Math 362: Mathematical Statistics II

Le Chen
le.chen@emory.edu
Emory University Atlanta, GA

Last updated on April 24, 2021

2021 Spring

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Plan

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

- Distribution-free methods : do not rely on assumptions that the data are drawn from a given parametric family of probability distributions.

[^0]
Nonparametric statistics

- Distribution-free methods : do not rely on assumptions that the data are drawn from a given parametric family of probability distributions.
- Nonparametric statistics: a statistic is defined to be a function on a sample and there is no dependency on any parameters, such as

Order statistics

Nonparametric statistics

- Distribution-free methods : do not rely on assumptions that the data are drawn from a given parametric family of probability distributions.
- Nonparametric statistics: a statistic is defined to be a function on a sample and there is no dependency on any parameters, such as
- Order statistics

Nonparametric vs. Parametric methods

\author{

- Power of Test
}

- Solid line: one-sample t-test
(parametric test)
- Dashed lines: the sign test
(nonparametric test)

Nonparametric vs. Parametric methods

- Power of Test

- Solid line: one-sample t-test
(parametric test)
- Dashed lines: the sign test

Nonparametric methods usually produce

- Greater variance in point estimation
- Less power in hypothesis-testing
- Wider confidence intervals
- I owror noobohiliter of correct selection (in ranking and selection)
- Higher risk (in decision theory)

Hence, use nonparametric methods only when

The underlying assumptions for the probability distributions are seriously doubtful.

Nonparametric vs. Parametric methods

Nonparametric methods usually produce

- Greater variance in point estimation
- Less power in hypothesis-testing
- Wider confidence intervals
- Lower probability of correct selection (in ranking and selection)
- Higher risk (in decision theorv)

Hence, use nonparametric methods only when

The underlying assumptions for the probability distributions are seriously doubtful.

Nonparametric vs. Parametric methods

Nonparametric methods usually produce

- Greater variance in point estimation
- Less power in hypothesis-testing
- Wider confidence intervals
- Lower probability of correct selection (in ranking and selection)
- Higher risk (in decision theory)

Hence, use nonparametric methods only when

The underlying assumptions for the probability distributions are seriously doubtful.

Nonparametric vs. Parametric methods

Nonparametric methods usually produce

- Greater variance in point estimation
- Less power in hypothesis-testing
- Wider confidence intervals
- Lower probability of correct selection (in ranking and selection)

Hence, use nonparametric methods only when

The underlying assumptions for the probability distributions are seriously doubtful.

Nonparametric vs. Parametric methods

Nonparametric methods usually produce

- Greater variance in point estimation
- Less power in hypothesis-testing
- Wider confidence intervals
- Lower probability of correct selection (in ranking and selection)
- Higher risk (in decision theory)

Hence, use nonparametric methods only when

The underlying assumptions for the probability distributions are seriously doubtful.

Plan

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Let $\widetilde{\mu}$ be the median of some unknown continuous pdf $f_{Y}(y)$:

$$
\mathbb{P}(Y \leq \widetilde{\mu})=\mathbb{P}(Y \geq \widetilde{\mu})=\frac{1}{2}
$$

- For a random sample of size n is taken from $f_{Y}(y)$, in order to test

Let $\widetilde{\mu}$ be the median of some unknown continuous pdf $f_{Y}(y)$:

$$
\mathbb{P}(Y \leq \widetilde{\mu})=\mathbb{P}(Y \geq \widetilde{\mu})=\frac{1}{2}
$$

- For a random sample of size n is taken from $f_{Y}(y)$, in order to test

$$
H_{0}: \widetilde{\mu}=\widetilde{\mu}_{0} \quad \text { vs } \quad H_{0}: \widetilde{\mu} \neq \widetilde{\mu}_{0},
$$

Let $\widetilde{\mu}$ be the median of some unknown continuous pdf $f_{Y}(y)$:

$$
\mathbb{P}(Y \leq \widetilde{\mu})=\mathbb{P}(Y \geq \widetilde{\mu})=\frac{1}{2}
$$

- For a random sample of size n is taken from $f_{Y}(y)$, in order to test

$$
H_{0}: \widetilde{\mu}=\widetilde{\mu}_{0} \quad \text { vs } \quad H_{0}: \widetilde{\mu} \neq \widetilde{\mu}_{0}
$$

let

$$
X:=\text { the number of observations exceeding } \widetilde{\mu}_{0}
$$

Let $\widetilde{\mu}$ be the median of some unknown continuous pdf $f_{Y}(y)$:

$$
\mathbb{P}(Y \leq \widetilde{\mu})=\mathbb{P}(Y \geq \widetilde{\mu})=\frac{1}{2}
$$

- For a random sample of size n is taken from $f_{Y}(y)$, in order to test

$$
H_{0}: \widetilde{\mu}=\widetilde{\mu}_{0} \quad \text { vs } \quad H_{0}: \widetilde{\mu} \neq \widetilde{\mu}_{0}
$$

let

$$
X:=\text { the number of observations exceeding } \widetilde{\mu}_{0}
$$

Let $\widetilde{\mu}$ be the median of some unknown continuous pdf $f_{Y}(y)$:

$$
\mathbb{P}(Y \leq \widetilde{\mu})=\mathbb{P}(Y \geq \widetilde{\mu})=\frac{1}{2}
$$

- For a random sample of size n is taken from $f_{Y}(y)$, in order to test

$$
H_{0}: \widetilde{\mu}=\widetilde{\mu}_{0} \quad \text { vs } \quad H_{0}: \widetilde{\mu} \neq \widetilde{\mu}_{0}
$$

let

$$
X:=\text { the number of observations exceeding } \widetilde{\mu}_{0}
$$

$$
\text { 1. } X \sim \operatorname{Binomial}(n, 1 / 2) \text {. }
$$

Let $\widetilde{\mu}$ be the median of some unknown continuous pdf $f_{Y}(y)$:

$$
\mathbb{P}(Y \leq \widetilde{\mu})=\mathbb{P}(Y \geq \widetilde{\mu})=\frac{1}{2}
$$

- For a random sample of size n is taken from $f_{y}(y)$, in order to test

$$
H_{0}: \widetilde{\mu}=\widetilde{\mu}_{0} \quad \text { vs } \quad H_{0}: \widetilde{\mu} \neq \widetilde{\mu}_{0}
$$

let

$$
X:=\text { the number of observations exceeding } \widetilde{\mu}_{0}
$$

1. $X \sim \operatorname{Binomial}(n, 1 / 2)$.
2. Moreover, if n is large, by CLT,

$$
\frac{X-\mathbb{E}[X]}{\sqrt{\operatorname{Var}(X)}}=\frac{X-\frac{n}{2}}{\sqrt{n / 4}} \stackrel{\text { aprox. }}{\sim} \quad N(0,1)
$$

Sign test for median of a single sample

- When sample size n is large:

Sign test for median of a single sample

- When sample size n is large:

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a random sample of size n from any continuous distribution having median $\tilde{\mu}$, where $n \geq 10$. Let k denote the number of y_{i} 's greater than $\tilde{\mu}_{0}$, and let $z=\frac{k-n / 2}{\sqrt{n / 4}}$.
a. To test $H_{0}: \tilde{\mu}=\tilde{\mu}_{0}$ versus $H_{1}: \tilde{\mu}>\tilde{\mu}_{0}$ at the α level of significance, reject H_{0} if $z \geq z_{\alpha}$.
b. To test $H_{0}: \tilde{\mu}=\tilde{\mu}_{0}$ versus $H_{1}: \tilde{\mu}<\tilde{\mu}_{0}$ at the α level of significance, reject H_{0} if $z \leq-z_{\alpha}$.
c. To test $H_{0}: \tilde{\mu}=\tilde{\mu}_{0}$ versus $H_{1}: \tilde{\mu} \neq \tilde{\mu}_{0}$ at the α level of significance, reject H_{0} if z is either $(1) \leq-z_{\alpha / 2}$ or $(2) \geq z_{\alpha / 2}$.

- When sample size n is small: use the exact distribution of binomial distribution.
E.g. 1 In a healthy adults, the median pH for synovial fluid is 7.39 .
E.g. 1 In a healthy adults, the median pH for synovial fluid is 7.39. A random sample of $n=43$ is chosen and test

$$
H_{0}: \widetilde{\mu}=7.39 \quad \text { vs } \quad H_{0}: \widetilde{\mu} \neq 7.39, \quad \text { at } \alpha=0.10 .
$$

E.g. 1 In a healthy adults, the median pH for synovial fluid is 7.39.

A random sample of $n=43$ is chosen and test

$$
H_{0}: \widetilde{\mu}=7.39 \quad \text { vs } \quad H_{0}: \widetilde{\mu} \neq 7.39, \quad \text { at } \alpha=0.10
$$

Subject	Synovial Fluid pH	Subject	Synovial Fluid pH
HW	7.02	BG	7.34
AD	7.35	GL	7.22
TK	7.32	BP	7.32
EP	7.33	NK	7.40
AF	7.15	LL	6.99
LW	7.26	KC	7.10
LT	7.25	FA	7.30
DR	7.35	ML	7.21
VU	7.38	CK	7.33
SP	7.20	LW	7.28
MM	7.31	ES	7.35
DF	7.24	DD	7.24
LM	7.34	SL	7.36
AW	7.32	RM	7.09
BB	7.34	AL	7.32
TL	7.14	BV	6.95
PM	7.20	WR	7.35
JG	7.41	HT	7.36
DH	7.77	ND	6.60
ER	7.12	SJ	7.29
DP	7.45	BA	7.31
FF	7.28		

Sol 1. We first count how many samples exceeding the median (i.e., obtain the value of X)

Sol 1. We first count how many samples exceeding the median (i.e., obtain the value of X)

Subject	Synovial Fluid pH	Subject	Synovial Fluid pH
HW	7.02	BG	7.34
AD	7.35	GL	7.22
TK	7.32	BP	7.32
EP	7.33	NK	7.40
AF	7.15	LL	6.99
LW	7.26	KC	7.10
LT	7.25	FA	7.30
DR	7.35	ML	7.21
VU	7.38	CK	7.33
SP	7.20	LW	7.28
MM	7.31	ES	7.35
DF	7.24	DD	7.24
LM	7.34	SL	7.36
AW	7.32	RM	7.09
BB	7.34	AL	7.32
TL	7.14	BV	6.95
PM	7.20	WR	7.35
JG	7.41	HT	7.36
DH	7.77	ND	6.60
ER	7.12	SJ	7.29
DP	7.45	BA	7.31
FF	7.28		

Sol 1. We first count how many samples exceeding the median (i.e., obtain the value of X)

Subject	Synovial Fluid pH	Subject	Synovial Fluid pH
HW	7.02	BG	7.34
AD	7.35	GL	7.22
TK	7.32	BP	7.32
EP	7.33	NK	7.40
AF	7.15	LL	6.99
LW	7.26	KC	7.10
LT	7.25	FA	7.30
DR	7.35	ML	7.21
VU	7.38	CK	7.33
SP	7.20	LW	7.28
MM	7.31	ES	7.35
DF	7.24	DD	7.24
LM	7.34	SL	7.36
AW	7.32	RM	7.09
BB	7.34	AL	7.32
TL	7.14	BV	6.95
PM	7.20	WR	7.35
JG	7.41	1	HT
DH	7.77	7.36	
ER	7.12	ND	6.60
DP	7.45	SJ	7.29
FF	7.28	BA	7.31

Sol 1. We first count how many samples exceeding the median (i.e., obtain the value of X)

Subject	Synovial Fluid pH	Subject	Synovial Fluid pH
HW	7.02	BG	7.34
AD	7.35	GL	7.22
TK	7.32	BP	7.32
EP	7.33	NK	7.40
AF	7.15	LL	6.99
LW	7.26	KC	7.10
LT	7.25	FA	7.30
DR	7.35	ML	7.21
VU	7.38	CK	7.33
SP	7.20	LW	7.28
MM	7.31	ES	7.35
DF	7.24	DD	7.24
LM	7.34	SL	7.36
AW	7.32	RM	7.09
BB	7.34	AL	7.32
TL	7.14	BV	6.95
PM	7.20	1	WR

Sol 1. We first count how many samples exceeding the median (i.e., obtain the value of X)

Subject	Synovial Fluid pH	Subject	Synovial Fluid pH
HW	7.02	BG	7.34
AD	7.35	GL	7.22
TK	7.32	BP	7.32
EP	7.33	NK	7.40
AF	7.15	LL	6.99
LW	7.26	KC	7.10
LT	7.25	FA	7.30
DR	7.35	ML	7.21
VU	7.38	CK	7.33
SP	7.20	LW	7.28
MM	7.31	ES	7.35
DF	7.24	DD	7.24
LM	7.34	SL	7.36
AW	7.32	RM	7.09
BB	7.34	AL	7.32
TL	7.14	BV	6.95
PM	7.20	WR	7.35
JG	7.41	M	HT
DH	7.77	ND	7.36
ER	7.12	SJ	7.60
DP	7.45	SA	7.31
FF	7.28		

Hence, we have $k=4, n=43$, and since n is large, we use the z test:

$$
z=\frac{4-43 / 2}{\sqrt{43 / 4}}=-5.34
$$

Since the critical regions (two-sided test here) are

$$
(-\infty,-2.58) \cup(2.58, \infty),
$$

we reject the hypothesis.

Or equivalently, the p-value is

[^1]Hence, we have $k=4, n=43$, and since n is large, we use the z test:

$$
z=\frac{4-43 / 2}{\sqrt{43 / 4}}=-5.34
$$

Since the critical regions (two-sided test here) are

$$
\begin{gathered}
\left(-\infty,-z_{\alpha / 2}\right) \cup\left(z_{\alpha / 2}, \infty\right) \\
\| \\
(-\infty,-2.58) \cup(2.58, \infty),
\end{gathered}
$$

we reject the hypothesis.

Or equivalently, the p-value is
$2 \times \mathbb{D}($ フー $\quad 5.34)=9.294658 \times 10^{-8}$

[^2]Hence, we have $k=4, n=43$, and since n is large, we use the z test:

$$
z=\frac{4-43 / 2}{\sqrt{43 / 4}}=-5.34
$$

Since the critical regions (two-sided test here) are

$$
\begin{gathered}
\left(-\infty,-z_{\alpha / 2}\right) \cup\left(z_{\alpha / 2}, \infty\right) \\
\| \\
(-\infty,-2.58) \cup(2.58, \infty),
\end{gathered}
$$

we reject the hypothesis.

Or equivalently, the p-value is
$2 \times \mathbb{P}(7<-5.34)=9.294658 \times 10^{-}$

[^3]Hence, we have $k=4, n=43$, and since n is large, we use the z test:

$$
z=\frac{4-43 / 2}{\sqrt{43 / 4}}=-5.34
$$

Since the critical regions (two-sided test here) are

$$
\begin{gathered}
\left(-\infty,-z_{\alpha / 2}\right) \cup\left(z_{\alpha / 2}, \infty\right) \\
\| \\
(-\infty,-2.58) \cup(2.58, \infty),
\end{gathered}
$$

we reject the hypothesis.

Or equivalently, the p-value is

$$
2 \times \mathbb{P}(Z<-5.34)=9.294658 \times 10^{-8}
$$

[^4]Sol 2. We can also carry out the exact computation thanks to computer:

[^5]Sol 2. We can also carry out the exact computation thanks to computer: The exact p-value should be

$$
2 \times \mathbb{P}(X \leq 5)=2 \sum_{k=0}^{5}\binom{43}{k}\left(\frac{1}{2}\right)^{43}=2.49951 \times 10^{-7}
$$

which is smaller than $\alpha=0.10$.
Hence, rejection!

$$
\begin{aligned}
& 1>\operatorname{pbinom}(5,43,0.5) * 2 \\
& 2[1] 2.49951 \mathrm{e}-07
\end{aligned}
$$

Sol 2. We can also carry out the exact computation thanks to computer: The exact p-value should be

$$
2 \times \mathbb{P}(X \leq 5)=2 \sum_{k=0}^{5}\binom{43}{k}\left(\frac{1}{2}\right)^{43}=2.49951 \times 10^{-7}
$$

which is smaller than $\alpha=0.10$.
Hence, rejection!

$$
\begin{aligned}
& 1>\operatorname{pbinom}(5,43,0.5) * 2 \\
& 2[1] 2.49951 \mathrm{e}-07
\end{aligned}
$$

Sign test for paired data

E.g. A manufacturer produces two products, A and B . The manufacturer wishes to know if consumers prefer product B over product A . and asked which product they prefer:

Test at $\alpha=0.10$ that
H_{0} : consumers do not prefer B over A

Sign test for paired data

E.g. A manufacturer produces two products, A and B . The manufacturer wishes to know if consumers prefer product B over product A . A sample of 10 consumers are each given product A and product B , and asked which product they prefer:

Preferences	Number
B	8
A	1
No preference	1

Test at $\alpha=0.10$ that
H_{0} : constumers do not prefer B over A

Sign test for paired data

E.g. A manufacturer produces two products, A and B . The manufacturer wishes to know if consumers prefer product B over product A .

A sample of 10 consumers are each given product A and product B , and asked which product they prefer:

Preferences	Number
B	8
A	1
No preference	1

Test at $\alpha=0.10$ that
H_{0} : consumers do not prefer B over A vs.
H_{1} : consumers do prefer B over A .

Sol. We first remove the ties. So that we have a random (paired-data) sample of size $n=9$. Under H_{0}, the consumers have no preference for B over A. Hence,
may believe that consumers will choose A or B with probability $\frac{1}{2}$
Hence, to get more extreme values in this setting would give the
p-value:

$$
P(x \geq 8)=\sum_{k=8}^{9}\binom{9}{k}\left(\frac{1}{2}\right)
$$

Sol. We first remove the ties. So that we have a random (paired-data) sample of size $n=9$.

Under H_{0}, the consumers have no preference for B over A . Hence, we may believe that consumers will choose A or B with probability $\frac{1}{2}$. Hence, to get more extreme values in this setting would give the p-value:

Sol. We first remove the ties. So that we have a random (paired-data) sample of size $n=9$.

Under H_{0}, the consumers have no preference for B over A. Hence, we may believe that consumers will choose A or B with probability $\frac{1}{2}$.

Hence, to get more extreme values in this setting would give the p-value:

$$
\mathbb{P}(X \geq 8)=\sum_{k=8}^{9}\binom{9}{k}\left(\frac{1}{2}\right)^{9}=0.0195 .
$$

Conclusion, Rejection!

Sol. We first remove the ties. So that we have a random (paired-data) sample of size $n=9$.

Under H_{0}, the consumers have no preference for B over A. Hence, we may believe that consumers will choose A or B with probability $\frac{1}{2}$.

Hence, to get more extreme values in this setting would give the p-value:

$$
\mathbb{P}(X \geq 8)=\sum_{k=8}^{9}\binom{9}{k}\left(\frac{1}{2}\right)^{9}=0.0195 .
$$

Conclusion, Rejection!

Plan

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Setup Let Y_{1}, \cdots, Y_{n} be a set of independent variables with pdfs $f_{Y_{1}}(y), \cdots, f_{Y_{n}}(y)$, respectively.

Wilcoxon signed rank static

where R_{i} denotes the rank (increasing and starting from 1) of

Setup Let Y_{1}, \cdots, Y_{n} be a set of independent variables with pdfs $f_{Y_{1}}(y), \cdots, f_{Y_{n}}(y)$, respectively.
Assume that $f_{Y_{i}}(y)$ are continuous and symmetric.

Wilcoxon signed rank static

where R_{i} denotes the rank (increasing and starting from 1) of

Setup Let Y_{1}, \cdots, Y_{n} be a set of independent variables with pdfs $f_{Y_{1}}(y), \cdots, f_{Y_{n}}(y)$, respectively.
Assume that $f_{Y_{i}}(y)$ are continuous and symmetric.
Assume that all mean/median of $f_{Y_{i}}$ are equal, denoted by μ.

Wilcoxon signed rank static

where R_{i} denotes the rank (increasing and starting from 1) of

Setup Let Y_{1}, \cdots, Y_{n} be a set of independent variables with pdfs $f_{Y_{1}}(y), \cdots, f_{Y_{n}}(y)$, respectively.
Assume that $f_{Y_{i}}(y)$ are continuous and symmetric.
Assume that all mean/median of $f_{y_{i}}$ are equal, denoted by μ.

Test $H_{0}: \mu=\mu_{0}$ vs. $H_{1}: \mu \neq \mu_{0}$.

Wilcoxon signed rank static

where R_{i} denotes the rank (increasing and starting from 1) of

Setup Let Y_{1}, \cdots, Y_{n} be a set of independent variables with pdfs $f_{Y_{1}}(y), \cdots, f_{Y_{n}}(y)$, respectively.
Assume that $f_{Y_{i}}(y)$ are continuous and symmetric.
Assume that all mean/median of $f_{Y_{i}}$ are equal, denoted by μ.

Test $H_{0}: \mu=\mu_{0}$ vs. $H_{1}: \mu \neq \mu_{0}$.

Wilcoxon signed rank static

$$
W=\sum_{k=1}^{n} R_{k} \mathbb{I}_{\left\{Y_{k}>\mu_{0}\right\}}
$$

where R_{i} denotes the rank (increasing and starting from 1) of

$$
\left\{\left|Y_{1}-\mu_{0}\right|,\left|Y_{2}-\mu_{0}\right|, \cdots,\left|Y_{n}-\mu_{0}\right|\right\}
$$

n	1	2	3
y_{n}	4.2	6.1	2.0
$y_{n}-3.0$	1.2	3.1	-1.0
$\left\|y_{n}-3.0\right\|$	1.2	3.1	1.0
r_{n}	2	3	1
$\mathbb{I}_{\left\{y_{n}>3.0\right\}}$	1	1	0
$r_{n} \mathbb{I}_{\left\{y_{n}>3.0\right\}}$	$u_{2}=2$	$u_{3}=3$	$u_{1}=0$

$$
w=2 \times 1+3 \times 1+1 \times 0=5
$$

Let $\left\{y_{1}, \cdots, y_{n}\right\}$ be For a sample of size n.

Some observations:

$>r_{i}$ takes values in $\{1,2, \cdots, n\}$.
$\rightarrow W$ is a discrete random variable:

Let $\left\{y_{1}, \cdots, y_{n}\right\}$ be For a sample of size n.

Some observations:

- r_{i} takes values in $\{1,2, \cdots, n\}$.
\boldsymbol{w}_{i} takes values in $\left\{0,1,2, \cdots, \frac{n(n+1)}{2}\right\}$ with $1+2+\cdots+n=\frac{n(n+1)}{2}$.
- W is a discrete random variable:

Let $\left\{y_{1}, \cdots, y_{n}\right\}$ be For a sample of size n.

Some observations:

- r_{i} takes values in $\{1,2, \cdots, n\}$.
> w_{i} takes values in $\left\{0,1,2, \cdots, \frac{n(n+1)}{2}\right\}$ with $1+2+\cdots+n=\frac{n(n+1)}{2}$.
$-W$ is a discrete random variable:

W	0	1	\cdots	$\frac{n(n+1)}{2}$
$\mathbb{P}(W=W)$				

Theorem Under the above setup and under H_{0},

$$
p_{W}(w)=\mathbb{P}(W=w)=\frac{c(w)}{2^{n}}
$$

where $c(w)$ is the coefficient of $e^{w t}$ in the expansion of

$$
\prod_{k=1}^{n}\left(1+e^{k t}\right)
$$

Proof Under $H_{0}, W=\sum_{k=1}^{n} U_{k}$ with follow the following distribution

Theorem Under the above setup and under H_{0},

$$
p_{W}(w)=\mathbb{P}(W=w)=\frac{c(w)}{2^{n}}
$$

where $c(w)$ is the coefficient of $e^{w t}$ in the expansion of

$$
\prod_{k=1}^{n}\left(1+e^{k t}\right)
$$

Proof Under $H_{0}, W=\sum_{k=1}^{n} U_{k}$ with follow the following distribution

$$
U_{k}= \begin{cases}0 & \text { with probability } 1 / 2 \\ k & \text { with probability } 1 / 2\end{cases}
$$

Theorem Under the above setup and under H_{0},

$$
p_{W}(w)=\mathbb{P}(W=w)=\frac{c(w)}{2^{n}}
$$

where $c(w)$ is the coefficient of $e^{w t}$ in the expansion of

$$
\prod_{k=1}^{n}\left(1+e^{k t}\right)
$$

Proof Under $H_{0}, W=\sum_{k=1}^{n} U_{k}$ with follow the following distribution

$$
U_{k}= \begin{cases}0 & \text { with probability } 1 / 2 \\ k & \text { with probability } 1 / 2\end{cases}
$$

Then

$$
M_{W}(t)=\prod_{k=1}^{n} M_{U_{k}}(t)=\prod_{k=1}^{n} \mathbb{E}\left(e^{U_{k} t}\right)=\prod_{k=1}^{n}\left(\frac{1}{2}+\frac{1}{2} e^{k t}\right) .
$$

Hence, we have

$$
M_{W}(t)=\frac{1}{2^{n}} \prod_{k=1}^{n}\left(1+e^{k t}\right)
$$

On the other hand,

$$
M_{W}(t)=\mathbb{E}\left(e^{W t}\right)=\sum_{w=0}^{\frac{n(n+1)}{2}} e^{w t} p_{W}(w)
$$

Equating the above two expressions, namely,

$$
\frac{1}{2^{n}} \prod_{k=1}^{n}\left(1+e^{k t}\right)=\sum_{w=0}^{\frac{n(n+1)}{2}} e^{w t} \rho w(w)
$$

proves the theorem.

Hence, we have

$$
M_{W}(t)=\frac{1}{2^{n}} \prod_{k=1}^{n}\left(1+e^{k t}\right)
$$

On the other hand,

$$
M_{W}(t)=\mathbb{E}\left(e^{w t}\right)=\sum_{w=0}^{\frac{n(n+1)}{2}} e^{w t} p_{W}(w)
$$

Equating the above two expressions, namely,

proves the theorem.

Hence, we have

$$
M_{W}(t)=\frac{1}{2^{n}} \prod_{k=1}^{n}\left(1+e^{k t}\right)
$$

On the other hand,

$$
M_{W}(t)=\mathbb{E}\left(e^{W t}\right)=\sum_{w=0}^{\frac{n(n+1)}{2}} e^{w t} p_{W}(w)
$$

Equating the above two expressions, namely,

$$
\frac{1}{2^{n}} \prod_{k=1}^{n}\left(1+e^{k t}\right)=\sum_{w=0}^{\frac{n(n+1)}{2}} e^{w t} p_{w}(w)
$$

proves the theorem.
E.g. Find the pdf of W when $n=2$ and 4 .

Sol. When $n=2$,
E.g. Find the pdf of W when $n=2$ and 4 .

Sol. When $n=2$,

$$
\begin{aligned}
M_{w}(t) & =\frac{1}{2^{2}}\left(1+e^{t}\right)\left(1+e^{2 t}\right) \\
& =\frac{1}{2^{2}}\left(1+e^{t}+e^{2 t}+e^{3 t}\right)
\end{aligned}
$$

Hence,

w	0	1	2	3
$p_{W}(w)$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$

When $n=4$,

$$
\begin{aligned}
M_{W}(t) & =\frac{1}{2^{4}}\left(1+e^{t}\right)\left(1+e^{2 t}\right)\left(1+e^{3 t}\right)\left(1+e^{4 t}\right) \\
& =\frac{1}{16}\left(e^{10 t}+e^{9 t}+e^{8 t}+2 e^{7 t}+2 e^{6 t}+2 e^{5 t}+2 e^{4 t}+2 e^{3 t}+e^{2 t}+e^{t}+1\right)
\end{aligned}
$$

Hence,

w	0	1	2	3	4	5	6	7	8	9	10
$p_{W}(w)$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$

```
1 sage: var('k,t')
2 (k, t)
3 sage: product(1+e^(k*t),k,1,4)
4 e^(10*t) + e`( }9*\textrm{t})+\mp@subsup{\textrm{e}}{}{`}(8*\textrm{t})+2*\mp@subsup{\textrm{e}}{}{`}(7*\textrm{t})+2*\mp@subsup{\textrm{e}}{}{`}(6*\textrm{t})+2*\mp@subsup{\textrm{e}}{}{`}(5*\textrm{t})+2*\mp@subsup{\textrm{e}}{}{`}(4*\textrm{t})+2*
    `}(3*\textrm{t})+\mp@subsup{\textrm{e}}{}{`}(2*\textrm{t})+\mp@subsup{\textrm{e}}{}{\wedge}\textrm{t}+
```

E.g. Shark studies:

Past data show that the true average $T L / H D /$ ratio should be 14.60.
Let $Y_{i}=T L / H D I$.
Does the data support the above claim, namely, test
$H_{0}: \mu=14.60$ vs. $H_{1}: \mu \neq 14.60$.

E.g. Shark studies:

Table 14.3.2	Measurements Made on Ten Sharks Caught Near Santa Catalina	
Total Length (mm)	Height of First Dorsal Fin (mm)	TL/HDI
906	68	13.32
875	67	13.06
771	55	14.02
700	59	11.86
869	64	13.58
895	65	13.77
662	49	13.51
750	52	14.42
794	55	14.44
787	51	15.43

Past data show that the true average $T L / H D /$ ratio should be 14.60 .
\qquad

E.g. Shark studies:

Table 14.3.2	Measurements Made on Ten Sharks Caught Near Santa Catalina	
Total Length (mm)	Height of First Dorsal Fin (mm)	TL/HDI
906	68	13.32
875	67	13.06
771	55	14.02
700	59	11.86
869	64	13.58
895	65	13.77
662	49	13.51
750	52	14.42
794	55	14.44
787	51	15.43

Past data show that the true average $T L / H D /$ ratio should be 14.60 . Let $Y_{i}=T L / H D I$.

Does the data support the above claim, namely, test

E.g. Shark studies:

Table 14.3.2	Measurements Made on Ten Sharks Caught Near Santa Catalina	
Total Length (mm)	Height of First Dorsal Fin (mm)	TL/HDI
906	68	13.32
875	67	13.06
771	55	14.02
700	59	11.86
869	64	13.58
895	65	13.77
662	49	13.51
750	52	14.42
794	55	14.44
787	51	15.43

Past data show that the true average $T L / H D /$ ratio should be 14.60 .
Let $Y_{i}=T L / H D I$.
Does the data support the above claim, namely, test

$$
H_{0}: \mu=14.60 \quad \text { vs. } \quad H_{1}: \mu \neq 14.60 .
$$

E.g. Shark studies:

Table 14.3.2	Measurements Made on Ten Sharks Caught Near Santa Catalina	
Total Length (mm)	Height of First Dorsal Fin (mm)	TL/HDI
906	68	13.32
875	67	13.06
771	55	14.02
700	59	11.86
869	64	13.58
895	65	13.77
662	49	13.51
750	52	14.42
794	55	14.44
787	51	15.43

Past data show that the true average $T L / H D /$ ratio should be 14.60 .
Let $Y_{i}=T L / H D I$.
Does the data support the above claim, namely, test

$$
H_{0}: \mu=14.60 \quad \text { vs. } \quad H_{1}: \mu \neq 14.60 .
$$

Set $\alpha=0.05$.

Sol. Computing the Wilcoxon signed rank statistics:

Hence, $w=4.5$.
 Now check the table to find the critical region

$C=\{w: w \leq 8$ or $w \geq 47\}$
Conclusion: Rejection!

Sol. Computing the Wilcoxon signed rank statistics:

| Table 14.3.3 | Computations for Wilcoxon Signed Rank Test | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T L / H D I\left(=y_{i}\right)$ | $y_{i}-14.60$ | $\left\|y_{i}-14.60\right\|$ | r_{i} | z_{i} | $r_{i} z_{i}$ |
| 13.32 | -1.28 | 1.28 | 8 | 0 | 0 |
| 13.06 | -1.54 | 1.54 | 9 | 0 | 0 |
| 14.02 | -0.58 | 0.58 | 3 | 0 | 0 |
| 11.86 | -2.74 | 2.74 | 10 | 0 | 0 |
| 13.58 | -1.02 | 1.02 | 6 | 0 | 0 |
| 13.77 | -0.83 | 0.83 | 4.5 | 0 | 0 |
| 13.51 | -1.09 | 1.09 | 7 | 0 | 0 |
| 14.42 | -0.18 | 0.18 | 2 | 0 | 0 |
| 14.44 | -0.16 | 0.16 | 1 | 0 | 0 |
| 15.43 | +0.83 | 0.83 | 4.5 | 1 | 4.5 |

Hence, $w=4.5$.
Now check the table to find the critical region

Conclusion: Rejection!

Sol. Computing the Wilcoxon signed rank statistics:

| Table 14.3.3 | Computations for Wilcoxon Signed Rank Test | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T L / H D I\left(=y_{i}\right)$ | $y_{i}-14.60$ | $\left\|y_{i}-14.60\right\|$ | r_{i} | z_{i} | $r_{i} z_{i}$ |
| 13.32 | -1.28 | 1.28 | 8 | 0 | 0 |
| 13.06 | -1.54 | 1.54 | 9 | 0 | 0 |
| 14.02 | -0.58 | 0.58 | 3 | 0 | 0 |
| 11.86 | -2.74 | 2.74 | 10 | 0 | 0 |
| 13.58 | -1.02 | 1.02 | 6 | 0 | 0 |
| 13.77 | -0.83 | 0.83 | 4.5 | 0 | 0 |
| 13.51 | -1.09 | 1.09 | 7 | 0 | 0 |
| 14.42 | -0.18 | 0.18 | 2 | 0 | 0 |
| 14.44 | -0.16 | 0.16 | 1 | 0 | 0 |
| 15.43 | +0.83 | 0.83 | 4.5 | 1 | 4.5 |

Hence, $w=4.5$.
Now check the table to find the critical region:

$$
C=\{w: w \leq 8 \quad \text { or } \quad w \geq 47\} .
$$

Sol. Computing the Wilcoxon signed rank statistics:

| Table 14.3.3 | Computations for Wilcoxon Signed Rank Test | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T L / H D I\left(=y_{i}\right)$ | $y_{i}-14.60$ | $\left\|y_{i}-14.60\right\|$ | r_{i} | z_{i} | $r_{i} z_{i}$ |
| 13.32 | -1.28 | 1.28 | 8 | 0 | 0 |
| 13.06 | -1.54 | 1.54 | 9 | 0 | 0 |
| 14.02 | -0.58 | 0.58 | 3 | 0 | 0 |
| 11.86 | -2.74 | 2.74 | 10 | 0 | 0 |
| 13.58 | -1.02 | 1.02 | 6 | 0 | 0 |
| 13.77 | -0.83 | 0.83 | 4.5 | 0 | 0 |
| 13.51 | -1.09 | 1.09 | 7 | 0 | 0 |
| 14.42 | -0.18 | 0.18 | 2 | 0 | 0 |
| 14.44 | -0.16 | 0.16 | 1 | 0 | 0 |
| 15.43 | +0.83 | 0.83 | 4.5 | 1 | 4.5 |

Hence, $w=4.5$.
Now check the table to find the critical region:

$$
C=\{w: w \leq 8 \quad \text { or } \quad w \geq 47\} .
$$

Conclusion: Rejection!

```
1> x <-c(13.32, 13.06, 14.02, 11.86, 13.58, 13,77, 13.51, 14.42, 14.44, 15.43)
2 > wilcox.test(x, mu = 14.60, alternative = "two.sided")
3
4 Wilcoxon signed rank exact test
5
6 data: x
7 V = 15, p-value = 0.123
8 alternative hypothesis: true location is not equal to 14.6
```


Large-sample Wilcoxon Signed Rank Test

Theorem Under the same setup and H_{0}, we have

$$
\mathbb{E}(\boldsymbol{W})=\frac{n(n+1)}{4} \quad \text { and } \quad \operatorname{Var}(\boldsymbol{W})=\frac{n(n+1)(2 n+1)}{24}
$$

Large-sample Wilcoxon Signed Rank Test

Theorem Under the same setup and H_{0}, we have

$$
\mathbb{E}(W)=\frac{n(n+1)}{4} \quad \text { and } \quad \operatorname{Var}(W)=\frac{n(n+1)(2 n+1)}{24}
$$

Proof.

$$
\begin{gathered}
\mathbb{E}(W)=\mathbb{E}\left(\sum_{k=1}^{n} U_{k}\right)=\sum_{k=1}^{n}\left(0 \cdot \frac{1}{2}+k \cdot \frac{1}{2}\right) \\
=\sum_{k=1}^{n} \frac{k}{2}=\frac{n(n+1)}{4} . \\
\operatorname{Var}(W)=\operatorname{Var}\left(\sum_{k=1}^{n} U_{k}\right)=\sum_{k=1}^{n} \operatorname{Var}\left(U_{k}\right)=\sum_{k=1}^{n}\left[\mathbb{E}\left(U_{k}^{2}\right)-\mathbb{E}\left(U_{k}\right)^{2}\right] \\
=\sum_{k=1}^{n}\left[\frac{k^{2}}{2}-\left(\frac{k}{2}\right)^{2}\right]=\sum_{k=1}^{n} \frac{k^{2}}{4}=\frac{1}{4} \frac{n(n+1)(2 n+1)}{6}
\end{gathered}
$$

Hence when n is large (usually $n \geq 12$),

$$
\frac{W-\mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}}=\frac{W-[n(n+1)] / 4}{\sqrt{[n(n+1)(2 n+1)] / 24}} \stackrel{\text { approx }}{\sim} \quad N(0,1) .
$$

Hence when n is large (usually $n \geq 12$),

$$
\frac{W-\mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}}=\frac{W-[n(n+1)] / 4}{\sqrt{[n(n+1)(2 n+1)] / 24}} \quad \stackrel{\text { approx }}{\sim} \quad N(0,1) .
$$

Let w be the signed rank statistic based on n independent observations, each drawn from a continuous and symmetric pdf, where $n>12$. Let

$$
z=\frac{w-[n(n+1)] / 4}{\sqrt{[n(n+1)(2 n+1)] / 24}}
$$

a. To test $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu>\mu_{0}$ at the α level of significance, reject H_{0} if $z \geq z_{\alpha}$.
b. To test $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu<\mu_{0}$ at the α level of significance, reject H_{0} if $z \leq-z_{\alpha}$.
c. To test $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu \neq \mu_{0}$ at the α level of significance, reject H_{0} if z is either $(1) \leq-z_{\alpha / 2}$ or $(2) \geq z_{\alpha / 2}$.

- Nonparametric counterpart of the pooled two-sample t-test

Setup Let x_{1}, \cdots, x_{n} and y_{n+1}, \cdots, y_{n+m} be two independent random samples from $f_{X}(x)$ and $f_{Y}(y)$, respectively.
Assume that $f_{X}(X)$ and $f_{Y}(y)$ are the same except for a possible shift in location.

Test $H_{0}: \mu_{x}=\mu_{y}$

Test statistic

where R_{j} is the rank (starting from the lowest with rank 1) and

- Nonparametric counterpart of the pooled two-sample t-test

Setup Let x_{1}, \cdots, x_{n} and y_{n+1}, \cdots, y_{n+m} be two independent random samples from $f_{X}(x)$ and $f_{Y}(y)$, respectively.
Assume that $f_{X}(x)$ and $f_{Y}(y)$ are the same except for a possible shift in location.

Test statistic

where R_{j} is the rank (starting from the lowest with rank 1) and

- Nonparametric counterpart of the pooled two-sample t-test

Setup Let x_{1}, \cdots, x_{n} and y_{n+1}, \cdots, y_{n+m} be two independent random samples from $f_{X}(x)$ and $f_{Y}(y)$, respectively.
Assume that $f_{X}(x)$ and $f_{Y}(y)$ are the same except for a possible shift in location.

Test $H_{0}: \mu_{x}=\mu_{y}$ vs. \ldots

Test statistic

where R_{j} is the rank (starting from the lowest with rank 1) and

- Nonparametric counterpart of the pooled two-sample t-test

Setup Let x_{1}, \cdots, x_{n} and y_{n+1}, \cdots, y_{n+m} be two independent random samples from $f_{X}(x)$ and $f_{Y}(y)$, respectively.
Assume that $f_{X}(x)$ and $f_{Y}(y)$ are the same except for a possible shift in location.

Test $H_{0}: \mu_{x}=\mu_{y}$ vs. \ldots

Test statistic

$$
W=\sum_{k=1}^{n+m} R_{i} Z_{i}
$$

where R_{i} is the rank (starting from the lowest with rank 1) and

$$
Z_{i}= \begin{cases}1 & \text { the ith entry comes from } f_{X}(x) \\ 0 & \text { the ith entry comes from } f_{Y}(y)\end{cases}
$$

Theorem Under the above setup and under H_{0},

$$
\mathbb{E}[\mathbf{W}]=\frac{n(n+m+1)}{2} \quad \text { and } \quad \operatorname{Var}(\boldsymbol{W})=\frac{n m(n+m+1)}{12}
$$

Hence when sample sizes are large, namely, $n, m>10$,

$\frac{W-\mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}}=\frac{W-[n(n+m+1)] / 2}{\sqrt{[n m(n+m+1)] / 12}}$

Theorem Under the above setup and under H_{0},

$$
\mathbb{E}[W]=\frac{n(n+m+1)}{2} \quad \text { and } \quad \operatorname{Var}(W)=\frac{n m(n+m+1)}{12}
$$

Hence when sample sizes are large, namely, $n, m>10$,

$$
\frac{W-\mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}}=\frac{W-[n(n+m+1)] / 2}{\sqrt{[n m(n+m+1)] / 12}} \quad \stackrel{\text { approx }}{\sim} \quad N(0,1) .
$$

E.g. Baseball ...

Test if $H_{0}: \mu_{X}=\mu_{Y}$ vs. $H_{0}: \mu_{X} \neq \mu_{Y}$
E.g. Baseball ...

Test if $H_{0}: \mu_{X}=\mu_{Y}$ vs. $H_{0}: \mu_{X} \neq \mu_{Y}$

Obs. \#	Team	Time (min)	r_{i}	z_{i}	$r_{i} z_{i}$
1	Baltimore	177	21	1	21
2	Boston	177	21	1	21
3	California	165	7.5	1	7.5
4	Chicago (AL)	172	14.5	1	14.5
5	Cleveland	172	14.5	1	14.5
6	Detroit	179	24.5	1	24.5
7	Kansas City	163	5	1	5
8	Milwaukee	175	18	1	18
9	Minnesota	166	9.5	1	9.5
10	New York (AL)	182	26	1	26
11	Oakland	177	21	1	21
12	Seattle	168	12.5	1	12.5
13	Texas	179	24.5	1	24.5
14	Toronto	177	21	1	21
15	Atlanta	166	9.5	0	0
16	Chicago (NL)	154	1	0	0
17	Cincinnati	159	2	0	0
18	Houston	168	12.5	0	0
19	Los Angeles	174	16.5	0	0
20	Montreal	174	16.5	0	0
21	New York (NL)	177	21	0	0
22	Philadelphia	167	11	0	0
23	Pittsburgh	165	7.5	0	0
24	San Diego	161	3.5	0	0
25	San Francisco	164	6	0	0
26	St. Louis	161	3.5	0	0
					$w^{\prime}=240.5$

E.g. Baseball ...

Test if $H_{0}: \mu_{X}=\mu_{Y}$ vs. $H_{0}: \mu_{X} \neq \mu_{Y}$

Obs. \#	Team	Time (min)	r_{i}	z_{i}	$r_{i} z_{i}$
1	Baltimore	177	21	1	21
2	Boston	177	21	1	21
3	California	165	7.5	1	7.5
4	Chicago (AL)	172	14.5	1	14.5
5	Cleveland	172	14.5	1	14.5
6	Detroit	179	24.5	1	24.5
7	Kansas City	163	5	1	5
8	Milwaukee	175	18	1	18
9	Minnesota	166	9.5	1	9.5
10	New York (AL)	182	26	1	26
11	Oakland	177	21	1	21
12	Seattle	168	12.5	1	12.5
13	Texas	179	24.5	1	24.5
14	Toronto	177	21	1	21
15	Atlanta	166	9.5	0	0
16	Chicago (NL)	154	1	0	0
17	Cincinnati	159	2	0	0
18	Houston	168	12.5	0	0
19	Los Angeles	174	16.5	0	0
20	Montreal	174	16.5	0	0
21	New York (NL)	177	21	0	0
22	Philadelphia	167	11	0	0
23	Pittsburgh	165	7.5	0	0
24	San Diego	161	3.5	0	0
25	San Francisco	164	6	0	0
26	St. Louis	161	3.5	0	0
					$w^{\prime}=240.5$

E.g. Baseball ...

Test if $H_{0}: \mu_{X}=\mu_{Y}$ vs. $H_{0}: \mu_{X} \neq \mu_{Y}$

Obs. \#	Team	Time (min)	r_{i}	z_{i}	$r_{i} z_{i}$
1	Baltimore	177	21	1	21
2	Boston	177	21	1	21
3	California	165	7.5	1	7.5
4	Chicago (AL)	172	14.5	1	14.5
5	Cleveland	172	14.5	1	14.5
6	Detroit	179	24.5	1	24.5
7	Kansas City	163	5	1	5
8	Milwaukee	175	18	1	18
9	Minnesota	166	9.5	1	9.5
10	New York (AL)	182	26	1	26
11	Oakland	177	21	1	21
12	Seattle	168	12.5	1	12.5
13	Texas	179	24.5	1	24.5
14	Toronto	177	21	1	21
15	Atlanta	166	9.5	0	0
16	Chicago (NL)	154	1	0	0
17	Cincinnati	159	2	0	0
18	Houston	168	12.5	0	0
19	Los Angeles	174	16.5	0	0
20	Montreal	174	16.5	0	0
21	New York (NL)	177	21	0	0
22	Philadelphia	167	11	0	0
23	Pittsburgh	165	7.5	0	0
24	San Diego	161	3.5	0	0
25	San Francisco	164	6	0	0
26	St. Louis	161	3.5	0	0

In this case, $n=14, m=12, w=240.5$.

$$
\begin{gathered}
\mathbb{E}(W)=\frac{14(14+12+1)}{2}=189 \\
\operatorname{Var}(W)=\frac{14 \times 12 \times(14+12+1)}{12}=378
\end{gathered}
$$

Hence, the approximate z-score is

$$
z=\frac{W-\mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}}=\frac{240.5-189}{\sqrt{378}}=2.65
$$

In this case, $n=14, m=12, w=240.5$.

$$
\begin{gathered}
\mathbb{E}(W)=\frac{14(14+12+1)}{2}=189 \\
\operatorname{Var}(W)=\frac{14 \times 12 \times(14+12+1)}{12}=378
\end{gathered}
$$

Hence, the approximate z-score is

$$
z=\frac{w-\mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}}=\frac{240.5-189}{\sqrt{378}}=2.65
$$

In this case, $n=14, m=12, w=240.5$.

$$
\begin{gathered}
\mathbb{E}(W)=\frac{14(14+12+1)}{2}=189 \\
\operatorname{Var}(W)=\frac{14 \times 12 \times(14+12+1)}{12}=378
\end{gathered}
$$

Hence, the approximate z-score is

$$
z=\frac{w-\mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}}=\frac{240.5-189}{\sqrt{378}}=2.65
$$

Plan

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

The Kruskal-Wallis Test

What is the nonparametric counterpart for the one-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=\cdots=\widetilde{\mu}_{k}$ vs. H_{1} : not all the $\widetilde{\mu}_{i}$'s are equal.

Remark This is the test for median not mean, but if pdfs are symmetric, they are the same.

What is the nonparametric counterpart for the one-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=\cdots=\widetilde{\mu}_{k}$ vs. $H_{1}:$ not all the $\widetilde{\mu}_{i}$'s are equal.

What is the nonparametric counterpart for the one-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.

Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=$
$=\tilde{\mu}_{k}$ vs. $H_{1}:$ not all the $\tilde{\mu}_{i}$'s are equal.

Remark
are the same

What is the nonparametric counterpart for the one-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.

Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=\cdots=\widetilde{\mu}_{k}$ vs. $H_{1}:$ not all the $\widetilde{\mu}_{i}$'s are equal.

What is the nonparametric counterpart for the one-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.

Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=\cdots=\widetilde{\mu}_{k}$ vs. H_{1} : not all the $\widetilde{\mu}_{i}$'s are equal.

Remark This is the test for median not mean, but if pdfs are symmetric, they are the same.

Kruskal-Wallis statistic B

$$
B=\frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_{\cdot j}^{2}}{n_{j}}-3(n+1)
$$

where

Kruskal-Wallis statistic B

$$
B=\frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_{\cdot j}^{2}}{n_{j}}-3(n+1)
$$

where

Table 14.4.1	Notation for Kruskal-Wallis Procedure			
Treatment Level				
	1	2	\ldots	k
	$Y_{11}\left(R_{11}\right)$	$Y_{12}\left(R_{12}\right)$		$Y_{1 k}\left(R_{1 k}\right)$
	$Y_{21}\left(R_{21}\right)$			\vdots
	\vdots	\vdots	\cdots	\vdots
Totals	$Y_{n_{11}(}\left(R_{n_{1} 1}\right)$	$Y_{n_{2} 2}\left(R_{\left.n_{22}\right)}\right)$	$Y_{n_{k} k}\left(R_{n_{k} k}\right)$	
$R_{.1}$	R_{2}		$R_{. k}$	

Theorem Under the above setup and under H_{0}, then

$$
B=\frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_{j}^{2}}{n_{j}}-3(n+1) \stackrel{\text { apporx }}{\sim} \chi_{k-1}^{2} .
$$

Theorem Under the above setup and under H_{0}, then

$$
B=\frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_{j}^{2}}{n_{j}}-3(n+1) \stackrel{\text { approx }}{\sim} \chi_{k-1}^{2} .
$$

H_{0} should be rejected at the α level of significance if $b>\chi_{1-\alpha, k-1}^{2}$.
E.g. Lottery over the year 1969; Whether lottery is random?

$$
\text { Test if } H_{0}: \widetilde{\mu}_{\mathrm{Jan}}=\widetilde{\mu}_{\mathrm{Feb}}=\cdots=\widetilde{\mu}_{\mathrm{Dec}} \text { at } \alpha=0.01
$$

E.g. Lottery over the year 1969; Whether lottery is random?

Test if $H_{0}: \widetilde{\mu}_{\text {Jan }}=\widetilde{\mu}_{\text {Feb }}=\cdots=\widetilde{\mu}_{\text {Dec }}$ at $\alpha=0.01$

| Table | $\mathbf{1 4 . 4 . 2}$ | 1969 | Draft | Lottery, Highest Priority (001) | to Lowest Priority (366) | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | Jan. | Feb. | Mar. | Apr. May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | |
| 1 | 305 | 086 | 108 | 032 | 330 | 249 | 093 | 111 | 225 | 359 | 019 | 129 |
| 2 | 159 | 144 | 029 | 271 | 298 | 228 | 350 | 045 | 161 | 125 | 034 | 328 |
| 3 | 251 | 297 | 267 | 083 | 040 | 301 | 115 | 261 | 049 | 244 | 348 | 157 |
| 4 | 215 | 210 | 275 | 081 | 276 | 020 | 279 | 145 | 232 | 202 | 266 | 165 |
| 5 | 101 | 214 | 293 | 269 | 364 | 028 | 188 | 054 | 082 | 024 | 310 | 056 |
| 6 | 224 | 347 | 139 | 253 | 155 | 110 | 327 | 114 | 006 | 087 | 076 | 010 |
| 7 | 306 | 091 | 122 | 147 | 035 | 085 | 050 | 168 | 008 | 234 | 051 | 012 |
| 8 | 199 | 181 | 213 | 312 | 321 | 366 | 013 | 048 | 184 | 283 | 097 | 105 |
| 9 | 194 | 338 | 317 | 219 | 197 | 335 | 277 | 106 | 263 | 342 | 080 | 043 |
| 10 | 325 | 216 | 323 | 218 | 065 | 206 | 284 | 021 | 071 | 220 | 282 | 041 |
| 11 | 329 | 150 | 136 | 014 | 037 | 134 | 248 | 324 | 158 | 237 | 046 | 039 |
| 12 | 221 | 068 | 300 | 346 | 133 | 272 | 015 | 142 | 242 | 072 | 066 | 314 |
| 13 | 318 | 152 | 259 | 124 | 295 | 069 | 042 | 307 | 175 | 138 | 126 | 163 |
| 14 | 238 | 004 | 354 | 231 | 178 | 356 | 331 | 198 | 001 | 294 | 127 | 026 |
| 15 | 017 | 089 | 169 | 273 | 130 | 180 | 322 | 102 | 113 | 171 | 131 | 320 |
| 16 | 121 | 212 | 166 | 148 | 055 | 274 | 120 | 044 | 207 | 254 | 107 | 096 |
| 17 | 235 | 189 | 033 | 260 | 112 | 073 | 098 | 154 | 255 | 288 | 143 | 304 |
| 18 | 140 | 292 | 332 | 090 | 278 | 341 | 190 | 141 | 246 | 005 | 146 | 128 |
| 19 | 058 | 025 | 200 | 336 | 075 | 104 | 227 | 311 | 177 | 241 | 203 | 240 |
| 20 | 280 | 302 | 239 | 345 | 183 | 360 | 187 | 344 | 063 | 192 | 185 | 135 |
| 21 | 186 | 363 | 334 | 062 | 250 | 060 | 027 | 291 | 204 | 243 | 156 | 070 |
| 22 | 337 | 290 | 265 | 316 | 326 | 247 | 153 | 339 | 160 | 117 | 009 | 053 |
| 23 | 118 | 057 | 256 | 252 | 319 | 109 | 172 | 116 | 119 | 201 | 182 | 162 |
| 24 | 059 | 236 | 258 | 002 | 031 | 358 | 023 | 036 | 195 | 196 | 230 | 095 |
| 25 | 052 | 179 | 343 | 351 | 361 | 137 | 067 | 286 | 149 | 176 | 132 | 084 |
| 26 | 092 | 365 | 170 | 340 | 357 | 022 | 303 | 245 | 018 | 007 | 309 | 173 |
| 27 | 355 | 205 | 268 | 074 | 296 | 064 | 289 | 352 | 233 | 264 | 047 | 078 |
| 28 | 077 | 299 | 223 | 262 | 308 | 222 | 088 | 167 | 257 | 094 | 281 | 123 |
| 29 | 349 | 285 | 362 | 191 | 226 | 353 | 270 | 061 | 151 | 229 | 099 | 016 |
| 30 | 164 | | 217 | 208 | 103 | 209 | 287 | 333 | 315 | 038 | 174 | 003 |
| 31 | 211 | | 030 | | 313 | | 193 | 011 | | 079 | | 100 |
| Totals: | 6236 | 5886 | 7000 | 6110 | 6447 | 5872 | 5628 | 5377 | 4719 | 5656 | 4462 | 3768 |
| | | | | | | | | | | | | |

Sol. Rank the lottery for the year (see the previous table).

Sol. Rank the lottery for the year (see the previous table).

Compute b using the formula:

$$
\begin{aligned}
b & =\frac{12}{366 \times 367}\left[\frac{6236^{2}}{31}+\frac{5886^{2}}{29}+\cdots+\frac{3768^{2}}{31}\right]-3 \times 367 \\
& =25.95
\end{aligned}
$$

Critical region is $C=\left\{b: b \geq \chi_{0.99,11}^{2}=24.725\right\}$

Conclusion: Reject (Lottery is NOT random)

Sol. Rank the lottery for the year (see the previous table).

Compute b using the formula:

$$
\begin{aligned}
b & =\frac{12}{366 \times 367}\left[\frac{6236^{2}}{31}+\frac{5886^{2}}{29}+\cdots+\frac{3768^{2}}{31}\right]-3 \times 367 \\
& =25.95
\end{aligned}
$$

Critical region is $C=\left\{b: b \geq \chi_{0.99,11}^{2}=24.725\right\}$.

Conclusion: Reject (Lottery is NOT random).

Sol. Rank the lottery for the year (see the previous table).

Compute b using the formula:

$$
\begin{aligned}
b & =\frac{12}{366 \times 367}\left[\frac{6236^{2}}{31}+\frac{5886^{2}}{29}+\cdots+\frac{3768^{2}}{31}\right]-3 \times 367 \\
& =25.95
\end{aligned}
$$

Critical region is $C=\left\{b: b \geq \chi_{0.99,11}^{2}=24.725\right\}$.

Conclusion: Reject (Lottery is NOT random).

Plan

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.
Assume that $n_{1}=\cdots=n_{k}$.
Samples can be further partitioned into b blocks.
Let $\widetilde{\mu}_{1}, \ldots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=\cdots=\widetilde{\mu}_{k}$ vs. $H_{1}:$ not all the $\widetilde{\mu}_{i}$'s are equal.

Remark This is the test for median not mean, but if pdfs are symmetric, they are the same.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.
Assume that $n_{1}=$ Samples can be further partitioned into b blocks. Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=$ $=\widetilde{\mu}_{k}$ vs. H_{1} not all the $\widetilde{\mu}_{i}$'s are equal. are the same.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.
Assume that $n_{1}=\cdots=n_{k}$.
Samples can be further partitioned into b blocks.
Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=$

$$
=\widetilde{\mu}_{k} \text { vs. } H_{1}
$$

not all the $\widetilde{\mu}_{i}{ }^{\prime}$ s are equal. are the same.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.
Assume that $n_{1}=\cdots=n_{k}$.
Samples can be further partitioned into b blocks.
Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=$ $=\widetilde{\mu}_{k}$ vs. $H_{1}:$ not all the $\tilde{\mu}_{i}$'s are equal. are the same

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.
Assume that $n_{1}=\cdots=n_{k}$.
Samples can be further partitioned into b blocks.
Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.
are the same.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.
Assume that $n_{1}=\cdots=n_{k}$.
Samples can be further partitioned into b blocks.
Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=\cdots=\widetilde{\mu}_{k}$ vs. $H_{1}:$ not all the $\widetilde{\mu}_{i}$'s are equal.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.
Assume that $n_{1}=\cdots=n_{k}$.
Samples can be further partitioned into b blocks.
Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=\cdots=\widetilde{\mu}_{k}$ vs. H_{1} : not all the $\widetilde{\mu}_{i}$'s are equal.

Remark This is the test for median not mean, but if pdfs are symmetric, they are the same.

The Friedman Test Statistic:

where $R_{. j}$ is the within-block ranks.

The Friedman Test Statistic:
Reject H_{0} at the α level if

$$
G=\frac{12}{b k(k+1)} \sum_{j=1}^{k} R_{\cdot j}^{2}-3 b(k+1) \geq \chi_{1-\alpha, k-1}^{2}
$$

The Friedman Test Statistic:
Reject H_{0} at the α level if

$$
G=\frac{12}{b k(k+1)} \sum_{j=1}^{k} R_{\cdot j}^{2}-3 b(k+1) \geq \chi_{1-\alpha, k-1}^{2}
$$

where $R_{. j}$ is the within-block ranks.
E.g. Baseball ...

$$
\text { Test if } H_{0}: \widetilde{\mu}_{\text {Narrow }}=\widetilde{\mu}_{\text {Wide }} \text { at } \alpha=0.01
$$

E.g. Baseball ...

Test if $H_{0}: \widetilde{\mu}_{\text {Narrow }}=\widetilde{\mu}_{\text {Wide }}$ at $\alpha=0.01$

Table	14.5.I	Times (sec)	Required to Round First Base	
Player	Narrow-Angle	Rank	Wide-Angle	Rank
1	5.50	1	5.55	2
2	5.70	1	5.75	2
3	5.60	2	5.50	1
4	5.50	2	5.40	1
5	5.85	2	5.70	1
6	5.55	1	5.60	2
7	5.40	2	5.35	1
8	5.50	2	5.35	1
9	5.15	2	5.00	1
10	5.80	2	5.70	1
11	5.20	2	5.10	1
12	5.55	2	5.45	1
13	5.35	1	5.45	2
14	5.00	2	4.95	1
15	5.50	2	5.40	1
16	5.55	2	5.50	1
17	5.55	2	5.35	1
18	5.50	1	5.55	2
19	5.45	2	5.25	1
20	5.60	2	5.40	1
21	5.65	2	5.55	1
22	6.30	2	6.25	1
		39		27

Sol. $k=2, b=22$

Compute the rank within each block (see the previous table)

$$
C=\left\{g: g \geq \chi_{0.95,1}^{2}=3.84\right\}
$$

[^6]Sol. $k=2, b=22$

Compute the rank within each block (see the previous table) Compute the g statistic: Critical region is

The p-value is $P\left(\chi_{1}^{2} \geq \frac{72}{11}\right)=0.01051525$ Conclusion: Reject.

Sol. $k=2, b=22$

Compute the rank within each block (see the previous table)

Compute the g statistic:

$$
g=\frac{12}{22 \times 2 \times(2+1)}\left[39^{2}+27^{2}\right]-3 \times 22 \times(2+1)=\frac{72}{11} \approx 6.54
$$

Conclusion: Reject.

Sol. $k=2, b=22$

Compute the rank within each block (see the previous table)

Compute the g statistic:

$$
g=\frac{12}{22 \times 2 \times(2+1)}\left[39^{2}+27^{2}\right]-3 \times 22 \times(2+1)=\frac{72}{11} \approx 6.54
$$

Critical region is

$$
C=\left\{g: g \geq \chi_{0.95,1}^{2}=3.84\right\} .
$$

The p-value is

Conclusion: Reject.

Sol. $k=2, b=22$

Compute the rank within each block (see the previous table)

Compute the g statistic:

$$
g=\frac{12}{22 \times 2 \times(2+1)}\left[39^{2}+27^{2}\right]-3 \times 22 \times(2+1)=\frac{72}{11} \approx 6.54
$$

Critical region is

$$
C=\left\{g: g \geq \chi_{0.95,1}^{2}=3.84\right\}
$$

The p-value is

$$
\mathbb{P}\left(\chi_{1}^{2} \geq \frac{72}{11}\right)=0.01051525
$$

Conclusion: Reject.

Sol. $k=2, b=22$

Compute the rank within each block (see the previous table)

Compute the g statistic:

$$
g=\frac{12}{22 \times 2 \times(2+1)}\left[39^{2}+27^{2}\right]-3 \times 22 \times(2+1)=\frac{72}{11} \approx 6.54
$$

Critical region is

$$
C=\left\{g: g \geq \chi_{0.95,1}^{2}=3.84\right\}
$$

The p-value is

$$
\mathbb{P}\left(\chi_{1}^{2} \geq \frac{72}{11}\right)=0.01051525
$$

Conclusion: Reject.

R Code for this problem:

```
C1<- c(
5.50, 5.70, 5.60, 5.50, 5.85, 5.55, 5.40, 5.50, 5.15, 5.80, 5.20,
5.55, 5.35, 5.00, 5.50, 5.55, 5.55, 5.50, 5.45, 5.60, 5.65, 6.30)
C2<-c(
5.55, 5.75, 5.50, 5.40, 5.70, 5.60, 5.35, 5.35, 5.00, 5.70, 5.10,
5.45, 5.45, 4.95, 5.40, 5.50, 5.35, 5.55, 5.25, 5.40, 5.55, 6.25)
angles <- matrix(
    cbind(C1, C2),
    nrow = 22,
    byrow = FALSE,
    dimnames = list(1:22, c("Narrow", "Wide"))
)
friedman.test(angles)
```

Here is the output:

```
\(>\mathrm{C} 1<-\mathrm{c}(\)
\(+5.50,5.70,5.60,5.50,5.85,5.55,5.40,5.50,5.15,5.80,5.20\)
\(+5.55,5.35,5.00,5.50,5.55,5.55,5.50,5.45,5.60,5.65,6.30)\)
\(>\mathrm{C} 2<-\mathrm{c}(\)
\(+5.55,5.75,5.50,5.40,5.70,5.60,5.35,5.35,5.00,5.70,5.10\),
\(+5.45,5.45,4.95,5.40,5.50,5.35,5.55,5.25,5.40,5.55,6.25)\)
\(>\) angles <- matrix \((\)
+ cbind(C1, C2),
+ nrow \(=22\)
+ byrow \(=\) FALSE,
+ dimnames \(=\) list(1:22, c("Narrow", "Wide"))
+ )
\(>\) friedman.test(angles)
Friedman rank sum test
data: angles
Friedman chi-squared \(=6.5455\), df \(=1, \mathrm{p}-\) value \(=0.01052\)
```


Plan

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Whether the sample are random at all?
E.g. Whether the number of successful strikes are random? $\alpha=0.05$.

Whether the sample are random at all?
E.g. Whether the number of successful strikes are random? $\alpha=0.05$.

Whether the sample are random at all?
E.g. Whether the number of successful strikes are random? $\alpha=0.05$.

Year	Number of Strikes	\% Successful, y_{i}
1881	451	61
1882	454	53
1883	478	58
1884	443	51
1885	645	52
1886	1432	34
1887	1436	45
1888	906	52
1889	1075	46
1890	1833	52
1891	1717	37
1892	1298	39
1893	1305	50
1894	1349	38
1895	1215	55
1896	1026	59
1897	1078	57
1898	1056	64
1899	1797	73
1900	1779	46
1901	2924	48
1902	3161	47
1903	3494	40
1904	2307	35
1905	2077	40

Sol. Compute the run-up and run-down:

$$
\begin{array}{r}
1 \rightarrow \\
2 \rightarrow \\
3 \rightarrow \\
4 \rightarrow \\
5 \\
6 \rightarrow \\
7 \\
7 \\
8 \\
9 \\
9 \\
10
\end{array} \rightarrow
$$

Sol. Compute the run-up and run-down:

Year	Number of Strikes	\% Successful, y	$\operatorname{sgn}\left(y_{i}-y_{i-1}\right)$	
1881	451	61	$1 \rightarrow-$	
1882	454	53	$2 \rightarrow+$	
1883	478	58	$3 \rightarrow-$	
1884	443	51	$4 \rightarrow+$	
1885	645	52	$5 \rightarrow-$	
1886	1432	34	$6 \rightarrow+$	
1887	1436	45	$\rightarrow+$	
1888	906	52	$7 \rightarrow-$	
1889	1075	46	$8 \rightarrow+$	
1890	1833	52	$9 \rightarrow-$	
1891	1717	37	$10 \rightarrow+$	
1892	1298	39	$\rightarrow+$	
1893	1305	50	$11 \rightarrow-$	$w=18$
1894	1349	38	$12 \rightarrow+$	
1895	1215	55	$\rightarrow+$	
1896	1026	59	$13 \rightarrow-$	
1897	1078	57	$14 \rightarrow+$	
1898	1056	64	+	
1899	1797	73	$15 \rightarrow-$	
1900	1779	46	$16 \rightarrow+$	
1901	2924	48	$17 \rightarrow-$	
1902	3161	47	-	
1903	3494	40	-	
1904	2307	35	$18 \rightarrow+$	
1905	2077	40		

Theorem Let W be the number of runs up and down in a sequence of $n \geq 2$ observations.

If the sequence is random, then

Moreover, when n is large, namely, $n \geq 20$, then

$$
\frac{W-\mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}}=\frac{W-[2 n-1] / 3}{\sqrt{[16 n-29] / 90}}
$$

Theorem Let W be the number of runs up and down in a sequence of $n \geq 2$ observations.

If the sequence is random, then

$$
\mathbb{E}(W)=\frac{2 n-1}{3} \quad \text { and } \quad \operatorname{Var}(W)=\frac{16 n-29}{90}
$$

$$
\frac{W-\mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}}=\frac{W-[2 n-1] / 3}{\sqrt{[16 n-29] / 90}}
$$

Theorem Let W be the number of runs up and down in a sequence of $n \geq 2$ observations.

If the sequence is random, then

$$
\mathbb{E}(W)=\frac{2 n-1}{3} \quad \text { and } \quad \operatorname{Var}(W)=\frac{16 n-29}{90}
$$

Moreover, when n is large, namely, $n \geq 20$, then

$$
\frac{W-\mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}}=\frac{W-[2 n-1] / 3}{\sqrt{[16 n-29] / 90}} \quad \stackrel{\text { approx }}{\sim} \quad N(0,1) .
$$

Sol. (Continued) $n=25, w=18$

$$
\mathbb{E}(W)=\frac{2 \times 25-1}{3}=16.3
$$

and

$$
\operatorname{Var}(W)=\frac{16 \times 25-29}{90}=4.12
$$

The critical region is

$$
\left.C=r z:|z| \geq z_{0 / 2}=z_{0.025}=1.96\right\}
$$

Conclusion: Fail to reject.

Sol. (Continued) $n=25, w=18$

$$
\mathbb{E}(W)=\frac{2 \times 25-1}{3}=16.3
$$

and

$$
\operatorname{Var}(W)=\frac{16 \times 25-29}{90}=4.12
$$

Hence, the z-score is

$$
z=\frac{18-16.3}{\sqrt{4.12}}=0.84
$$

The critical region is
$\left.C=r_{z}:|z| \geq z_{0.2}=z_{0.025}=1.96\right\}$

Conclusion: Fail to reject.

Sol. (Continued) $n=25, w=18$

$$
\mathbb{E}(W)=\frac{2 \times 25-1}{3}=16.3
$$

and

$$
\operatorname{Var}(W)=\frac{16 \times 25-29}{90}=4.12
$$

Hence, the z-score is

$$
z=\frac{18-16.3}{\sqrt{4.12}}=0.84
$$

The critical region is

$$
C=\left\{z:|z| \geq z_{\alpha / 2}=z_{0.025}=1.96\right\}
$$

Conclusion: Fail to reject.

Sol. (Continued) $n=25, w=18$

$$
\mathbb{E}(W)=\frac{2 \times 25-1}{3}=16.3
$$

and

$$
\operatorname{Var}(W)=\frac{16 \times 25-29}{90}=4.12
$$

Hence, the z-score is

$$
z=\frac{18-16.3}{\sqrt{4.12}}=0.84
$$

The critical region is

$$
C=\left\{z:|z| \geq z_{\alpha / 2}=z_{0.025}=1.96\right\}
$$

The p-value is

$$
2 \times \mathbb{P}(Z>0.84)=0.4009084
$$

Conclusion: Fail to reject.

Sol. (Continued) $n=25, w=18$

$$
\mathbb{E}(W)=\frac{2 \times 25-1}{3}=16.3
$$

and

$$
\operatorname{Var}(W)=\frac{16 \times 25-29}{90}=4.12
$$

Hence, the z-score is

$$
z=\frac{18-16.3}{\sqrt{4.12}}=0.84
$$

The critical region is

$$
C=\left\{z:|z| \geq z_{\alpha / 2}=z_{0.025}=1.96\right\}
$$

The p-value is

$$
2 \times \mathbb{P}(Z>0.84)=0.4009084
$$

Conclusion: Fail to reject.

```
Output:
```

> runs.test(y, exact = FALSE)

```
> runs.test(y, exact = FALSE)
    Approximate runs rest
    Approximate runs rest
data: y
data: y
Runs = 18, p-value = 0.03256
Runs = 18, p-value = 0.03256
alternative hypothesis: two.sided
alternative hypothesis: two.sided
> runs.test(y, exact = TRUE)
> runs.test(y, exact = TRUE)
    Exact runs test
    Exact runs test
data: y
data: y
Runs = 18, p-value = 0.01624
Runs = 18, p-value = 0.01624
alternative hypothesis: two.sided
```

```
alternative hypothesis: two.sided
```

```

R code:
```

1
y<- c(
0,1,0,1,0,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,1

```
)
runs.test \((y\), exact \(=\) FALSE \()\)
runs.test(y, exact \(=\) TRUE)

Remark The procedure that we learnt is an approximation. There is a big discrepancy for the above two \(p\)-values: one that we obtained through formula and one that is obtained by the r function.

\title{
Thanks for learning statistics with me through the semester!
}```


[^0]:    - Nomparametric statistics: a statistic is defined to be a function on a sample and there is no dependency on any parameters, such as

[^1]:    $1>\operatorname{pnorm}(-5.34) * 2$
    2 [1] 9.294658e-08

[^2]:    $1>\operatorname{pnorm}(-5.34) * 2$
    2 [1] 9.294658e-08

[^3]:    $1>\operatorname{pnorm}(-5.34) * 2$
    2 [1] 9.294658e-08

[^4]:    $1>\operatorname{pnorm}(-5.34) * 2$
    2 [1] $9.294658 \mathrm{e}-08$

[^5]:    $1>\operatorname{pbinom}(5,43,0.5) * 2$
    2 [1] $2.49951 \mathrm{e}-07$

[^6]:    The $p$-value is
    $\left(\chi_{1}^{2} \geq \frac{72}{11}\right)=0.01051525$

