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5.3 Orthogonality

Length and orthogonality are basic concepts in geometry and, in R2 and R3, they both can be
defined using the dot product. In this section we extend the dot product to vectors in Rn, and so
endow Rn with euclidean geometry. We then introduce the idea of an orthogonal basis—one of the
most useful concepts in linear algebra, and begin exploring some of its applications.

Dot Product, Length, and Distance

If x= (x1, x2, . . . , xn) and y= (y1, y2, . . . , yn) are two n-tuples in Rn, recall that their dot product
was defined in Section 2.2 as follows:

x ·y = x1y1 + x2y2 + · · ·+ xnyn

Observe that if x and y are written as columns then x ·y= xT y is a matrix product (and x ·y= xyT

if they are written as rows). Here x ·y is a 1×1 matrix, which we take to be a number.

Definition 5.6 Length in Rn

As in R3, the length ‖x‖ of the vector is defined by

‖x‖=
√

x ·x =
√

x2
1 + x2

2 + · · ·+ x2
n

Where
√

( ) indicates the positive square root.

A vector x of length 1 is called a unit vector. If x 6= 0, then ‖x‖ 6= 0 and it follows easily that
1

‖x‖x is a unit vector (see Theorem 5.3.6 below), a fact that we shall use later.

Example 5.3.1

If x = (1, −1, −3, 1) and y = (2, 1, 1, 0) in R4, then x ·y = 2−1−3+0 =−2 and
‖x‖=

√
1+1+9+1 =

√
12 = 2

√
3. Hence 1

2
√

3
x is a unit vector; similarly 1√

6
y is a unit

vector.

These definitions agree with those in R2 and R3, and many properties carry over to Rn:

Theorem 5.3.1
Let x, y, and z denote vectors in Rn. Then:

1. x ·y = y ·x.

2. x · (y+z) = x ·y+x ·z.

3. (ax) ·y = a(x ·y) = x · (ay) for all scalars a.
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4. ‖x‖2 = x ·x.

5. ‖x‖ ≥ 0, and ‖x‖= 0 if and only if x = 0.

6. ‖ax‖= |a|‖x‖ for all scalars a.

Proof. (1), (2), and (3) follow from matrix arithmetic because x ·y = xT y; (4) is clear from the
definition; and (6) is a routine verification since |a| =

√
a2. If x = (x1, x2, . . . , xn), then ‖x‖ =√

x2
1 + x2

2 + · · ·+ x2
n so ‖x‖= 0 if and only if x2

1+x2
2+ · · ·+x2

n = 0. Since each xi is a real number this
happens if and only if xi = 0 for each i; that is, if and only if x = 0. This proves (5).

Because of Theorem 5.3.1, computations with dot products in Rn are similar to those in R3. In
particular, the dot product

(x1 +x2 + · · ·+xm) · (y1 +y2 + · · ·+yk)

equals the sum of mk terms, xi ·y j, one for each choice of i and j. For example:

(3x−4y) · (7x+2y) = 21(x ·x)+6(x ·y)−28(y ·x)−8(y ·y)
= 21‖x‖2 −22(x ·y)−8‖y‖2

holds for all vectors x and y.

Example 5.3.2

Show that ‖x+y‖2 = ‖x‖2 +2(x ·y)+‖y‖2 for any x and y in Rn.

Solution. Using Theorem 5.3.1 several times:

‖x+y‖2 = (x+y) · (x+y) = x ·x+x ·y+y ·x+y ·y
= ‖x‖2 +2(x ·y)+‖y‖2

Example 5.3.3

Suppose that Rn = span{f1, f2, . . . , fk} for some vectors fi. If x · fi = 0 for each i where x is
in Rn, show that x = 0.

Solution. We show x = 0 by showing that ‖x‖= 0 and using (5) of Theorem 5.3.1. Since
the fi span Rn, write x = t1f1 + t2f2 + · · ·+ tkfk where the ti are in R. Then

‖x‖2 = x ·x = x · (t1f1 + t2f2 + · · ·+ tkfk)

= t1(x · f1)+ t2(x · f2)+ · · ·+ tk(x · fk)

= t1(0)+ t2(0)+ · · ·+ tk(0)
= 0
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We saw in Section 4.2 that if u and v are nonzero vectors in R3, then u·v
‖u‖‖v‖ = cosθ where θ is the

angle between u and v. Since |cosθ | ≤ 1 for any angle θ , this shows that |u ·v| ≤ ‖u‖‖v‖. In this
form the result holds in Rn.

Theorem 5.3.2: Cauchy Inequality9

If x and y are vectors in Rn, then

|x ·y| ≤ ‖x‖‖y‖

Moreover |x ·y|= ‖x‖‖y‖ if and only if one of x and y is a multiple of the other.

Proof. The inequality holds if x = 0 or y = 0 (in fact it is equality). Otherwise, write ‖x‖= a > 0
and ‖y‖= b > 0 for convenience. A computation like that preceding Example 5.3.2 gives

‖bx−ay‖2 = 2ab(ab−x ·y) and ‖bx+ay‖2 = 2ab(ab+x ·y) (5.1)

It follows that ab−x ·y ≥ 0 and ab+x ·y ≥ 0, and hence that −ab ≤ x ·y ≤ ab. Hence |x ·y| ≤
ab = ‖x‖‖y‖, proving the Cauchy inequality.

If equality holds, then |x ·y|= ab, so x ·y = ab or x ·y =−ab. Hence Equation 5.1 shows that
bx− ay = 0 or bx+ ay = 0, so one of x and y is a multiple of the other (even if a = 0 or b = 0).

The Cauchy inequality is equivalent to (x ·y)2 ≤ ‖x‖2‖y‖2. In R5 this becomes

(x1y1 + x2y2 + x3y3 + x4y4 + x5y5)
2 ≤ (x2

1 + x2
2 + x2

3 + x2
4 + x2

5)(y
2
1 + y2

2 + y2
3 + y2

4 + y2
5)

for all xi and yi in R.
There is an important consequence of the Cauchy inequality. Given x and y in Rn, use Exam-

ple 5.3.2 and the fact that x ·y ≤ ‖x‖‖y‖ to compute

‖x+y‖2 = ‖x‖2 +2(x ·y)+‖y‖2 ≤ ‖x‖2 +2‖x‖‖y‖+‖y‖2 = (‖x+y‖)2

Taking positive square roots gives:

Corollary 5.3.1: Triangle Inequality

If x and y are vectors in Rn, then ‖x+y‖ ≤ ‖x‖+‖y‖.

9Augustin Louis Cauchy (1789–1857) was born in Paris and became a professor at the École Polytechnique at the
age of 26. He was one of the great mathematicians, producing more than 700 papers, and is best remembered for his
work in analysis in which he established new standards of rigour and founded the theory of functions of a complex
variable. He was a devout Catholic with a long-term interest in charitable work, and he was a royalist, following
King Charles X into exile in Prague after he was deposed in 1830. Theorem 5.3.2 first appeared in his 1812 memoir
on determinants.
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v w

v+w

The reason for the name comes from the observation that in R3 the
inequality asserts that the sum of the lengths of two sides of a triangle
is not less than the length of the third side. This is illustrated in the
diagram.

Definition 5.7 Distance in Rn

If x and y are two vectors in Rn, we define the distance d(x, y) between x and y by

d(x, y) = ‖x−y‖

w
v−w

v

The motivation again comes from R3 as is clear in the diagram.
This distance function has all the intuitive properties of distance in
R3, including another version of the triangle inequality.

Theorem 5.3.3
If x, y, and z are three vectors in Rn we have:

1. d(x, y)≥ 0 for all x and y.

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x) for all x and y .

4. d(x, z)≤ d(x, y)+d(y, z)for all x, y, and z. Triangle inequality.

Proof. (1) and (2) restate part (5) of Theorem 5.3.1 because d(x, y) = ‖x−y‖, and (3) follows
because ‖u‖= ‖−u‖ for every vector u in Rn. To prove (4) use the Corollary to Theorem 5.3.2:

d(x, z) = ‖x−z‖= ‖(x−y)+(y−z)‖
≤ ‖(x−y)‖+‖(y−z)‖= d(x, y)+d(y, z)

Orthogonal Sets and the Expansion Theorem

Definition 5.8 Orthogonal and Orthonormal Sets

We say that two vectors x and y in Rn are orthogonal if x ·y = 0, extending the
terminology in R3 (See Theorem 4.2.3). More generally, a set {x1, x2, . . . , xk} of vectors in
Rn is called an orthogonal set if

xi ·x j = 0 for all i 6= j and xi 6= 0 for all i10

Note that {x} is an orthogonal set if x 6= 0. A set {x1, x2, . . . , xk} of vectors in Rn is called
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orthonormal if it is orthogonal and, in addition, each xi is a unit vector:

‖xi‖= 1 for each i.

Example 5.3.4

The standard basis {e1, e2, . . . , en} is an orthonormal set in Rn.

The routine verification is left to the reader, as is the proof of:

Example 5.3.5

If {x1, x2, . . . , xk} is orthogonal, so also is {a1x1, a2x2, . . . , akxk} for any nonzero scalars
ai.

If x 6= 0, it follows from item (6) of Theorem 5.3.1 that 1
‖x‖x is a unit vector, that is it has

length 1.

Definition 5.9 Normalizing an Orthogonal Set

Hence if {x1, x2, . . . , xk} is an orthogonal set, then { 1
‖x1‖x1, 1

‖x2‖x2, · · · , 1
‖xk‖xk} is an

orthonormal set, and we say that it is the result of normalizing the orthogonal set
{x1, x2, · · · , xk}.

Example 5.3.6

If f1 =


1
1
1

−1

, f2 =


1
0
1
2

, f3 =


−1

0
1
0

, and f4 =


−1

3
−1

1

 then {f1, f2, f3, f4} is an

orthogonal set in R4 as is easily verified. After normalizing, the corresponding orthonormal
set is {1

2f1, 1√
6
f2, 1√

2
f3, 1

2
√

3
f4}

v+w

v

w The most important result about orthogonality is Pythagoras’ theo-
rem. Given orthogonal vectors v and w in R3, it asserts that

‖v+w‖2 = ‖v‖2 +‖w‖2

as in the diagram. In this form the result holds for any orthogonal set
in Rn.

10The reason for insisting that orthogonal sets consist of nonzero vectors is that we will be primarily concerned
with orthogonal bases.
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Theorem 5.3.4: Pythagoras’ Theorem

If {x1, x2, . . . , xk} is an orthogonal set in Rn, then

‖x1 +x2 + · · ·+xk‖2 = ‖x1‖2 +‖x2‖2 + · · ·+‖xk‖2.

Proof. The fact that xi ·x j = 0 whenever i 6= j gives
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‖x1 +x2 + · · ·+xk‖2 = (x1 +x2 + · · ·+xk) · (x1 +x2 + · · ·+xk)

= (x1 ·x1 +x2 ·x2 + · · ·+xk ·xk)+∑
i6= j

xi ·x j

= ‖x1‖2 +‖x2‖2 + · · ·+‖xk‖2 +0

This is what we wanted.

If v and w are orthogonal, nonzero vectors in R3, then they are certainly not parallel, and so
are linearly independent Example 5.2.7. The next theorem gives a far-reaching extension of this
observation.

Theorem 5.3.5
Every orthogonal set in Rn is linearly independent.

Proof. Let {x1, x2, . . . , xk} be an orthogonal set in Rn and suppose a linear combination vanishes,
say: t1x1 + t2x2 + · · ·+ tkxk = 0. Then

0 = x1 ·0 = x1 · (t1x1 + t2x2 + · · ·+ tkxk)

= t1(x1 ·x1)+ t2(x1 ·x2)+ · · ·+ tk(x1 ·xk)

= t1‖x1‖2 + t2(0)+ · · ·+ tk(0)

= t1‖x1‖2

Since ‖x1‖2 6= 0, this implies that t1 = 0. Similarly ti = 0 for each i.

Theorem 5.3.5 suggests considering orthogonal bases for Rn, that is orthogonal sets that span
Rn. These turn out to be the best bases in the sense that, when expanding a vector as a linear
combination of the basis vectors, there are explicit formulas for the coefficients.

Theorem 5.3.6: Expansion Theorem

Let {f1, f2, . . . , fm} be an orthogonal basis of a subspace U of Rn. If x is any vector in U ,
we have

x =
(

x·f1
‖f1‖2

)
f1 +

(
x·f2
‖f2‖2

)
f1 + · · ·+

(
x·fm
‖fm‖2

)
fm

Proof. Since {f1, f2, . . . , fm} spans U , we have x = t1f1 + t2f2 + · · ·+ tmfm where the ti are scalars.
To find t1 we take the dot product of both sides with f1:

x · f1 = (t1f1 + t2f2 + · · ·+ tmfm) · f1

= t1(f1 · f1)+ t2(f2 · f1)+ · · ·+ tm(fm · f1)

= t1‖f1‖2 + t2(0)+ · · ·+ tm(0)

= t1‖f1‖2
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Since f1 6= 0, this gives t1 =
x·f1
‖f1‖2 . Similarly, ti = x·fi

‖fi‖2 for each i.

The expansion in Theorem 5.3.6 of x as a linear combination of the orthogonal basis {f1, f2, . . . , fm}
is called the Fourier expansion of x, and the coefficients t1 = x·fi

‖fi‖2 are called the Fourier coeffi-
cients. Note that if {f1, f2, . . . , fm} is actually orthonormal, then ti = x · fi for each i. We will have
a great deal more to say about this in Section ??.

Example 5.3.7

Expand x = (a, b, c, d) as a linear combination of the orthogonal basis {f1, f2, f3, f4} of R4

given in Example 5.3.6.

Solution. We have f1 = (1, 1, 1, −1), f2 = (1, 0, 1, 2), f3 = (−1, 0, 1, 0), and
f4 = (−1, 3, −1, 1) so the Fourier coefficients are

t1 =
x·f1
‖f1‖2 =

1
4(a+b+ c+d) t3 =

x·f3
‖f3‖2 =

1
2(−a+ c)

t2 =
x·f2
‖f2‖2 =

1
6(a+ c+2d) t4 =

x·f4
‖f4‖2 =

1
12(−a+3b− c+d)

The reader can verify that indeed x = t1f1 + t2f2 + t3f3 + t4f4.

A natural question arises here: Does every subspace U of Rn have an orthogonal basis? The
answer is “yes”; in fact, there is a systematic procedure, called the Gram-Schmidt algorithm, for
turning any basis of U into an orthogonal one. This leads to a definition of the projection onto a
subspace U that generalizes the projection along a vector used in R2 and R3. All this is discussed
in Section 8.1.

Exercises for 5.3

We often write vectors in Rn as row n-tuples.
Exercise 5.3.1 Obtain orthonormal bases of R3 by
normalizing the following.

a. {(1, −1, 2), (0, 2, 1), (5, 1, −2)}

b. {(1, 1, 1), (4, 1, −5), (2, −3, 1)}

b. 1√
3

 1
1
1

 , 1√
42

 4
1

−5

 , 1√
14

 2
−3

1

.

Exercise 5.3.2 In each case, show that the set of
vectors is orthogonal in R4.

a. {(1, −1, 2, 5), (4, 1, 1, −1), (−7, 28, 5, 5)}

b. {(2, −1, 4, 5), (0, −1, 1, −1), (0, 3, 2, −1)}

Exercise 5.3.3 In each case, show that B is an
orthogonal basis of R3 and use Theorem 5.3.6 to ex-
pand x = (a, b, c) as a linear combination of the
basis vectors.

a. B = {(1, −1, 3), (−2, 1, 1), (4, 7, 1)}

b. B = {(1, 0, −1), (1, 4, 1), (2, −1, 2)}

c. B = {(1, 2, 3), (−1, −1, 1), (5, −4, 1)}
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d. B = {(1, 1, 1), (1, −1, 0), (1, 1, −2)}

b.

 a
b
c

 = 1
2(a − c)

 1
0

−1

 + 1
18(a + 4b +

c)

 1
4
1

+ 1
9(2a−b+2c)

 2
−1

2

.

d.

 a
b
c

 = 1
3(a + b + c)

 1
1
1

 + 1
2(a −

b)

 1
−1

0

+ 1
6(a+b−2c)

 1
1

−2

.

Exercise 5.3.4 In each case, write x as a linear
combination of the orthogonal basis of the subspace
U .

a. x=(13, −20, 15); U = span{(1, −2, 3), (−1, 1, 1)}

b. x = (14, 1, −8, 5);
U = span{(2, −1, 0, 3), (2, 1, −2, −1)}

b.


14
1

−8
5

= 3


2

−1
0
3

+4


2
1

−2
−1

.

Exercise 5.3.5 In each case, find all (a, b, c, d)
in R4 such that the given set is orthogonal.

a. {(1, 2, 1, 0), (1, −1, 1, 3), (2, −1, 0, −1),
(a, b, c, d)}

b. {(1, 0, −1, 1), (2, 1, 1, −1), (1, −3, 1, 0),
(a, b, c, d)}

b. t


−1

3
10
11

, in R

Exercise 5.3.6 If ‖x‖= 3, ‖y‖= 1, and x ·y =−2,
compute:

‖3x−5y‖a) ‖2x+7y‖b)
(3x−y) · (2y−x)c) (x−2y) · (3x+5y)d)

b.
√

29

d. 19

Exercise 5.3.7 In each case either show that the
statement is true or give an example showing that it
is false.

a. Every independent set in Rn is orthogonal.

b. If {x, y} is an orthogonal set in Rn, then
{x, x+y} is also orthogonal.

c. If {x, y} and {z, w} are both orthogonal in
Rn, then {x, y, z, w} is also orthogonal.

d. If {x1, x2} and {y1, y2, y3} are both or-
thogonal and xi ·y j = 0 for all i and j, then
{x1, x2, y1, y2, y3} is orthogonal.

e. If {x1, x2, . . . , xn} is orthogonal in Rn, then
Rn = span{x1, x2, . . . , xn}.

f. If x 6= 0 in Rn, then {x} is an orthogonal set.

b. F. x =

[
1
0

]
and y =

[
0
1

]
.

d. T. Every xi · y j = 0 by assumption, every
xi ·x j = 0 if i 6= j because the xi are orthogo-
nal, and every yi ·y j = 0 if i 6= j because the yi
are orthogonal. As all the vectors are nonzero,
this does it.

f. T. Every pair of distinct vectors in the set {x}
has dot product zero (there are no such pairs).

Exercise 5.3.8 Let v denote a nonzero vector in
Rn.
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a. Show that P = {x in Rn | x ·v = 0} is a sub-
space of Rn.

b. Show that Rv = {tv | t in R} is a subspace of
Rn.

c. Describe P and Rv geometrically when n = 3.

Exercise 5.3.9 If A is an m× n matrix with or-
thonormal columns, show that AT A = In. [Hint: If
c1, c2, . . . , cn are the columns of A, show that col-
umn j of AT A has entries c1 ·c j, c2 ·c j, . . . , cn ·c j].

Let c1, . . . , cn be the columns of A. Then row i of AT

is cT
i , so the (i, j)-entry of AT A is cT

i c j = ci ·c j = 0, 1
according as i 6= j, i = j. So AT A = I.

Exercise 5.3.10 Use the Cauchy inequality to
show that √xy≤ 1

2(x+y) for all x≥ 0 and y≥ 0. Here√
xy and 1

2(x+y) are called, respectively, the geomet-
ric mean and arithmetic mean of x and y. [Hint: Use

x =

[ √
x√
y

]
and y =

[ √
y√
x

]
.]

Exercise 5.3.11 Use the Cauchy inequality to
prove that:

a. r1 + r2 + · · ·+ rn ≤ n(r2
1 + r2

2 + · · ·+ r2
n) for all ri

in R and all n ≥ 1.

b. r1r2+r1r3+r2r3 ≤ r2
1+r2

2+r2
3 for all r1, r2, and

r3 in R. [Hint: See part (a).]

b. Take n = 3 in (a), expand, and simplify.

Exercise 5.3.12

a. Show that x and y are orthogonal in Rn if and
only if ‖x+y‖= ‖x−y‖.

b. Show that x+y and x−y are orthogonal in
Rn if and only if ‖x‖= ‖y‖.

b. We have (x+y) ·(x−y) = ‖x‖2−‖y‖2. Hence
(x+y) · (x−y) = 0 if and only if ‖x‖2 = ‖y‖2;
if and only if ‖x‖ = ‖y‖—where we used the
fact that ‖x‖ ≥ 0 and ‖y‖ ≥ 0.

Exercise 5.3.13

a. Show that ‖x+y‖2 = ‖x‖2 +‖y‖2 if and only
if x is orthogonal to y.

b. If x =

[
1
1

]
, y =

[
1
0

]
and z =

[
−2

3

]
, show

that ‖x+y+z‖2 = ‖x‖2 +‖y‖2 +‖z‖2 but
x ·y 6= 0, x ·z 6= 0, and y ·z 6= 0.

Exercise 5.3.14

a. Show that x ·y = 1
4 [‖x+y‖2−‖x−y‖2] for all

x, y in Rn.

b. Show that ‖x‖2+‖y‖2 = 1
2

[
‖x+y‖2 +‖x−y‖2

]
for all x, y in Rn.

Exercise 5.3.15 If A is n × n, show that ev-
ery eigenvalue of AT A is nonnegative. [Hint:
Compute ‖Ax‖2 where x is an eigenvector.]

If AT Ax = λx, then ‖Ax‖2 = (Ax) · (Ax) = xT AT Ax =
xT (λx) = λ‖x‖2.

Exercise 5.3.16 If Rn = span{x1, . . . , xm} and
x ·xi = 0 for all i, show that x = 0. [Hint: Show
‖x‖= 0.]

Exercise 5.3.17 If Rn = span{x1, . . . , xm} and
x ·xi = y ·xi for all i, show that x = y. [Hint: Exer-
cise 5.3.16]

Exercise 5.3.18 Let {e1, . . . , en} be an orthogonal
basis of Rn. Given x and y in Rn, show that

x ·y = (x·e1)(y·e1)
‖e1‖2 + · · ·+ (x·en)(y·en)

‖en‖2
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