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Linear Transformations

Definition
A transformation T : Rn → Rm is a linear transformation if it satisfies the
following two properties for all ~x,~y ∈ Rn and all (scalars) a ∈ R.

1. T(~x + ~y) = T(~x) + T(~y) (preservation of addition)
2. T(a~x) = aT(~x) (preservation of scalar multiplication)
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Let T : Rn → Rm be a linear transformation, and let ~x ∈ Rn.

Since T
preserves scalar multiplication,

1. T(0~x) = 0T(~x) implying T(0) = 0, so T preserves the zero vector.
2. T((−1)~x) = (−1)T(~x), implying T(−~x) = −T(~x), so T preserves the

negative of a vector.

Suppose ~x1,~x2, . . . ,~xk are vectors in Rn and for some a1, a2, . . . , ak ∈ R.

~y = a1~x1 + a2~x2 + · · ·+ ak~xk.

⇓
3.

T(~y) = T(a1~x1 + a2~x2 + · · ·+ ak~xk)
= a1T(~x1) + a2T(~x2) + · · ·+ akT(~xk),

i.e., T preserves linear combinations.
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Problem
Let T : R3 → R4 be a linear transformation such that

T

 1
3
1

 =


4
4
0

−2

 and T

 4
0
5

 =


4
5

−1
5

 .

Find T

 −7
3

−9

 .

Solution
The only way it is possible to solve this problem is if −7

3
−9

 is a linear combination of

 1
3
1

 and

 4
0
5

 ,

i.e., if there exist a, b ∈ R so that −7
3

−9

 = a

 1
3
1

+ b

 4
0
5

 .
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Solution (continued)
To find a and b, solve the system of three equations in two variables: 1 4 −7

3 0 3
1 5 −9

 → · · · →

 1 0 1
0 1 −2
0 0 0


Thus a = 1, b = −2, and −7

3
−9

 =

 1
3
1

− 2

 4
0
5

 .
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We now use that fact that linear transformations preserve linear
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Theorem
Every matrix transformation is a linear transformation.

Proof.
Suppose T : Rn → Rm is a matrix transformation induced by the m × n
matrix A, i.e., T(~x) = A~x for each ~x ∈ Rn. Let ~x,~y ∈ Rn and let a ∈ R.
Then

T(~x + ~y) = A(~x + ~y) = A~x + A~y = T(~x) + T(~y),

proving that T preserves addition. Also,

T(a~x) = A(a~x) = a(A~x) = aT(~x),

proving that T preserves scalar multiplication.

Since T preserves addition and scalar multiplication T is a linear
transformation. �



Theorem
Every matrix transformation is a linear transformation.

Proof.
Suppose T : Rn → Rm is a matrix transformation induced by the m × n
matrix A, i.e., T(~x) = A~x for each ~x ∈ Rn. Let ~x,~y ∈ Rn and let a ∈ R.
Then

T(~x + ~y) = A(~x + ~y) = A~x + A~y = T(~x) + T(~y),

proving that T preserves addition. Also,

T(a~x) = A(a~x) = a(A~x) = aT(~x),

proving that T preserves scalar multiplication.

Since T preserves addition and scalar multiplication T is a linear
transformation. �



Theorem
Every matrix transformation is a linear transformation.

Proof.
Suppose T : Rn → Rm is a matrix transformation induced by the m × n
matrix A,

i.e., T(~x) = A~x for each ~x ∈ Rn. Let ~x,~y ∈ Rn and let a ∈ R.
Then

T(~x + ~y) = A(~x + ~y) = A~x + A~y = T(~x) + T(~y),

proving that T preserves addition. Also,

T(a~x) = A(a~x) = a(A~x) = aT(~x),

proving that T preserves scalar multiplication.

Since T preserves addition and scalar multiplication T is a linear
transformation. �



Theorem
Every matrix transformation is a linear transformation.

Proof.
Suppose T : Rn → Rm is a matrix transformation induced by the m × n
matrix A, i.e., T(~x) = A~x for each ~x ∈ Rn.

Let ~x,~y ∈ Rn and let a ∈ R.
Then

T(~x + ~y) = A(~x + ~y) = A~x + A~y = T(~x) + T(~y),

proving that T preserves addition. Also,

T(a~x) = A(a~x) = a(A~x) = aT(~x),

proving that T preserves scalar multiplication.

Since T preserves addition and scalar multiplication T is a linear
transformation. �



Theorem
Every matrix transformation is a linear transformation.

Proof.
Suppose T : Rn → Rm is a matrix transformation induced by the m × n
matrix A, i.e., T(~x) = A~x for each ~x ∈ Rn. Let ~x,~y ∈ Rn and let a ∈ R.

Then
T(~x + ~y) = A(~x + ~y) = A~x + A~y = T(~x) + T(~y),

proving that T preserves addition. Also,

T(a~x) = A(a~x) = a(A~x) = aT(~x),

proving that T preserves scalar multiplication.

Since T preserves addition and scalar multiplication T is a linear
transformation. �



Theorem
Every matrix transformation is a linear transformation.

Proof.
Suppose T : Rn → Rm is a matrix transformation induced by the m × n
matrix A, i.e., T(~x) = A~x for each ~x ∈ Rn. Let ~x,~y ∈ Rn and let a ∈ R.
Then

T(~x + ~y) = A(~x + ~y) = A~x + A~y = T(~x) + T(~y),

proving that T preserves addition. Also,

T(a~x) = A(a~x) = a(A~x) = aT(~x),

proving that T preserves scalar multiplication.

Since T preserves addition and scalar multiplication T is a linear
transformation. �



Theorem
Every matrix transformation is a linear transformation.

Proof.
Suppose T : Rn → Rm is a matrix transformation induced by the m × n
matrix A, i.e., T(~x) = A~x for each ~x ∈ Rn. Let ~x,~y ∈ Rn and let a ∈ R.
Then

T(~x + ~y) = A(~x + ~y) = A~x + A~y = T(~x) + T(~y),

proving that T preserves addition.

Also,

T(a~x) = A(a~x) = a(A~x) = aT(~x),

proving that T preserves scalar multiplication.

Since T preserves addition and scalar multiplication T is a linear
transformation. �



Theorem
Every matrix transformation is a linear transformation.

Proof.
Suppose T : Rn → Rm is a matrix transformation induced by the m × n
matrix A, i.e., T(~x) = A~x for each ~x ∈ Rn. Let ~x,~y ∈ Rn and let a ∈ R.
Then

T(~x + ~y) = A(~x + ~y) = A~x + A~y = T(~x) + T(~y),

proving that T preserves addition. Also,

T(a~x) = A(a~x) = a(A~x) = aT(~x),

proving that T preserves scalar multiplication.

Since T preserves addition and scalar multiplication T is a linear
transformation. �



Theorem
Every matrix transformation is a linear transformation.

Proof.
Suppose T : Rn → Rm is a matrix transformation induced by the m × n
matrix A, i.e., T(~x) = A~x for each ~x ∈ Rn. Let ~x,~y ∈ Rn and let a ∈ R.
Then

T(~x + ~y) = A(~x + ~y) = A~x + A~y = T(~x) + T(~y),

proving that T preserves addition. Also,

T(a~x) = A(a~x) = a(A~x) = aT(~x),

proving that T preserves scalar multiplication.

Since T preserves addition and scalar multiplication T is a linear
transformation. �



Theorem
Every matrix transformation is a linear transformation.

Proof.
Suppose T : Rn → Rm is a matrix transformation induced by the m × n
matrix A, i.e., T(~x) = A~x for each ~x ∈ Rn. Let ~x,~y ∈ Rn and let a ∈ R.
Then

T(~x + ~y) = A(~x + ~y) = A~x + A~y = T(~x) + T(~y),

proving that T preserves addition. Also,

T(a~x) = A(a~x) = a(A~x) = aT(~x),

proving that T preserves scalar multiplication.

Since T preserves addition and scalar multiplication T is a linear
transformation. �



Theorem
Every matrix transformation is a linear transformation.

Proof.
Suppose T : Rn → Rm is a matrix transformation induced by the m × n
matrix A, i.e., T(~x) = A~x for each ~x ∈ Rn. Let ~x,~y ∈ Rn and let a ∈ R.
Then

T(~x + ~y) = A(~x + ~y) = A~x + A~y = T(~x) + T(~y),

proving that T preserves addition. Also,

T(a~x) = A(a~x) = a(A~x) = aT(~x),

proving that T preserves scalar multiplication.

Since T preserves addition and scalar multiplication T is a linear
transformation. �



Example (The Zero Transformation)
If A is the m × n matrix of zeros, then the transformation T : Rn → Rm

induced by A is called the zero transformation because for every vector ~x in
Rn

T(~x) = A~x = O~x = ~0.

The zero transformation is usually written as T = 0.

Example (The Identity Transformation)
The transformation of Rn induced by In, the n × n identity matrix, is called
the identity transformation because for every vector ~x in Rn,

T(~x) = In~x = ~x.

The identity transformation on Rn is usually written as 1Rn .
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T(~x) = In~x = ~x.

The identity transformation on Rn is usually written as 1Rn .
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Problem (Revisited)
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Problem (Not all transformations are matrix transformations)

Consider T : R2 → R2 defined by

T(~x) = ~x +

[
1

−1

]
for all ~x ∈ R2.

Show that T NOT a matrix transformation.



Solution
We have T : R2 → R2 defined by

T(~x) = ~x +

[
1

−1

]
for all ~x ∈ R2.

Since every matrix transformation is a linear transformation, we consider
T(0), where 0 is the zero vector of R2.

T
[

0
0

]
=

[
0
0

]
+

[
1

−1

]
=

[
1

−1

]
6=

[
0
0

]
,

violating one of the properties of a linear transformation.

Therefore, T is not a linear transformation, and hence is not a matrix
transformation. �
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Remark
Recall that a transformation T : Rn → Rm is a linear transformation if it
satisfies the following two properties for all ~x,~y ∈ Rn and all (scalars)
a ∈ R.

1. T(~x + ~y) = T(~x) + T(~y) (preservation of addition)
2. T(a~x) = aT(~x) (preservation of scalar multiplication)

Theorem (Every Linear Transformation is a Matrix Transformation)
Let T : Rn → Rm be a linear transformation. Then we can find an n × m
matrix A such that

T(~x) = A~x

In this case, we say that T is induced, or determined, by A and we write

TA(~x) = A~x
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Problem
The transformation T : R3 → R4 defined by

T

 a
b
c

 =


a + b
b + c
a − c
c − b


for each ~x ∈ R3 is another matrix transformation, that is, T(~x) = A~x for
some matrix A. Can you find a matrix A that works?
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Solution
First, since T : R3 → R4, we know that A must have size

4× 3. Now
consider the product

? ? ?
? ? ?
? ? ?
? ? ?


 a

b
c

 =


a + b
b + c
a − c
c − b

 ,

and try to fill in the values of the matrix.

...

We can deduce from the product that T is induced by the matrix

A =


1 1 0
0 1 1
1 0 −1
0 −1 1

 .
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Linear Transformations

Finding the Matrix of a Linear Transformation

Composition of Linear Transformations

Rotations and Reflections in R2



Finding the Matrix of a Linear Transformation

Is there an easier way to find the matrix of T? For some transformations
guess and check will work, but this is not an efficient method. The next
theorem gives a method for finding the matrix of T.

Definition
The set of columns {~e1,~e2, . . . ,~en} of In is called the standard basis of Rn.
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Theorem (Matrix of a Linear Transformation)
Let T : Rn → Rm be a linear transformation.

Then T is a matrix
transformation. Furthermore, T is induced by the unique matrix

A =
[

T(~e1) T(~e2) · · · T(~en)
]
,

where ~ej is the j-th column of In, and T(~ej) is the j-th column of A.

Corollary
A transformation T : Rn → Rm is a linear transformation if and only if it is
a matrix transformation.

“linear” = “matrix”
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Problem
Let T : R2 → R2 be a linear transformation defined by

T
[

x
y

]
=

[
x + 2y
x − y

]
for each ~x ∈ R2. Find the matrix, A, of T.

Solution

T
[

1
0

]
=

[
1 + 2(0)
1− 0

]
=

[
1
1

]
and T

[
0
1

]
=

[
0 + 2(1)
0− 1

]
=

[
2

−1

]

⇓

A =

[
1 2
1 −1

]
�
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Sometimes, T is defined through its actions several concrete vectors.

Problem
Find the matrix A of T where T is given as

T
[

1
1

]
=

[
1
2

]
and T

[
0

−1

]
=

[
3
2

]
.



Solution (continued)
We need to write ~e1 and ~e2 as a linear combination of the vectors provided.
First, find x and y such that[

1
0

]
= x

[
1
1

]
+ y

[
0

−1

]

Once we find x and y we can compute

T
[

1
0

]
= xT

[
1
1

]
+ yT

[
0

−1

]

= x
[

1
2

]
+ y

[
3
2

]
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Solution (continued)
Finding x and y involves solving the following system of equations.

x = 1
x − y = 0

The solution is x = 1, y = 1. Hence, we can find T(~e1) as follows.

T
[

1
0

]
= 1

[
1
2

]
+ 1

[
3
2

]
=

[
1
2

]
+

[
3
2

]
=

[
4
4

]
.

As for T(~e2),

T
[

0
1

]
= −T

[
0

−1

]
=

[
−3
−2

]
.

⇓

A =

[
4 −3
4 −2

]
�
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Problem

Let T : R2 → R3 be a transformation defined by T
[

x
y

]
=

 2x
y

−x + 2y

.

Is T a linear transformation?

Solution
If T were a linear transformation, then T would be induced by the matrix

A =
[

T(~e1) T(~e2)
]
=

[
T
[

1
0

]
T
[

0
1

] ]
=

 2 0
0 1

−1 2

 .

It remains to verify the matrix transform induced by A indeed coincides
with T:

A
[

x
y

]
=

 2 0
0 1

−1 2

[
x
y

]
=

 2x
y

−x + 2y

 = T
[

x
y

]
.

Therefore, T is a matrix transformation induced by A above. �
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Problem

Let T : R2 → R2 be a transformation defined by T
[

x
y

]
=

[
xy

x + y

]
. Is T

a linear transformation?

Solution
If T were a linear transformation, then T would be induced by the matrix

A =
[

T(~e1) T(~e2)
]
=

[
T
[

1
0

]
T
[

0
1

] ]
=

[
0 0
1 1

]
.

However, the matrix transform induced by A doesn’t pass the verification:

A
[

x
y

]
=

[
0 0
1 1

] [
x
y

]
=

[
0

x + y

]
6=

[
xy

x + y

]
= T

[
x
y

]
Therefore, T in NOT a linear transformation. �
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Linear Transformations

Finding the Matrix of a Linear Transformation

Composition of Linear Transformations

Rotations and Reflections in R2



Composition of Linear Transformations

Definition

Suppose T : Rk → Rn and S : Rn → Rm are linear transformations. The
composite (or composition) of S and T is

S ◦ T : Rk → Rm,

is defined by
(S ◦ T)(~x) = S(T(~x)) for all ~x ∈ Rk.

Rk Rn Rm

T S

S ◦ T

Remark (Convention on the order)
S ◦ T means that the transformation T is applied first, followed by the
transformation S.
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Theorem

Let Rk T→ Rn S→ Rm be linear transformations, and suppose that S is
induced by matrix A, and T is induced by matrix B. Then S ◦ T is a linear
transformation, and S ◦ T is induced by the matrix AB.

Problem
Let S : R2 → R2 and T : R2 → R2 be linear transformations defined by

S
[

x
y

]
=

[
x
−y

]
and T

[
x
y

]
=

[
−y
x

]
for all

[
x
y

]
∈ R2.

Find S ◦ T.
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Solution
Then S and T are induced by matrices

A =

[
1 0
0 −1

]
and B =

[
0 −1
1 0

]
,

respectively.

The composite of S and T is the transformation
S ◦ T : R2 → R2 defined by

(S ◦ T)

[
x
y

]
= S

(
T
[

x
y

])
,

and has matrix (or is induced by the matrix)

AB =

[
0 −1

−1 0

]
.
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Example (continued)
Therefore the composite of S and T is the linear transformation

(S ◦ T)

[
x
y

]
= AB

[
x
y

]
=

[
0 −1

−1 0

] [
x
y

]
=

[
−y
−x

]
,

for all
[

x
y

]
∈ R2. �

Remark
Compare this with the composite of T and S which is the linear
transformation

(T ◦ S)
[

x
y

]
=

[
y
x

]
,

for all
[

x
y

]
∈ R2.
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Linear Transformations

Finding the Matrix of a Linear Transformation
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Rotations and Reflections in R2



Rotations in R2

The rest part is an application of the linear transform to the study of the
rotations in R2. This is left your motivated students to study by themselves.

Definition
The transformation

Rθ : R2 → R2

denotes counterclockwise rotation about the origin through an angle of θ.

Rotation through an angle of θ preserves scalar multiplication.

Rotation through an angle of θ preserves vector addition.
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Rθ is a linear transformation
Since Rθ preserves addition and scalar multiplication, Rθ is a linear
transformation, and hence a matrix transformation.

The matrix that induces Rθ can be found by computing Rθ(~e1) and Rθ(~e2),
where

~e1 =

[
1
0

]
and ~e2 =

[
0
1

]
.

Rθ(~e1) = Rθ

[
1
0

]
=

[
cos θ
sin θ

]
,

and
Rθ(~e2) = Rθ

[
0
1

]
=

[
− sin θ

cos θ

]
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The Matrix for Rθ

The rotation Rθ : R2 → R2 is a linear transformation, and is induced by the
matrix [

cos θ − sin θ
sin θ cos θ

]
.



Example (Rotation through π)
We denote by

Rπ : R2 → R2

counterclockwise rotation about the origin through an angle of π.

x

y

(a, b)

(−a,−b)

We see that Rπ

[
a
b

]
=

[
−a
−b

]
=

[
−1 0
0 −1

] [
a
b

]
, so Rπ is a matrix

transformation.
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Reflection in R2

Example

In R2, reflection in the x-axis, which transforms
[

a
b

]
to

[
a

−b

]
, is a

matrix transformation because[
a

−b

]
=

[
1 0
0 −1

] [
a
b

]
.

Example

In R2, reflection in the y-axis transforms
[

a
b

]
to

[
−a

b

]
. This is a

matrix transformation because[
−a

b

]
=

[
−1 0
0 1

] [
a
b

]
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Reflection in the line y = x transforms
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Reflection in the line

Example ( Reflection in y = mx preserves scalar multiplication )

Let Qm : R2 → R2 denote reflection in the line y = mx, and let ~u ∈ R2.

y = mxy

x

~u

y = mxy

x

~u
Qm(~u)

y

x

y = mx

2~u

y

x

y = mx

2~u

Qm(2~u)
2Qm(~u)

Qm(2~u)

The figure indicates that Qm(2~u) = 2Qm(~u). In general, for any scalar k,

Qm(kX) = kQm(X),

i.e., Qm preserves scalar multiplication.
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Since Qm preserves addition and scalar multiplication, Qm is a linear
transformation, and hence a matrix transformation.

The matrix that induces Qm can be found by computing Qm(~e1) and
Qm(~e2), where

~e1 =

[
1
0

]
and ~e2 =

[
0
1

]
.
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and ~e2 =
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Alternatively, we can use the following relation to find Qm :

Qm = Rθ ◦ Q0 ◦ R−θ

Rθ ∼
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, Q0 ∼

[
1 0
0 −1

]
R−θ ∼

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
,

Then multiply these three matrices ...
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The Matrix for Reflection in y = mx

The transformation Qm : R2 → R2, reflection in the line y = mx, is a linear
transformation and is induced by the matrix

1

1 + m2

[
1− m2 2m
2m m2 − 1

]
.



Problem ( Multiple Actions )
Find the rotation or reflection that equals reflection in the x-axis followed
by rotation through an angle of π

2
.

Solution
Let Q0 denote the reflection in the x-axis, and Rπ

2
denote the rotation

through an angle of π
2
. We want to find the matrix for the transformation

Rπ
2
◦ Q0.

Q0 is induced by A =

[
1 0
0 −1

]
, and Rπ

2
is induced by

B =

[
cos π

2
− sin π

2

sin π
2

cos π
2

]
=

[
0 −1
1 0

]
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Solution
Hence Rπ

2
◦ Q0 is induced by

BA =

[
0 −1
1 0

] [
1 0
0 −1

]
=

[
0 1
1 0
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.

Notice that BA =

[
0 1
1 0

]
is a reflection matrix.

How do we know this?
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Solution (continued)
Compare BA to

Qm =
1

1 + m2

[
1− m2 2m
2m m2 − 1

]

Now, since 1−m2 = 0, we know that m = 1 or m = −1. But 2m
1+m2 = 1 > 0,

so m > 0, implying m = 1.

Therefore,
Rπ

2
◦ Q0 = Q1,

reflection in the line y = x. �
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Problem (Reflection followed by Reflection)
Find the rotation or reflection that equals reflection in the line y = −x
followed by reflection in the y-axis.

Solution
We must find the matrix for the transformation QY ◦ Q−1.

Q−1 is induced by

A =
1

2

[
0 −2

−2 0

]
=

[
0 −1

−1 0

]
,

and QY is induced by

B =

[
−1 0
0 1

]
.

Therefore, QY ◦ Q−1 is induced by BA.
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Solution (continued)
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Rotation through an angle θ such that

cos θ = 0 and sin θ = −1.

Therefore, QY ◦ Q−1 = R−π
2
= R 3π
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Remark (Summary)
In general,
I The composite of two rotations is a

rotation

Rθ ◦ Rη = Rθ+η

I The composite of two reflections is a rotation.

Qm ◦ Qn = Rθ

where θ is 2× the angle between lines y = mx and y = nx.
I The composite of a reflection and a rotation is a reflection.

Rθ ◦ Qn = Qm ◦ Qn ◦ Qn = Qm



Remark (Summary)
In general,
I The composite of two rotations is a rotation

Rθ ◦ Rη = Rθ+η

I The composite of two reflections is a rotation.

Qm ◦ Qn = Rθ

where θ is 2× the angle between lines y = mx and y = nx.

I The composite of a reflection and a rotation is a reflection.

Rθ ◦ Qn = Qm ◦ Qn ◦ Qn = Qm



Remark (Summary)
In general,
I The composite of two rotations is a rotation

Rθ ◦ Rη = Rθ+η

I The composite of two reflections is a

rotation.

Qm ◦ Qn = Rθ

where θ is 2× the angle between lines y = mx and y = nx.
I The composite of a reflection and a rotation is a reflection.

Rθ ◦ Qn = Qm ◦ Qn ◦ Qn = Qm



Remark (Summary)
In general,
I The composite of two rotations is a rotation

Rθ ◦ Rη = Rθ+η

I The composite of two reflections is a rotation.

Qm ◦ Qn = Rθ

where θ is 2× the angle between lines y = mx and y = nx.

I The composite of a reflection and a rotation is a reflection.

Rθ ◦ Qn = Qm ◦ Qn ◦ Qn = Qm



Remark (Summary)
In general,
I The composite of two rotations is a rotation

Rθ ◦ Rη = Rθ+η

I The composite of two reflections is a rotation.

Qm ◦ Qn = Rθ

where θ is 2× the angle between lines y = mx and y = nx.
I The composite of a reflection and a rotation is a

reflection.

Rθ ◦ Qn = Qm ◦ Qn ◦ Qn = Qm



Remark (Summary)
In general,
I The composite of two rotations is a rotation

Rθ ◦ Rη = Rθ+η

I The composite of two reflections is a rotation.

Qm ◦ Qn = Rθ

where θ is 2× the angle between lines y = mx and y = nx.
I The composite of a reflection and a rotation is a reflection.

Rθ ◦ Qn = Qm ◦ Qn ◦ Qn = Qm


	Linear Transformations
	Finding the Matrix of a Linear Transformation
	Composition of Linear Transformations
	Rotations and Reflections in R2

