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Nonparametric statistics

I Distribution-free methods : do not rely on assumptions that the data
are drawn from a given parametric family of probability distributions.

I Nonparametric statistics: a statistic is defined to be a function on a
sample and there is no dependency on any parameters, such as

– Order statistics
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Nonparametric vs. Parametric methods
– Power of Test

I Solid line: one-sample t-test (parametric test)

I Dashed lines: the sign test (nonparametric test)
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Nonparametric vs. Parametric methods

Nonparametric methods usually produce

I Greater variance in point estimation
I Less power in hypothesis-testing
I Wider confidence intervals
I Lower probability of correct selection (in ranking and selection)
I Higher risk (in decision theory)

Hence, use nonparametric methods only when

The underlying assumptions for the
probability distributions are seriously doubtful.
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I Let µ̃ be the median of some unknown continuous pdf fY (y):

P(Y ≤ µ̃) = P(Y ≥ µ̃) =
1

2
.

I For a random sample of size n is taken from fY (y), in order to test

H0 : µ̃ = µ̃0 vs H0 : µ̃ 6= µ̃0,

let

X := the number of observations exceeding µ̃0

⇓

1. X ∼ Binomial(n, 1/2).
2. Moreover, if n is large, by CLT,

X − E[X ]√
Var(X )

=
X − n

2√
n/4

aprox.∼ N(0, 1)
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Sign test for median of a single sample

I When sample size n is large:

I When sample size n is small: use the exact distribution of binomial
distribution.
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E.g.1 In a healthy adults, the median pH for synovial fluid is 7.39.
A random sample of n = 43 is chosen and test

H0 : µ̃ = 7.39 vs H0 : µ̃ 6= 7.39, at α = 0.10.
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Sol 1. We first count how many samples exceeding the median (i.e., obtain
the value of X )

1
2

3

4
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Hence, we have k = 4, n = 43, and since n is large, we use the z test:

z =
4− 43/2√

43/4
= −5.34.

Since the critical regions (two-sided test here) are

(−∞,−zα/2) ∪ (zα/2,∞)

||
(−∞,−2.58) ∪ (2.58,∞),

we reject the hypothesis.

Or equivalently, the p-value is

2× P(Z < −5.34) = 9.294658× 10−8.

�

1 > pnorm(−5.34) ∗2
2 [1] 9.294658e−08
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Sol 2. We can also carry out the exact computation thanks to computer:
The exact p-value should be

2× P(X ≤ 5) = 2

5∑
k=0

(
43

k

)(
1

2

)43

= 2.49951× 10−7,

which is smaller than α = 0.10.
Hence, rejection! �

1 > pbinom(5,43,0.5) ∗ 2
2 [1] 2.49951e−07
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Sign test for paired data

E.g. A manufacturer produces two products, A and B. The manufacturer
wishes to know if consumers prefer product B over product A.
A sample of 10 consumers are each given product A and product B,
and asked which product they prefer:

Preferences Number
B 8
A 1

No preference 1

Test at α = 0.10 that

H0: consumers do not prefer B over A
vs.

H1: consumers do prefer B over A.

15



Sol. We first remove the ties. So that we have a random (paired-data)
sample of size n = 9.

Under H0, the consumers have no preference for B over A. Hence, we
may believe that consumers will choose A or B with probability 1

2
.

Hence, to get more extreme values in this setting would give the
p-value:

P(X ≥ 8) =

9∑
k=8

(
9

k

)(
1

2

)9

= 0.0195.

Conclusion, Rejection! �
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Testing H0 : µ = µ0

Setup Let Y1, · · · ,Yn be a set of independent variables with pdfs
fY1(y), · · · , fYn (y), respectively.
Assume that fYi (y) are continuous and symmetric.
Assume that all mean/median of fYi are equal, denoted by µ.

Test H0 : µ = µ0 vs. H1 : µ 6= µ0.

Wilcoxon signed rank static

W =

n∑
k=1

Rk 1I{Yk>µ0}

where Ri denotes the rank (increasing and starting from 1) of

{|Y1 − µ0|, |Y2 − µ0|, · · · , |Yn − µ0|}
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n 1 2 3

yn 4.2 6.1 2.0

yn − 3.0 1.2 3.1 -1.0

|yn − 3.0| 1.2 3.1 1.0

rn 2 3 1

1I{yn>3.0} 1 1 0

rn1I{yn>3.0} u2 = 2 u3 = 3 u1 = 0

⇓

w = 2× 1 + 3× 1 + 1× 0 = 5.
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Let {y1, · · · , yn} be For a sample of size n.

Some observations:

I ri takes values in {1, 2, · · · , n}.

I wi takes values in
{
0, 1, 2, · · · , n(n+1)

2

}
with 1 + 2 + · · ·+ n = n(n+1)

2
.

I W is a discrete random variable:

w 0 1 · · · n(n+1)
2

P(W = w)
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Theorem Under the above setup and under H0,

pW (w) = P(W = w) =
c(w)

2n ,

where c(w) is the coefficient of ewt in the expansion of

n∏
k=1

(
1 + ekt

)
.

Proof Under H0, W =
∑n

k=1 Uk with follow the following distribution

Uk =

{
0 with probability 1/2

k with probability 1/2.

Then

MW (t) =
n∏

k=1

MUk (t) =
n∏

k=1

E
(

eUk t
)
=

n∏
k=1

(
1

2
+

1

2
ekt
)
.
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Hence, we have

MW (t) =
1

2n

n∏
k=1

(
1 + ekt

)
.

On the other hand,

MW (t) = E
(

eWt
)
=

n(n+1)
2∑

w=0

ewtpW (w)

Equating the above two expressions, namely,

1

2n

n∏
k=1

(
1 + ekt

)
=

n(n+1)
2∑

w=0

ewtpW (w),

proves the theorem. �
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E.g. Find the pdf of W when n = 2 and 4.

Sol. When n = 2,

MW (t) =
1

22

(
1 + et

)(
1 + e2t

)
=

1

22
(1 + et + e2t + e3t).

Hence,

w 0 1 2 3

pW (w) 1/4 1/4 1/4 1/4
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When n = 4,

MW (t) =
1

24

(
1 + et

)(
1 + e2t

)(
1 + e3t

)(
1 + e4t

)
=

1

16

(
e10t + e9t + e8t + 2e7t + 2e6t + 2e5t + 2e4t + 2e3t + e2t + et + 1

)
.

Hence,

w 0 1 2 3 4 5 6 7 8 9 10

pW (w) 1
16

1
16

1
16

2
16

2
16

2
16

2
16

2
16

1
16

1
16

1
16

�

1 sage: var(’k,t’)
2 (k, t)
3 sage: product(1+e^(k∗t),k,1,4)
4 e^(10∗t) + e^(9∗t) + e^(8∗t) + 2∗e^(7∗t) + 2∗e^(6∗t) + 2∗e^(5∗t) + 2∗e^(4∗t) + 2∗e

^(3∗t) + e^(2∗t) + e^t + 1
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E.g. Shark studies:

Past data show that the true average TL/HDI ratio should be 14.60.
Let Yi = TL/HDI.
Does the data support the above claim, namely, test

H0 : µ = 14.60 vs. H1 : µ 6= 14.60.

Set α = 0.05.
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Sol. Computing the Wilcoxon signed rank statistics:

Hence, w = 4.5.
Now check the table to find the critical region:

C = {w : w ≤ 8 or w ≥ 47}.

Conclusion: Rejection! �
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1 > x <− c(13.32, 13.06, 14.02, 11.86, 13.58, 13,77, 13.51, 14.42, 14.44, 15.43)
2 > wilcox.test(x, mu = 14.60, alternative = ”two.sided”)
3

4 Wilcoxon signed rank exact test
5

6 data: x
7 V = 15, p−value = 0.123
8 alternative hypothesis: true location is not equal to 14.6
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Large-sample Wilcoxon Signed Rank Test

Theorem Under the same setup and H0, we have

E(W ) =
n(n + 1)

4
and Var(W ) =

n(n + 1)(2n + 1)

24
.

Proof.

E(W ) = E

(
n∑

k=1

Uk

)
=

n∑
k=1

(
0 · 1

2
+ k · 1

2

)

=
n∑

k=1

k
2
=

n(n + 1)

4
.

Var(W ) = Var

(
n∑

k=1

Uk

)
=

n∑
k=1

Var(Uk ) =

n∑
k=1

[
E(U2

k )− E(Uk )
2]

=

n∑
k=1

[
k2

2
−
(

k
2

)2
]
=

n∑
k=1

k2

4
=

1

4

n(n + 1)(2n + 1)

6

�

30



Hence when n is large (usually n ≥ 12),

W − E(W )√
Var(W )

=
W − [n(n + 1)]/4√
[n(n + 1)(2n + 1)]/24

approx∼ N(0, 1).

⇓
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The Wilcoxon Rank Sum Test
– Nonparametric counterpart of the pooled two-sample t-test

Setup Let x1, · · · , xn and yn+1, · · · , yn+m be two independent random samples
from fX (x) and fY (y), respectively.
Assume that fX (x) and fY (y) are the same except for a possible shift in
location.

Test H0 : µx = µy vs. ...

Test statistic

W =

n+m∑
k=1

RiZi

where Ri is the rank (starting from the lowest with rank 1) and

Zi =

{
1 the ith entry comes from fX (x)
0 the ith entry comes from fY (y).
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Theorem Under the above setup and under H0,

E[W ] =
n(n + m + 1)

2
and Var(W ) =

nm(n + m + 1)

12
.

Hence when sample sizes are large, namely, n,m > 10,

W − E(W )√
Var(W )

=
W − [n(n + m + 1)]/2√

[nm(n + m + 1)]/12

approx∼ N(0, 1).
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E.g. Baseball ...
Test if H0 : µX = µY vs. H0 : µX 6= µY

Group X

Group Y
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In this case, n = 14, m = 12, w = 240.5.

E(W ) =
14(14 + 12 + 1)

2
= 189,

Var(W ) =
14× 12× (14 + 12 + 1)

12
= 378.

Hence, the approximate z-score is

z =
w − E(W )√

Var(W )
=

240.5− 189√
378

= 2.65.

... �
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The Kruskal-Wallis Test

What is the nonparametric counterpart for the one-way ANOVA?

Setup Suppose that k ≥ 2 independent sample of size n1, · · · , nk are drawn
from k

identically shaped and scaled pdfs,
except for possibly different medians.

Let µ̃1, · · · , µ̃k be the medians.

Test H0 : µ̃1 = µ̃2 = · · · = µ̃k vs. H1 : not all the µ̃i ’s are equal.

Remark This is the test for median not mean, but if pdfs are symmetric, they
are the same.
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Kruskal-Wallis statistic B

B =
12

n(n + 1)

k∑
j=1

R2
·j

nj
− 3(n + 1)

where
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Theorem Under the above setup and under H0, then

B =
12

n(n + 1)

k∑
j=1

R2
·j

nj
− 3(n + 1)

approx∼ χ2
k−1.

H0 should be rejected at the α level of significance if b > χ2
1−α,k−1.
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E.g. Lottery over the year 1969; Whether lottery is random?
Test if H0 : µ̃Jan = µ̃Feb = · · · = µ̃Dec at α = 0.01
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Sol. Rank the lottery for the year (see the previous table).

Compute b using the formula:

b =
12

366× 367

[
62362

31
+

58862

29
+ · · ·+ 37682

31

]
− 3× 367

= 25.95.

Critical region is C =
{

b : b ≥ χ2
0.99,11 = 24.725

}
.

Conclusion: Reject (Lottery is NOT random). �
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The Friedman Test

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that k ≥ 2 independent sample of size n1, · · · , nk are drawn
from k

identically shaped and scaled pdfs,
except for possibly different medians.

Assume that n1 = · · · = nk .
Samples can be further partitioned into b blocks.
Let µ̃1, · · · , µ̃k be the medians.

Test H0 : µ̃1 = µ̃2 = · · · = µ̃k vs. H1 : not all the µ̃i ’s are equal.

Remark This is the test for median not mean, but if pdfs are symmetric, they
are the same.
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The Friedman Test Statistic:
Reject H0 at the α level if

G =
12

bk(k + 1)

k∑
j=1

R2
·j − 3b(k + 1) ≥ χ2

1−α,k−1.

where R·j is the within-block ranks.
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E.g. Baseball ...
Test if H0 : µ̃Narrow = µ̃Wide at α = 0.01
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Sol. k = 2, b = 22

Compute the rank within each block (see the previous table)

Compute the g statistic:

g =
12

22× 2× (2 + 1)

[
392 + 272

]
− 3× 22× (2 + 1) =

72

11
≈ 6.54.

Critical region is

C =
{

g : g ≥ χ2
0.95,1 = 3.84

}
.

The p-value is

P
(
χ2
1 ≥ 72

11

)
= 0.01051525.

Conclusion: Reject. �
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R Code for this problem:

1 C1 <− c(
2 5.50, 5.70, 5.60, 5.50, 5.85, 5.55, 5.40, 5.50, 5.15, 5.80, 5.20,
3 5.55, 5.35, 5.00, 5.50, 5.55, 5.55, 5.50, 5.45, 5.60, 5.65, 6.30)
4 C2 <− c(
5 5.55, 5.75, 5.50, 5.40, 5.70, 5.60, 5.35, 5.35, 5.00, 5.70, 5.10,
6 5.45, 5.45, 4.95, 5.40, 5.50, 5.35, 5.55, 5.25, 5.40, 5.55, 6.25)
7 angles <− matrix(
8 cbind(C1, C2),
9 nrow = 22,

10 byrow = FALSE,
11 dimnames = list(1:22, c(”Narrow”, ”Wide”))
12 )
13 friedman.test(angles)
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Here is the output:

1 > C1 <− c(
2 + 5.50, 5.70, 5.60, 5.50, 5.85, 5.55, 5.40, 5.50, 5.15, 5.80, 5.20,
3 + 5.55, 5.35, 5.00, 5.50, 5.55, 5.55, 5.50, 5.45, 5.60, 5.65, 6.30)
4 > C2 <− c(
5 + 5.55, 5.75, 5.50, 5.40, 5.70, 5.60, 5.35, 5.35, 5.00, 5.70, 5.10,
6 + 5.45, 5.45, 4.95, 5.40, 5.50, 5.35, 5.55, 5.25, 5.40, 5.55, 6.25)
7 > angles <− matrix(
8 + cbind(C1, C2),
9 + nrow = 22,

10 + byrow = FALSE,
11 + dimnames = list(1:22, c(”Narrow”, ”Wide”))
12 + )
13 > friedman.test(angles)
14

15 Friedman rank sum test
16

17 data: angles
18 Friedman chi−squared = 6.5455, df = 1, p−value = 0.01052
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Whether the sample are random at all?
E.g. Whether the number of successful strikes are random? α = 0.05.
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Sol. Compute the run-up and run-down:

1
2
3
4
5
6

7
8
9

10

11
12

13
14

15
16
17

18
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Theorem Let W be the number of runs up and down in a sequence of n ≥ 2
observations.
If the sequence is random, then

E(W ) =
2n − 1

3
and Var(W ) =

16n − 29

90
.

Moreover, when n is large, namely, n ≥ 20, then

W − E(W )√
Var(W )

=
W − [2n − 1]/3√
[16n − 29]/90

approx∼ N(0, 1).
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Sol. (Continued) n = 25, w = 18

E(W ) =
2× 25− 1

3
= 16.3

and

Var(W ) =
16× 25− 29

90
= 4.12.

Hence, the z-score is

z =
18− 16.3√

4.12
= 0.84.

The critical region is

C =
{

z : |z| ≥ zα/2 = z0.025 = 1.96
}

The p-value is

2× P(Z > 0.84) = 0.4009084

Conclusion: Fail to reject. �
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R code:

1

2 library(”snpar”)
3 y <− c(
4 0,1,0,1,0,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,1

5 )
6 runs.test(y, exact = FALSE)
7 runs.test(y, exact = TRUE)

Output:

1 > runs.test(y, exact = FALSE)
2

3 Approximate runs rest
4

5 data: y
6 Runs = 18, p−value = 0.03256
7 alternative hypothesis: two.sided
8

9 > runs.test(y, exact = TRUE)
10

11 Exact runs test
12

13 data: y
14 Runs = 18, p−value = 0.01624
15 alternative hypothesis: two.sided

Remark The procedure that we learnt is an approximation. There is a big
discrepancy for the above two p-values: one that we obtained through
formula and one that is obtained by the r function.
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Thanks for learning statistics
with me through the

semester !
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