factorization A = LU , then L and U are uniquely
determined by A.

Of course, in this case U is an upper triangular matrix with 1s along the main diagonal.

Proofs of Theorems

Proof of the LU-Algorithm. If c1, c2, . . . , cr are columns of lengths m, m− 1, . . . , m− r+ 1,
respectively, write L(m)(c1, c2, . . . , cr) for the lower triangular m×m matrix obtained from Im by
placing c1, c2, . . . , cr at the bottom of the first r columns of Im.

Proceed by induction on n. If A = 0 or n = 1, it is left to the reader. If n > 1, let c1 denote the
leading column of A and let k1 denote the first column of the m×m identity matrix. There exist
elementary matrices E1, . . . , Ek such that, in block form,

(Ek · · ·E2E1)A =

[
0 k1

X1
A1

]
where (Ek · · ·E2E1)c1 = k1

Moreover, each E j can be taken to be lower triangular (by assumption). Write

G = (Ek · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k
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Then G is lower triangular, and Gk1 = c1. Also, each E j (and so each E−1
j ) is the result of either

multiplying row 1 of Im by a constant or adding a multiple of row 1 to another row. Hence,

G = (E−1
1 E−1

2 · · ·E−1
k )Im =

[
c1

0
Im−1

]
in block form. Now, by induction, let A1 = L1U1 be an LU-factorization of A1, where L1 =
L(m−1) [c2, . . . , cr] and U1 is row-echelon. Then block multiplication gives

G−1A =

[
0 k1

X1
L1U1

]
=

[
1 0
0 L1

][
0 1 X1
0 0 U1

]

Hence A = LU , where U =

[
0 1 X1
0 0 U1

]
is row-echelon and

L =

[
c1

0
Im−1

][
1 0
0 L1

]
=

[
c1

0
L

]
= L(m) [c1, c2, . . . , cr]

This completes the proof.

Proof of Theorem 2.7.2. Let A be a nonzero m× n matrix and let k j denote column j of Im.
There is a permutation matrix P1 (where either P1 is elementary or P1 = Im) such that the first
nonzero column c1 of P1A has a nonzero entry on top. Hence, as in the LU-algorithm,

L(m) [c1]
−1 ·P1 ·A =

[
0 1 X1
0 0 A1

]
in block form. Then let P2 be a permutation matrix (either elementary or Im) such that

P2 ·L(m) [c1]
−1 ·P1 ·A =

[
0 1 X1
0 0 A′

1

]
and the first nonzero column c2 of A′

1 has a nonzero entry on top. Thus,

L(m) [k1, c2]
−1 ·P2 ·L(m) [c1]

−1 ·P1 ·A =

 0 1 X1

0 0
0 1 X2
0 0 A2


in block form. Continue to obtain elementary permutation matrices P1, P2, . . . , Pr and columns
c1, c2, . . . , cr of lengths m, m−1, . . . , such that

(LrPrLr−1Pr−1 · · ·L2P2L1P1)A =U

where U is a row-echelon matrix and L j = L(m)
[
k1, . . . , k j−1, c j

]−1 for each j, where the notation
means the first j− 1 columns are those of Im. It is not hard to verify that each L j has the form
L j = L(m)

[
k1, . . . , k j−1, c′j

]
where c′j is a column of length m− j + 1. We now claim that each

permutation matrix Pk can be “moved past” each matrix L j to the right of it, in the sense that

PkL j = L′
jPk
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where L′
j = L(m)

[
k1, . . . , k j−1, c′′j

]
for some column c′′j of length m− j+1. Given that this is true,

we obtain a factorization of the form

(LrL′
r−1 · · ·L′

2L′
1)(PrPr−1 · · ·P2P1)A =U

If we write P = PrPr−1 · · ·P2P1, this shows that PA has an LU-factorization because LrL′
r−1 · · ·L′

2L′
1 is

lower triangular and invertible. All that remains is to prove the following rather technical result.

Lemma 2.7.2
Let Pk result from interchanging row k of Im with a row below it. If j < k, let c j be a column
of length m− j+1. Then there is another column c′j of length m− j+1 such that

Pk ·L(m)
[
k1, . . . , k j−1, c j

]
= L(m)

[
k1, . . . , k j−1, c′j

]
·Pk

The proof is left as Exercise 2.7.11.

Exercises for 2.7

Exercise 2.7.1 Find an LU-factorization of the
following matrices.

a.

 2 6 −2 0 2
3 9 −3 3 1

−1 −3 1 −3 1



b.

 2 4 2
1 −1 3

−1 7 −7



c.


2 6 −2 0 2
1 5 −1 2 5
3 7 −3 −2 5

−1 −1 1 2 3



d.


−1 −3 1 0 −1

1 4 1 1 1
1 2 −3 −1 1
0 −2 −4 −2 0



e.


2 2 4 6 0 2
1 −1 2 1 3 1

−2 2 −4 −1 1 6
0 2 0 3 4 8

−2 4 −4 1 −2 6



f.


2 2 −2 4 2
1 −1 0 2 1
3 1 −2 6 3
1 3 −2 2 1



b.

 2 0 0
1 −3 0

−1 9 1




1 2 1

0 1 −2
3

0 0 0



d.


−1 0 0 0

1 1 0 0
1 −1 1 0
0 −2 0 1




1 3 −1 0 1
0 1 2 1 0
0 0 0 0 0
0 0 0 0 0



f.


2 0 0 0
1 −2 0 0
3 −2 1 0
0 2 0 1




1 1 −1 2 1

0 1 −1
2 0 0

0 0 0 0 0

0 0 0 0 0


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Exercise 2.7.2 Find a permutation matrix P and
an LU-factorization of PA if A is: 0 0 2

0 −1 4
3 5 1

a)

 0 −1 2
0 0 4

−1 2 1

b)


0 −1 2 1 3

−1 1 3 1 4
1 −1 −3 6 2
2 −2 −4 1 0

c)


−1 −2 3 0

2 4 −6 5
1 1 −1 3
2 5 −10 1

d)

b. P =

 0 0 1
1 0 0
0 1 0


PA =

 −1 2 1
0 −1 2
0 0 4


=

 −1 0 0
0 −1 0
0 0 4

 1 −2 −1
0 1 2
0 0 1



d. P =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0



PA =


−1 −2 3 0

1 1 −1 3
2 5 −10 1
2 4 −6 5



=


−1 0 0 0

1 −1 0 0
2 1 −2 0
2 0 0 5




1 2 −3 0
0 1 −2 −3
0 0 1 −2
0 0 0 1


Exercise 2.7.3 In each case use the given LU-
decomposition of A to solve the system Ax = b by
finding y such that Ly = b, and then x such that
Ux = y:

a. A =

 2 0 0
0 −1 0
1 1 3

 1 0 0 1
0 0 1 2
0 0 0 1

;

b =

 1
−1

2



b. A =

 2 0 0
1 3 0

−1 2 1

 1 1 0 −1
0 1 0 1
0 0 0 0

;

b =

 −2
−1

1



c. A =


−2 0 0 0

1 −1 0 0
−1 0 2 0

0 1 0 2




1 −1 2 1

0 1 1 −4

0 0 1 − 1
2

0 0 0 1

;

b =


1

−1
2
0



d. A =


2 0 0 0
1 −1 0 0

−1 1 2 0
3 0 1 −1




1 −1 0 1
0 1 −2 −1
0 0 1 1
0 0 0 0

;

b =


4

−6
4
5



b. y =

 −1
0
0

x =


−1+2t

−t
s
t

s and t arbitrary

d. y =


2
8

−1
0

x =


8−2t
6− t
−1− t

t

 t arbitrary

Exercise 2.7.4 Show that
[

0 1
1 0

]
= LU is im-

possible where L is lower triangular and U is upper
triangular.

Exercise 2.7.5 Show that we can accomplish any
row interchange by using only row operations of
other types.[

R1
R2

]
→

[
R1 +R2

R2

]
→

[
R1 +R2
−R1

]
→

[
R2
−R1

]
→[

R2
R1

]
Exercise 2.7.6
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a. Let L and L1 be invertible lower triangular ma-
trices, and let U and U1 be invertible upper
triangular matrices. Show that LU = L1U1 if
and only if there exists an invertible diagonal
matrix D such that L1 = LD and U1 = D−1U .
[Hint: Scrutinize L−1L1 =UU−1

1 .]

b. Use part (a) to prove Theorem 2.7.3 in the
case that A is invertible.

b. Let A = LU = L1U1 be LU-factorizations of the
invertible matrix A. Then U and U1 have no
row of zeros and so (being row-echelon) are
upper triangular with 1’s on the main diag-
onal. Thus, using (a.), the diagonal matrix
D =UU−1

1 has 1’s on the main diagonal. Thus
D = I, U =U1, and L = L1.

Exercise 2.7.7 Prove Lemma 2.7.1(1).
[Hint: Use block multiplication and induction.]

If A =

[
a 0
X A1

]
and B =

[
b 0
Y B1

]
in block form,

then AB =

[
ab 0

Xb+A1Y A1B1

]
, and A1B1 is lower

triangular by induction.

Exercise 2.7.8 Prove Lemma 2.7.1(2). [Hint: Use
block multiplication and induction.]

Exercise 2.7.9 A triangular matrix is called unit
triangular if it is square and every main diagonal

element is a 1.

a. If A can be carried by the gaussian algo-
rithm to row-echelon form using no row in-
terchanges, show that A = LU where L is unit
lower triangular and U is upper triangular.

b. Show that the factorization in (a.) is unique.

b. Let A = LU = L1U1 be two such factoriza-
tions. Then UU−1

1 = L−1L1; write this matrix
as D =UU−1

1 = L−1L1. Then D is lower trian-
gular (apply Lemma 2.7.1 to D = L−1L1); and
D is also upper triangular (consider UU−1

1 ).
Hence D is diagonal, and so D = I because L−1

and L1 are unit triangular. Since A = LU ; this
completes the proof.

Exercise 2.7.10 Let c1, c2, . . . , cr be columns
of lengths m, m− 1, . . . , m− r + 1. If k j denotes
column j of Im, show that L(m) [c1, c2, . . . , cr] =
L(m) [c1]L(m) [k1, c2]L(m) [k1, k2, c3] · · ·
L(m) [k1, k2, . . . , kr−1, cr]. The notation is as in the
proof of Theorem 2.7.2. [Hint: Use induction on m
and block multiplication.]

Exercise 2.7.11 Prove Lemma 2.7.2. [Hint: P−1
k =

Pk. Write Pk =

[
Ik 0
0 P0

]
in block form where P0 is

an (m− k)× (m− k) permutation matrix.]
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