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Motivating example: Given an unfair coin, or p-coin, such that

X — 1 head with probability p,
10 tail with probability 1 — p,

how would you determine the value p?

Solutions:

1. You need to try the coin several times, say, three times. What you
obtain is “HHT”.



Motivating example: Given an unfair coin, or p-coin, such that

X — 1 head with probability p,
10 tail with probability 1 — p,

how would you determine the value p?

Solutions:

1. You need to try the coin several times, say, three times. What you
obtain is “HHT”.

2. Draw a conclusion from the experiment you just made.



Rationale: The choice of the parameter p should be the value that
maximizes the probability of the sample.

PXi =1,X =1,X3 =0) =P(X; = 1)P(X2 = 1)P(X3 = 0)
=p*(1 - p).



Rationale: The choice of the parameter p should be the value that
maximizes the probability of the sample.

P(Xl = 1,X2 = 1,X3 = O) :P(X1 = 1)P(X2 = 1)P(X3 — 0)
=p*(1 - p).

Likelihood

1 # Hello, R.

2 p <— seq(0,1,0.01)

s plot(p,p~2+(1-p),

4 type="1",

5 col="red”) e

6 title("Likelihood”) =

7 # add a vertical dotted (4) blue by
line

8 abline(v=0.67, col="bluc”, lty=4)

9 # add some text

10 text(0.67,0.01, "2/37) .
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Maximize f(p) = p*(1 —p) ...



A random sample of size n from the population — Bernoulli(p):

> Xi, -, X, are i.i.d." random variables, each following Bernoulli(p).

'independent and identically distributed
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A random sample of size n from the population with given pdf:

» Xi,---,Xpare i.i.d. random variables, each following the same given
pdf.



A random sample of size n from the population with given pdf:

» Xi,---,Xpare i.i.d. random variables, each following the same given
pdf.

» a statistic or an estimator is a function of the random sample.

Statistic/Estimator is a random variable!

e.g.,
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A random sample of size n from the population with given pdf:

» Xi,---,Xpare i.i.d. random variables, each following the same given
pdf.

» a statistic or an estimator is a function of the random sample.

Statistic/Estimator is a random variable!

e.g.,
p_ n i=1 )

» The outcome of a statistic/estimator is called an estimate. e.g.,

1 n
pe — E Zlk/
i=
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Two methods for estimating parameters

1. Method of maximum likelihood.

Corresponding estimator

MLE



Two methods for estimating parameters

1. Method of maximum likelihood.

2. Method of moments.

Corresponding estimator

MLE

MME



Maximum Likelihood Estimation

Definition 5.2.1. For a random sample of size n from the discrete (resp.
continuous) population/pdf px(k; @) (resp. fy(y;0)), the likelihood function,
L(0), is the product of the pdf evaluated at Xi = k; (resp. Y; =yi), i.e.,

L0) = [Tpcthit)  (resp. o) = [T iren))



Maximum Likelihood Estimation

Definition 5.2.1. For a random sample of size n from the discrete (resp.
continuous) population/pdf px(k; @) (resp. fy(y;0)), the likelihood function,
L(0), is the product of the pdf evaluated at Xi = k; (resp. Y; =yi), i.e.,

L0) = [Tpcthit)  (resp. o) = [T iren))

Definition 5.2.2. Let L(#) be as defined in Definition 5.2.1. If ¢ is a value
of the parameter such that L(fe) > L(0) for all possible values of 0, then we
call O the maximum likelihood estimate for 0.



Examples for MLE

Often but not always MLE can be obtained by setting the first derivative
equal to zero:

. e Nk
E.g. 1. Poisson distribution: px(k) = e )‘%, k=0,1,---

n n -
He_M eIk <H k,-!) :
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Examples for MLE

Often but not always MLE can be obtained by setting the first derivative

equal to zero:

. e Ak
E.g. 1. Poisson distribution: px(k) = e )‘%, k=0,1,---

ﬁe—,\)\ e M\ <Hk,> ‘
InL(A) = —nA+ <zn: k,-> In\ —1In <ﬁ k,-!) .

d 1

n

d 1 _
oL =0 = /\efEi:ZIK,-f.k.

Comment: The critical point is indeed global maximum because



The following two cases are related to waiting time:

E.g. 2. Exponential distribution: fy(y) = Ae™* for y > 0.

L\ = f[ xe M = \exp </\ iy,-)
i=1

i=1



The following two cases are related to waiting time:

E.g. 2. Exponential distribution: fy(y) = Ae™* for y > 0.

L\ = f[ xe M = \exp </\ iy,-)
i=1

i=1



The following two cases are related to waiting time:

E.g. 2. Exponential distribution: fy(y) = Ae™* for y > 0.

L\ = f[ xe M = \exp </\ iy,-)
i=1

i=1

n
InL(A) =nln A= XYy
i=1



The following two cases are related to waiting time:

E.g. 2. Exponential distribution: fy(y) = Ae™* for y > 0.
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The following two cases are related to waiting time:

E.g. 2. Exponential distribution: fy(y) = Ae™* for y > 0.

= ﬁ xe M= A"exp (Aiy,)
i=1

i=1
n
InL(A) =nln A= XYy

d

=4

d n 1
C L) =0 = |de=—" 2|
o ) D N/




A random sample of size n from the following population:

E.g. 3. Gamma distribution: fy(y;\) = %y’_le_)‘y for y >0 with r > 1
known.

n
1—\ r 1 7>\y, /\r nr <H ) exp (—A;M)
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A random sample of size n from the following population:

E.g. 3. Gamma distribution: fy(y;\) = %y’_le_)‘y for y >0 with r > 1
known.

n
1—\ r 1 7>\y, =\ nr <H ) exp (‘/\Zyr)
i=1
n
InL(\) =rnlnA—nInT(r) +1In (H > -2
i=1

d rn




A random sample of size n from the following population

E.g. 3. Gamma distribution: fy(y;\) = %y’_le_)‘y for y >0 with r > 1

known.
n
1—\ r 1 7>\y, =\ nr <H > exp (_/\Zyr)
i=1
n
InL(\) =rnlnA—nInT(r) +1In <H > -2
i=1

d rn o«

d rn
alnL()\):O — Ae =

Comment:

— When r = 1, this reduces to the exponential distribution case




A random sample of size n from the following population
E.g. 3. Gamma distribution: fy(y;\) = %y’_le_)‘y for y >0 with r > 1

known.

r

n
HF y e = A(r (Hy’ >exp(—)\2yf>
i=1
n
InL(\) =rnlnA—nlnT(r +1n<Hy, 1>—>\Zy,.
i=1

d rn o«

i=1

d rn r
—InLA) =0 = |[de=—— ==
dx () TSy Y

Comment:

— When r = 1, this reduces to the exponential distribution case
— If r is also unknown, it will be much more complicated

No closed-form solution. One needs numerical solver
Try MME instead.

2[DW, Example 7.2.25]



A detailed study with data:

E.g. 4. Geometric distribution: px(k;p) = (1 — p)kilp, k=1,2,---
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A detailed study with data:

E.g. 4. Geometric distribution: px(k;p) = (1 — p)kilp, k=1,2,---

d
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A detailed study with data:

E.g. 4. Geometric distribution: px(k;p) = (1

d

L(p) = H(l — p)kf_lp =(1— p)—n-&-zf‘:l k,pn.

i=1

InL(p (nJer)lnl ) + nlnp.

d -n+>" Kk n
—InL(p) = ——-+==0 4 &
b (p) T—p o
d n
d—plnL(p)_O = |Pe=

_p)k71p7 k= 1727"'



A detailed study with data:

E.g. 4. Geometric distribution: px(k;p) = (1 — p)kilp, k=1,2,---
ld

L(p) = H(l — p)kf_lp =(1— p)—n-&-zf‘:l k,pn.

i=1

InL(p (nJer)lnl ) + nlnp.

d __—h+ Zi:l ki
@ln L(p) =

i—p

n
.
At =0 — |pe=
dpn p) = Pe =

Comment: Its cousin distribution, the negative binomial distribution
can be worked out similarly (See Ex 5.2.14).



k
1
2
3
4
5
6

Observed frequency
72
35
11

Predicted frequency
74.14
31.2
13.13
5.52
2.32
0.98
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# The example from the book.
library (pracma) # Load the library ”Practical Numerical Math Functions”
k<—c(72, 35, 11, 6, 2, 2) # observed freq.
a=1:6
pe=sum(k)/dot(k,a) # MLE for p.
—=a
for (i in 1:6) {
f[i] = round((1—pe)~(i—1) * pe * sum(k),2)

# Initialize the table

d <—matrix(1:18, nrow = 6, ncol = 3)
# Now adding the column names
colnames(d) <— c("k”,

”Observed freq.”,
"Predicted freq.”)
d[1:6,1]<—a
d[1:6,2]<—k
d[1:6,3]<—f

grid.table(d) # Show the table

PlotResults("unknown”, pe, d, "Geometric.pdf”) # Output the results using a user

defined function



k
1
2
3
4
5
6
7
8
9

Observed frequency
42
31
15

=
[N

P P RPN P NN OO

Predicted frequency
40.96
27.85
18.94
12.88
8.76
5.96
4.05
2.75
1.87
1.27
0.87
0.59

0.4
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# Now let’s generate random samples from a Geometric distribution with p=1/3 with
the same size of the sample.

p=1/3

n = 128

gdata<—rgeom(n, p)+1 # Generate random samples

g<— table(gdata) # Count frequency of your data.

g<— t(rbind(as.numeric(rownames(g)), g)) # Transpose and combine two columns.
pe=n/dot(g[,1].g[,2]) # MLE for p.

f <— g[,1] # Initialize f

for (i in 1mrow(g)) {

f[i] = round((1—pe)~(i—1) * pe * n,2)
} # Compute the expected frequency
g<—cbind(g,f) # Add one columns to your matrix.
colnames(g) <— c("k”,
”Observed freq.”,
"Predicted freq.”) # Specify the column names.
d_df <— as.data.frame(d) # One can use data frame to store data
d__df # Show data on your terminal
PlotResults(p, pe, g, "Geometric2.pdf”) # Output the results using a user defined
function



Observed frequency
99
69

k
1
2
3
4
5
6
7
8
9

10

Predicted frequency
105.88
68.51
44.33
28.69
18.56
12.01
.77
5.03
3.25
2.11

20



In case we have several parameters:

E.g. 5. Normal distribution: fy(y;u,o?) =

o yi—w?
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In case we have several parameters:

N2
.y

")
227,y eR.

E.g. 5. Normal distribution: fy(y;u,o?) =

270

o yi—w?

n
2y | | 1 s _ 2\—n/2 o 1 2 : . 2
L(M? 9 ) - Ll \/%O'e 2 - (27TU ) eXp < 20_2 - (yl I’L) >

n

n 1
InL(p, o) = -3 In(2rc?) — 202 (vi — ).

i=1

21



In case we have several parameters:

1 _=n)
270

E.g. 5. Normal distribution: fy(y;u,o?) =

o yi—w?

n
2y | | 1 s _ 2\—n/2 o 1 2 : . 2
L(M? 9 ) - Ll \/%O'e 2 - (27TU ) eXp < 20_2 - (yl I’L) >

n

n 1
InL(p, o) = -3 In(2rc?) — 202 (vi — ).

i=1
n

9 2y _ 1 -

gy Lo = 253 0= )

d o N 1 &, )
do2 IHL(/,L,O' )_ _20_2 + 204 Z(y/_u)

=1

21



In case we have several parameters:

=)
E.g. 5. Normal distribution: fy(y;u,o?) = 21W e 207 , Yy eR.

n 2 n
1 _ Ui o 1
L(Man) - | | mge 27 - (27T02) e exp <_ 202 z (y’ - I'L)2>
i=1 i=

n

n 1
InL(p, o) = -3 In(2rc?) — 557 (vi — ).

=1
) N I SR
o Inl(p,o%) = — ;:1(}4 1)

0 n__n 1 2
@ln L(p,07) = 252 + 251 Z(y/ 1)

9 InL(p,0%)=0 fe =y )

55 2 o8 = ! vi—y)?
— e N 1

902 InL(p,07)=0 n 4

21



In case when the parameters determine the support of the density:
(Non regular case)

E.g. 6. Uniform distribution on [a, b] with a < b: fy(y;a,b) = 355 if y € [a, b].

0] otherwise.

L(a,b) = {H'nl"lé‘:wlaw ifa<y, . y<b,

29



In case when the parameters determine the support of the density:
(Non regular case)

E.g. 6. Uniform distribution on [a, b] with a < b: fy(y;a,b) = 355 if y € [a, b].

0] otherwise.

L(a,b) = {H'nl"lé‘:wlaw ifa<y, . y<b,

29



In case when the parameters determine the support of the density:
(Non regular case)

E.g. 6. Uniform distribution on [a, b] with a < b: fy(y;a,b) = 355 if y € [a, b].

L(a,b) = {H'nl"la‘:wiw ifa<y, . y<b,

0] otherwise.

L(a, b) is monotone increasing in @ and decreasing in b. Hence, in
order to maximize L(&, b), one needs to choose

8¢ = Ymin and  be = Ymax-

29



In case when the parameters determine the support of the density:
(Non regular case)

E.g. 6. Uniform distribution on [a, b] with a < b: fy(y;a,b) = 355 if y € [a, b].

0] otherwise.

L(a,b) = {H'nl"lé‘:wlaw ifa<y, . y<b,

L(a, b) is monotone increasing in @ and decreasing in b. Hence, in
order to maximize L(&, b), one needs to choose

8¢ = Ymin and  be = Ymax-
E.g. 7. fr(y;0) = 2 for y € [0,6).
otherwise.

L(@)_{Hlnlz};’:2n62nnflyl if0§y17"'7yn§97
0

29



In case when the parameters determine the support of the density:
(Non regular case)

E.g. 6. Uniform distribution on [a, b] with a < b: fy(y;a,b) = 355 if y € [a, b].

0] otherwise.

L(a,b) = {H'nl"lé‘:wlaw ifa<y, . y<b,

L(a, b) is monotone increasing in @ and decreasing in b. Hence, in
order to maximize L(&, b), one needs to choose

8¢ = Ymin and  be = Ymax-
E.g. 7. fr(y;0) = 2 for y € [0,6).
otherwise.

L(@)_{Hlnlz};’:2n62nnflyl if0§y17"'7yn§97
0

29



In case when the parameters determine the support of the density:
(Non regular case)

E.g. 6. Uniform distribution on [a, b] with a < b: fy(y;a,b) = 355 if y € [a, b].

0] otherwise.
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L(a, b) is monotone increasing in @ and decreasing in b. Hence, in
order to maximize L(&, b), one needs to choose

8¢ = Ymin and  be = Ymax-
E.g. 7. fr(y;0) = 2 for y € [0,6).

L(e): HF:I%:QNQian/U:lyi if0§y17"'7yn§97
0] otherwise.

Oe = Ymax-

29



In case of discrete parameter:

E.g. 8. Wildlife sampling. Capture-tag-recapture.... In the history, a tags have
been put. In order to estimate the population size N, one randomly
captures n animals, and there are Kk tagged. Find the MLE for N.

Sol. The population follows hypergeometric distr.:
pxths Ny = Eac).

(%)

Pk}
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In case of discrete parameter:

E.g. 8. Wildlife sampling. Capture-tag-recapture.... In the history, a tags have
been put. In order to estimate the population size N, one randomly
captures n animals, and there are Kk tagged. Find the MLE for N.
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In case of discrete parameter:

E.g. 8. Wildlife sampling. Capture-tag-recapture.... In the history, a tags have
been put. In order to estimate the population size N, one randomly
captures n animals, and there are Kk tagged. Find the MLE for N.

Sol. The population follows hypergeometric distr.:
a\ (N—a
px(ks N) = —(*)((N")-*).
N—
(0) (=)
N
()

L(N) =

How to maximize L(N)?

Pk}



In case of discrete parameter:

E.g. 8.

[ N R

Wildlife sampling. Capture-tag-recapture.... In the history, a tags have
been put. In order to estimate the population size N, one randomly
captures n animals, and there are Kk tagged. Find the MLE for N.

Sol. The population follows hypergeometric distr.:
P (ki N) = —(z)((%j).
(0 (=)
L(N) = ——~—=
()

How to maximize L(N)?

025

N=seq(a,a+100)

p=choose(a,k)*choose(N—a,n—k
)/choose(N,n)

> plot(N,p,type = )

> print(paste( , nka/

k))
(1]

020

010

005

Pk}



The graph suggests to sudty the following quantity:

Ny = LN N N-a
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The graph suggests to sudty the following quantity:

r(N) o= HN)

N—n

N-—a

r(N) <1 <+~

TE

N

na< Nk ie, N> —

* N—-—a—-n+k

na
k

24



The graph suggests to sudty the following quantity:

r(N) := -

L(N) N-n_ N-a
L(N—1) N N—a—-n+k

. na

rN)<1 <= na<Nk ie,N>-°

Ne = argmaX{L(N) N = {

na
k

Il

na
K

I3}

24



Method of Moments Estimation

Rationale: The population moments should be close to the sample
moments, i.e.,

n
E(Y“)z%Zy/‘, K=1,2,3,--- .
i=1

Definition 5.2.3. For a random sample of size n from the discrete (resp.

continuous) population/pdf px(k; 01, ,60s) (resp. fy(y;61,---,0s)),

solutions to
E(Y) =320, ¥

E(Y®) =X, ¥
which are denoted by 61, - - - , Ose, are called the method of moments
estimates of 01, ,6s.

o5



Examples for MME

MME is often the same as MLE:

E.g. 1. Normal distribution: fy(y;u,o?) =

1 — ~ =
H=E(Y)=—-yi=7y e yl
SRR W
-

n
02+U2:E(Y2): yi2 - _
; =X =y

S

More examples when MLE coincides with MME: Poisson, Exponential,
Geometric.

26



MME is often much more tractable than MLE:

E.g. 2. Gamma distribution®: fy(y;r,\) = %y'ilefw for y > 0.

r 1 _ o2
F=EM =22 yi=y re =2

) a

=1 =
roor? e Im o N A
A2+,\2’E(Y)*B;y’ Tty

where J is the sample mean and &2 is the sample variance:
A2 .

o = %27:1(}// _}_/)2-

Comments: MME for A is consistent with MLE when r is known.

3Check Theorem 4.6.3 on p. 269 for mean and variance
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Another tractable example for MME, while less tractable for MLE:

E.g. 3. Neg. binomial distribution: px(k;p,r) = (H,’:l)(l —p)kpe’,

k=01, .
_ ~ k
Llp P) —E(X) =k pe= =5
= _

I’(l—p) :Var(X):a_Q P k2 )

62—k

g



(Lase dtuay >.2.2 continued)

Number  Observed Frequency  Expected Frequency
0-5 0 0
6-10 10 7.7
11-15 20 214
16-20 V) 284
21-25 27 224
26-30 12 123
31-35 5 53
36-40 2 1.8
> 40 | 0.7
Data from: hitp di html
2|
25
20
15F
10}
| =
0 L s T e T

re = 12.74 and pe = 0.391.
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§ 5.3 Interval Estimation

Rationale. Point estimate doesn’t provide precision information.

By using the variance of the estimator, one can construct an interval such
that with a high probability that interval will contain the unknown

parameter.

» The interval is called confidence interval.
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§ 5.3 Interval Estimation

Rationale. Point estimate doesn’t provide precision information.

By using the variance of the estimator, one can construct an interval such
that with a high probability that interval will contain the unknown

parameter.

» The interval is called confidence interval.

» The high probability is confidence level.

kil



E.g. 1. A random sample of size 4, (Y1 = 6.5, Yo = 9.2, Y5 =9.9, Y5 =124),

from a normal population:

1 _1(y=n)?
fv(}’;ﬂ):me (),

Both MLE and MME give pie = ¥ = (6.5 + 9.2+ 9.9+ 12.4) = 9.5.

- 1
The estimator & = Y follows normal distribution.

Construct 95%-confidence interval for p ...

24



“The parameter is an unknown constant and no probability
statement concerning its value may be made.”

—Jerzy Neyman, original developer of confidence intervals.
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“The parameter is an unknown constant and no probability
statement concerning its value may be made.”

—Jerzy Neyman, original developer of confidence intervals.

Trueu————]:———— _________ I _________________ -

1 1 1 1 1 L I 1 Data set
1 2 3 4 5 6 7

Possible 95% confidence intervals for p
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In general, for a normal population with o known, the 100(1 — )%
confidence interval for p is

o

(}7 _ Za/QWay—,_Za/Q%)

26



In general, for a normal population with o known, the 100(1 — )%

confidence interval for p is

_ (o
(y_ a/2\/73y+za/2\/ﬁ)

Comment: There are many variations

1. One-sided interval such as

(-aar) o (pre2)

<
+
i
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In general, for a normal population with o known, the 100(1 — )%

confidence interval for p is

_ (o
(y_ a/2\/73y+za/2\/ﬁ)

Comment: There are many variations

1. One-sided interval such as

peip) = (9123

2. o is unknown and sample size is small: Z-score — l-score
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In general, for a normal population with o known, the 100(1 — )%
confidence interval for p is

_ (o
(y_ a/2\/73y+za/2\/ﬁ)

Comment: There are many variations

1. One-sided interval such as

_ - o
Y —Za—F= 7}’> or (y,y"'zai)
( NG NG
2. o is unknown and sample size is small: Z-score — l-score

3. o is unknown and sample size is large: z-score by CLT
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In general, for a normal population with o known, the 100(1 — )%
confidence interval for p is

_ (o
(y_ a/2\/73y+za/2\/ﬁ)

Comment: There are many variations

1. One-sided interval such as

_ - o
Y —Za—F= 7}’> or (y,y"'zai)
( NG NG
2. o is unknown and sample size is small: Z-score — l-score

3. o is unknown and sample size is large: z-score by CLT

4. Non-Gaussian population but sample size is large: z-score by CLT

26



Theorem. Let k be the number of successes in n independent trials, where
n is large and p = P(success) is unknown. An approximate 100(1 — @)%
confidence interval for p is the set of numbers

(g Y (G0N S (k/n)(ln—k/n))
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Theorem. Let k be the number of successes in n independent trials, where
n is large and p = P(success) is unknown. An approximate 100(1 — @)%
confidence interval for p is the set of numbers

(g Y (G0N S (k/n)(ln—k/n))

Proof: It follows the following facts:
» X ~binomial(n, p) iff X = Y1 +---+ Y, while Y; are i.i.d. Bernoulli(p):

E[Yl=p and Var(Y) =p(1l-p).
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Theorem. Let k be the number of successes in n independent trials, where
n is large and p = P(success) is unknown. An approximate 100(1 — @)%
confidence interval for p is the set of numbers

(g Y (G0N S (k/n)(ln—k/n))

Proof: It follows the following facts:
» X ~binomial(n, p) iff X = Y1 +---+ Y, while Y; are i.i.d. Bernoulli(p):

E[Yl=p and Var(Y) =p(1l-p).

» Central Limit Theorem: Let W, Wa,--- | W, be an sequence of i.i.d.
random variables, whose distribution has mean p and variance o2, then
S Wi—np

5y approximately follows N(0,1), when n is large.
no

27



» When the sample size n is large, by the central limit theorem,

27:1 Yi — iy ap-

np(L—p) Moy
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» When the sample size n is large, by the central limit theorem,

27:1 Yi — iy ap-

np(L—p) Moy
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» When the sample size n is large, by the central limit theorem,

Zlf’]:l Y’ — np 3;5.
np(1 — p)

N(0,1)

X—nmp _ 3-P _ 3-P

= ~

Vnp(1 = p) \/p(ln—m \/peun—pa

2



» When the sample size n is large, by the central limit theorem,

27:1 Yi — iy ap-

np(L—p) Moy
[

X —np -p

5P

Vnp(1 = p) \/p(ln—m ~ \/peun—pa

» Since pe = %, we see that

P

ko)

_04/2§

= |[31%

3
—
—
S|
Six
—

SZOL/Q ~l—«

2



» When the sample size n is large, by the central limit theorem,

27:1 Yl _ nP

T N(0,1)
np(1 — p)
I
X-np _ 5-P _ 5P
v/np(1 — p) \/p(l—p)
n

\/Pe(l—Pe)
n

» Since pe = %, we see that

P

/205
i.e., the 100(1 — «)% confidence interval for p is

k (k/m(1—k/n) k
PO B

ko)

_04/2§

six |31

SZOL/Q ~l—«

Six

(k/m)(1 = k/n)) .
n

2



E.g. 1. Use median test to check the randomness of a random generator.
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E.g. 1. Use median test to check the randomness of a random generator.

Suppose yi,---,Yn denote measurements presumed to have come
from a continuous pdf fy(y). Let k denote the number of y;’s that
are less than the median of fy()y). If the sample is random, we would
expect the difference between % and % to be small. More specifically,

a 95% confidence interval based on k should contain the value 0.5.
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E.g. 1. Use median test to check the randomness of a random generator.

Suppose yi,---,Yn denote measurements presumed to have come
from a continuous pdf fy(y). Let k denote the number of y;’s that
are less than the median of fy()y). If the sample is random, we would
expect the difference between % and % to be small. More specifically,
a 95% confidence interval based on k should contain the value 0.5.

Let fy(y) = €Y. The median is m = 0.69315.

20



1
2
3
4
5
6
7
8
9

"

25

#! /usr/bin/Rscript
main <— function() {
args <— commandArgs(trailingOnly = TRUE)
n <— 100 # Number of random samples.
r <— as.numeric(args[1]) # Rate of the exponential
# Check if the rate argument is given.
if (is.na(r)) return(”Please provide the rate and try again.”)

# Now start computing ...
f <— function (y) pexp(y, rate = r)—0.5
m <— uniroot(f, lower = 0, upper = 100, tol = le—9)$root
print(paste(”For rate 7, r, "exponential distribution,”,
“the median is equal to 7, round(m,3)))
data <— rexp(n,r) # Generate n random samples
data <— round(data,3) # Round to 3 digits after decimal
data <— matrix(data, nrow = 10,ncol = 10) # Turn the data to a matrix
prmatrix(data) # Show data on terminal
k <— sum(data > m) # Count how many entries is bigger than m
lowerbd = k/n — 1.96 * sqrt((k/n)*(1—k/n)/n);
upperbd = k/n + 1.96 #sqrt((k/n)*(1—k/n)/n);
print(paste(”The 95% Conhdcncc interval is (7,
round(lowerbd,3), 7.7,
round(upperbd,3), 7)"))

main()

Try commandline ...

40



Math362:./Example-5-3-2.R 1
[1] "For rate 1 exponential distribution, the median is equal to 0.693"
(,11 r,21 ,31 .41 r,51 [,6] [,7] [,8] [,9] [,10]

.324 1.211 0.561 0.640 2.816 2.348 0.788 2.243 1.759 0.103
476 2.288 0.106 0.079 0.636 1.941 0.801 3.838 0.612 0.030
085 0.305 0.354 1.013 0.687 1.656 1.043 0.389 1.476 2.158
267 1.031 0.917 0.681 0.912 0.236 0.054 0.862 0.065 0.402
957 1.003 1.665 1.137 0.378 1.182 0.659 1.923 1.127 0.364
307 0.127 0.203 0.394 1.392 2.378 4.192 0.365 3.227 0.337
707 0.049 0.391 1.967 1.220 2.605 0.887 1.749 1.479 1.526
662 0.141 0.318 0.523 0.646 1.202 0.442 0.174 1.178 0.177
.397 0.493 0.214 0.522 2.024 4.109 1.268 1.041 0.948 0.382
.260 0.292 0.437 0.962 0.224 4.221 0.594 0.218 0.601 0.941
( 0.422 , 0.618 )"

PINBUEUNE
vooooorior
coooorroNy
ceooooroooo
ceoorororoo
corrwroror

[

(i
(=l
NOHROORAROOKH OO

[1] "The 95% confidence interval is
Math362:./Example-5-3-2.R 10
[1] "For rate 10 exponential distribution, the median is equal to ©0.069"

Lol e (e AN (LB [LE] 170 1L,E1 1,80 ;1]
.199 0.069 0.013 0.025 0.000 0.107 0.068 0.116 0.066 146
027 076 044 458 052 0.127 0.100 0.100 014 0.061
014 078 044 072 028 0.141 0.038 0.022 037 093
042 015 250 132 292 0.072 0.105 0.244 046 054
134 074 182 057 021 0.038 0.095 0.196 004 048
016 021 163 030 139 0.063 0.054 0.006 023 051
227 055 091 121 066 0.114 0.004 0.021 035 211
113 083 129 338 160 0.008 0.014 0.167 050 127
.053 073 0.054 098 0.004 0.036 0.274 0.276 004 159
.045 0.469 0.152 003 0.129 0.017 0.084 0.072 0.162 0.007
interval is ( ©.392 , 0.588 )"

PINBUEUNE
so00000000
ceooooooooo
cooooooooo
cooooooooo
cooooooooo
cooooooooo
cooooooooo




Instead of the C.L (g SR (TN P /M)

k
One can simply specify the mean B and

the margin of error:  d:=z,/» M

Za/2

1-p)=p(l—
pg}gﬁ)P( p) =p(1—p)

p=1/2 ~2yn

=1/4 = d< =: .

42



Comment:

1. When p is close to 1/2, d ~ z;i;%, which is equivalent to op ~ %ﬁ

E.g., n=1000, k/n = 0.48, and a = 5%, then

d= 1.96,/M =0.03097 and dp= L6 0.03099
1000 24/1000

4 52 1
op = 1/M =0.01579873 and op~ ——— = 0.01581139.
1000 24/1000
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Comment:

1. When p is close to 1/2, d ~ z;i;%, which is equivalent to op ~ %ﬁ

E.g., n=1000, k/n = 0.48, and a = 5%, then

. . 1.
d= 1.96,/M =0.03097 and dp= L6 0.03099
1000 24/1000

4 52 1
op = 1/M = 0.01579873 and op~ ——— = 0.01581139.
1000 24/1000

2. When p is away from 1/2, the discrepancy between d and dyn becomes
big....

43



E.g. Running for presidency. Max and Sirius obtained 480 and 520 votes,
respectively. What is probability that Max will win?

What if the sample size is n = 5000, and Max obtained 2400 votes.

44



E.g.

Choosing sample sizes

. z2 (1 —p)

d<z,pvp(l—p)/n = g2

(When p is known)

(When p is unknown)

Anti-smoking campaign. Need to find an 95% C.I. with a margin of
error equal to 1%. Determine the sample size?

2
Answer: n > % = 9640.
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Choosing sample sizes

. z2 (1 —p)

d<z,pvp(l—p)/n = g2

(When p is known)

(When p is unknown)

E.g. Anti-smoking campaign. Need to find an 95% C.I. with a margin of
error equal to 1%. Determine the sample size?

2
Answer: n > % = 9640.

E.g’ In order to reduce the sample size, a small sample is used to determine
p. One finds that p ~ 0.22. Determine the sample size again.

2
Answer: n > L90X032X0.T8 — 6592.2,

45



§ 5.4 Properties of Estimators

Plan
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§ 5.4 Properties of Estimators
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§ 5.4 Properties of Estimators

Question: Estimators are not in general unique (MLE or MME ...). How
to select one estimator?

Recall: For a random sample of size n from the population with given pdf,
we have Xi, -+, Xph, which are i.i.d. r.v.s. The estimator 0 is a function of
X s:

0=0(X1, -, Xn).

Criterions:
1. Unbiased. (Mean)
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§ 5.4 Properties of Estimators

Question: Estimators are not in general unique (MLE or MME ...). How
to select one estimator?

Recall: For a random sample of size n from the population with given pdf,
we have Xi, -+, Xph, which are i.i.d. r.v.s. The estimator 0 is a function of
X s:

0=0(X1, -, Xn).

Criterions:
1. Unbiased. (Mean)
2. Efficiency, the minimum-variance estimator. (Variance)

3. Sufficency.
4. Consistency. (Asymptotic behavior)

48



Unbiasedness

13, ) 3, w)

True ¢ True ¢

Definition 5.4.1. Given a random sample of size n whose population
distribution dependes on an unknown parameter 6, let 8 be an estimator of

0.
Then 6 is called unbiased if E(6) = 6;
and 0 is called asymptotically unbiased if lim, ., E(d) = 0.

49



E.g. 1. fr(y;0) = 2 if y € [0,6).

50



E.g. 1. fr(y;0) = 2 if y € [0,6).
6, =2y
2



E.g. 1. fr(y;0) = 2 if y € [0,6).
— 6 = gv
- éQ - Ymax-

0}



E.g. 1. fr(y;0) = 2 if y € [0,6).

~ 3—
-6, =Y
Al 2
- 02 = \z/majr- 1
R 2n
- 03 = 7Ymax-
2n

0}



E.g. 1. fr(y;0) = 2 if y € [0,6).

N 3—
. 9} =3 Y
- 92 - \Z/majr- 1
2n
- 93 - 7Ymax-
2n
E.g. 2. Let Xi, -+, Xs be a random sample of size n with the unknown

parameter § = E(X). Show that for any constants a;’s,

n n
0= Z a;X; is unbiased <= Z ai=1.

i=1 i=1

0}



E.g. 3. Let Xi, -+, Xh be a random sample of size n with the unknown
parameter o® = Var(X).

%1



E.g. 3. Let Xi, -+, Xh be a random sample of size n with the unknown
parameter o® = Var(X).

- =i (R’

i=1

%1



E.g. 3. Let Xi, -+, Xh be a random sample of size n with the unknown
parameter o> = Var(X).

S ()

i=1

2 . 1 4 —\ 2
— §% = Sample Variance = — (X, — X)
n—1+*
i=1

%1



E.g. 3. Let Xi, -+, Xh be a random sample of size n with the unknown
parameter o> = Var(X).

_327%2()(,7@2

2 ) 1 & —\2
— §% = Sample Variance = — (X, — X)
T =

1 < —\2
— S = Sample Standard Deviation = , | —— Z (X, - X) . (Biased for o!)
n—1:=

%1



E.g. 4. Exponential distr.: fy(y;\) = Ae™™ for y > 0. A = 1/Y is biased.
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E.g. 4. Exponential distr.: fy(y;\) = Ae™™ for y > 0. A = 1/Y is biased.

ny = Y7, Yi ~ Gamma distribution(n, A).
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E.g. 4. Exponential distr.: fy(y;\) = Ae™™ for y > 0. A = 1/Y is biased.

nY =37 | Y; ~ Gamma distribution(n, \). Hence,

2 (3) =B (1Y) =n [ Sy e Vay
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E.g. 4. Exponential distr.: fy(y;\) = Ae™™ for y > 0. A = 1/Y is biased.

nY =37 | Y; ~ Gamma distribution(n, \). Hence,
e o oo 1 )\n
E(X) =E(1/Y) = —Zy" eV
(%) ==(v) ”/0 yomy? eV
B n\ o )\nfl
“n-1J, T(n-1)

pdf for Gamma distr. (n— 1, X)

y(n—l)—le—Ay dy
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E.g. 4. Exponential distr.: fy(y;\) = Ae™™ for y > 0. A = 1/Y is biased.

nY =37 | Y; ~ Gamma distribution(n, \). Hence,
3\ v\ <1\ n—1 _—\y
]E(A) _]E(I/Y) _n/0 yF(n)y e Vdy
B n\ o )\nfl
“n-1J, T(n-1)

pdf for Gamma distr. (n— 1, X)

y(n—l)—le—Ay dy

n
= A
n—-1

Biased! But E(A) = ;23\ — A as n — oo. (Asymptotically unbiased.)
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E.g. 4. Exponential distr.: fy(y;\) = Ae™™ for y > 0. A = 1/Y is biased.

nY =37 | Y; ~ Gamma distribution(n, \). Hence,
3\ v\ <1\ n—1 _—\y
]E(A) _]E(I/Y) _n/0 yF(n)y e Vdy
B n\ o )\nfl
“n-1J, T(n-1)

pdf for Gamma distr. (n— 1, X)

y(n—l)—le—Ay dy

n
= A
n—-1

Biased! But E(A) = ;23\ — A as n — oo. (Asymptotically unbiased.)

Note: A* = =L

I— is unbiased.
nY

E.g. 4. Exponential distr.: fy(y;0) = éefy/e for y > 0. 0 =Y is unbiased.
N 1
E(e) = E;E(Yi) =Y 0=0.

i=1

52



Efficiency

PN AT
\

Deflnltlon 5.4.2. Let_ 91 and 02 be two unbiased estimators for a parameter
0. If Var(@l) < Var(ﬁg) then we say that 01 is more efficient than 02
The relative efficiency of 6, w.r.t. 6 is the ratio Var(6;)/Var(6s).

%}



E.g.

1. fy(y;0) = 62 if y € [0, 9] Which is more efficient? Find the relative

efficiency of 91 w.r.t. 03 .
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E.g. 1.

fv(y;0) = 2% ity <fo,6].

efficiency of 91 w.r.t. 03 .

—91:7Y

Which is more efficient? Find the relative

54



E.g. 1.

fr(y;0) = 2 if y € [0, 9] Which is more efficient? Find the relative
efficiency of 01 w.r.t. 03 .

-0 :77
)

2n+1
2n

- 63

Ymax .
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E.g. 1.

fr(y;0) = 2 if y € [0, 9] Which is more efficient? Find the relative
efficiency of 91 w.r.t. 03 .

-0, = 57
. 2n+1
- 93 - on Ymax-
E.g. 2. Let Xi, -+, Xn be a random sample of size n with the unknown

parameter § = E(X) (suppose o = Var(X) < o).
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E.g. 1.

fr(y;0) = 2 if y € [0, 9] Which is more efficient? Find the relative
efficiency of 91 w.r.t. 03 .

-0, = 57
. 2n+1
- 93 - on Ymax-
E.g. 2. Let Xi, -+, Xn be a random sample of size n with the unknown

parameter § = E(X) (suppose o = Var(X) < o).
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Eg. 1. fr(y:0) = 2% 1fy e lo, 9] Which is more efficient? Find the relative
efficiency of 91 w.r.t. 03 .

-0, = 57
. 2n+1
- 93 - on Ymax-
E.g. 2. Let Xi, -+, Xn be a random sample of size n with the unknown

parameter § = E(X) (suppose o = Var(X) < o).

Among all possible unbiased estimators 6 = Sor, aiXi with
7, a = 1. Find the most efficient one.
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E.g. 1.

E.g. 2.

fr(y;0) = 2 if y € [0, 9] Which is more efficient? Find the relative
efficiency of 01 w.r.t. 03 .

-0, = 57
. 2n+1
- 93 - on Ymax-
Let Xi,---, X, be a random sample of size n with the unknown

parameter § = E(X) (suppose o = Var(X) < o).

Among all possible unbiased estimators 6 = Sor, aiXi with
7, a = 1. Find the most efficient one.

Sol:

n n 2
1 1
Var E a; Var (X) = o? E a: > 0'2E (E a,-) = 5027
i=1 i=1

with equality iff a1 =---=a,=1/n.

Hence, the most efficient one is the sample mean 6 = X.
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§ 5.5 MVE: The Cramér-Rao Lower Bound

Question: Can one identify the unbiased estimator having the smallest
variance?

Short answer: In many cases, yes!

We are going to develop the theory to answer this question in details!
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Regular Estimation/Condition: The set of y (resp. k) values, where
fy(y;0) # 0 (resp. px(k;0) # 0), does not depend on 6.

i.e., the domain of the pdf does not depend on the parameter (so that one
can differentiate under integration).
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Regular Estimation/Condition: The set of y (resp. k) values, where
fy(y;0) # 0 (resp. px(k;0) # 0), does not depend on 6.

i.e., the domain of the pdf does not depend on the parameter (so that one
can differentiate under integration).

Definition. The Fisher’s Information of a continous (resp. discrete)
random variable Y (resp. X) with pdf fy(y; ) (resp. px(k;0)) is defined as

(aln fgéY; e)ﬂ <resp. . (Blnpge(X; 9))2D .

) =E

1}



Lemma. Under regular condition, let Y1, -+, Y, be a random sample of
size n from the continuous population pdf fy(y;@). Then the Fisher
Information in the random sample Yi,--- , Y, equals n times the Fisher
information in X:

. [<alnfyl,...,yn(Y1,~--,Yn;e)ﬂ o [(Wﬂ =nle). (1)

00 00

(A similar statement holds for the discrete case px(k;0)).
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Lemma. Under regular condition, let Y1, -+, Y, be a random sample of
size n from the continuous population pdf fy(y;@). Then the Fisher
Information in the random sample Yi,--- , Y, equals n times the Fisher
information in X:

. [<a1nfyl,...,yngl,-~,Yn;e)ﬂ - [(f’lnfg(gy%@)ﬂ — ). (1)

(A similar statement holds for the discrete case px(k;0)).

Proof. Based on two observations:

LHS =E [(igelnfy,me)> }

) St(y;0), _ [0 .
E(%lnfy(Y,,G)) /way(y,e)dy—/%fy(y,&)dy
8

rC. 0
/fyy, )y = 89 =0.
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Lemma. Under regular condition, if In fy(y;0) is twice differentiable in 0,
then
2

1(0) = { 8892 In fy (Y; o)} @)

(A similar statement holds for the discrete case px(k;0)).
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Lemma. Under regular condition, if In fy(y;0) is twice differentiable in 0,
then

2

1%
1(0) = {692 In fy(Y; G)} (2)
(A similar statement holds for the discrete case px(k;0)).

Proof. This is due to the two facts:

a2 2 h(Y:0) apfv(Y:6) 2
gz miv(Y:6) = S0 - <8?y(Y9)>

2 £ (Y30 28 79

R.C. 82/
= — [ fy(y;0)dy =
207 /. y(y;0)dy

60



Theorem (Cramér-Rao Inequality) Under regular condition, let Y1, -+, Yy
be a random sample of size n from the continuous population pdf fy(y;0).
Let @ = 0(Yi1,---, Yn) be any unbiased estimator for §. Then

~ 1
Var(0) > YOk

(A similar statement holds for the discrete case px(k;0)).
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Theorem (Cramér-Rao Inequality) Under regular condition, let Y1, -+, Yy
be a random sample of size n from the continuous population pdf fy(y;0).
Let @ = 0(Yi1,---, Yn) be any unbiased estimator for §. Then

1

Var(9) > )

(A similar statement holds for the discrete case px(k;0)).

Proof. If n=1, then by Cauchy-Schwartz inequality,

[(9 0)%111 fo(Y; 9)] < /Var(@)  1(6)

On the other hand,

R oy
B|@-0 g uhvio)] = [@-0Z LD 0y
- / @ 0) 2 tr(y:0)ay

/0 O fy(y;0)dy +1 = 1.

E@—60)=0

For general n, apply for (1). 0.

61



Definition. Let © be the set of all estimators 0 that are unbiased for the
parameter 6. We say that 6" is a best or minimum-variance esimator
(MVE) if " € © and

~

Var(6*) < Var(0) for all § € ©.

-~

Definition. An unbiased estimator 8 is efficient if Var(0) is equal to the
Cramér-Rao lower bound, i.e., Varf = (n1(6))™".

Iy -1
The efficiency of an unbiased estimator 6 is defined to be (n/(@)Var(@))

(Unbiased estimators ©

MVE

/62



E.g. 1. X ~Bernoulli(p). Check whether p = X is efficient?
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Step 1. Compute Fisher’s Information:
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Inpx(k;p) = kInp+ (1 — k) In(1 — p)
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Step 1. Compute Fisher’s Information:

px(kip) = p*(1—p)' "

Inpx(k;p) = kInp+ (1 — k) In(1 — p)

P K 1-k
— Inpx(kip) = - — ——
ap " P p 1-p
92 k 1—k

——1 kip)=—=+——
gap PP = s e
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P K 1-k
— Inpx(kip) = - — ——
ap " P p 1-p
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E.g. 1. X ~Bernoulli(p). Check whether p = X is efficient?

Step 1. Compute Fisher’s Information:

px(kip) = p*(1—p)' "

Inpx(k;p) = kInp+ (1 — k) In(1 — p)

b} k 1-—k
—1 kip)= - — ——
op npx (ks p) » 1p
% k 1—k
——1 kip)=—=+——
g2p PP = Gt e
8% X 1-X 1
—E|—=—1 X; =E|S>+ —" | ==
|:82p n px( »P)} {p2+(1,p)2} p

Step 2. Compute Var(p).

1
Ip)=—, g=1-p.
(2] g

. 1 " 1
Var(p) = — Var (Z X,> = —5npq =
=1

1

1-p

pPq

n

1

pq’
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E.g. 1. X ~Bernoulli(p). Check whether p = X is efficient?

Step 1. Compute Fisher’s Information:

px(kip) = p*(1—p)' "

Inpx(k;p) = kInp+ (1 — k) In(1 — p)

P K 1-k
— Inpx(kip) = - — ——
ap " P p 1-p
% k 1—k
——1 kip)=—=+——
g2p PP = Gt e

X 17X}71 1
p 1-p

92
—E |:an lan(X;p):| =E |:? + a-p2

1
I(p)=—, g=1—p.
P) g

Step 2. Compute Var(p).

. 1 " 1 pq
Var(p) = n—2\/ar (Z X,> = n—lznpq -
i=1

Conclusion Because p is unbiased and Var(p) = (nl(p)) ™', p is efficient.

1

pq’
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E.g. 2. Exponential distr.: fy(y;\) = Ae ™™ for y > 0. Is A = 1/Y efficent?
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E.g. 2. Exponential distr.: fy(y;A) = Xe ™ for y > 0. Is A = 1/Y efficent?

Answer No, because X is biased. Nevertheless, we can still compute Fisher’s
Information as follows

Fisher’s Inf.
Infy(y; \) =InX — Ay

) 1
—Infy(y;\) = — —
(,Mny(y,) R4
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E.g. 2. Exponential distr.: fy(y;A) = Xe ™ for y > 0. Is A = 1/Y efficent?

Answer No, because X is biased. Nevertheless, we can still compute Fisher’s
Information as follows

Fisher’s Inf.
Infy(y; \) =InX — Ay

) 1

—Infy(y;\) = — —

aAnY(%) R4
2

Is] 1
—%me(ﬂ)‘) = 2
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E.g. 2. Exponential distr.: fy(y;\) = Ae™™ for y > 0. Is X =1/Y efficent?

Answer No, because X is biased. Nevertheless, we can still compute Fisher’s
Information as follows

Fisher’s Inf.
Infy(y; \) =InX — Ay
14] 1
— Infy(y;\) = — —
oy i )=y

92 1
—%me(,V;)‘) = 2

8? 1 1
—-E |:%1nfy(Y; /\):| =E [F] =z

64



E.g. 2. Exponential distr.: fy(y;A) = Xe ™ for y > 0. Is A = 1/Y efficent?

Answer No, because X is biased. Nevertheless, we can still compute Fisher’s
Information as follows

Fisher’s Inf.
Infy(y; \) =InX — Ay
14] 1
Infy(y;\) = = —
o) =< -y
2 ; ' B 1
o Y(y;A) = 2
92 1
—-E |:m Infy(Y; /\):| =E [F] =2
L% . n—11
Try. A . T?

. It is unbiased. Is it efficient?
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E.g. 2. Exponential distr.: fy(y;0) = 6*e /% for y > 0. 0 =Y efficent?
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E.g. 2. Exponential distr.: fy(y;0) = 6*e /% for y > 0. 0 =Y efficent?
Step. 1. Compute Fisher’s Information:
Infy(y;0) = —1n6 — }5/

Y

P 1
— Infy(y;0) = —— + =
g M0 =5+ 5
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E.g. 2. Exponential distr.: fy(y;0) = 6*e /% for y > 0. 0 =Y efficent?

Step. 1. Compute Fisher’s Information:

Infy(y;0) = —1n6 — }5/

o 1 1%
— Infy(y;0) = —— + =
g MBi0) =5+
o 1 2y
Torg MO =T
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E.g. 2. Exponential distr.: fy(y;0) = 6"'e /% for y > 0. 0 =Y efficent?

Step. 1. Compute Fisher’s Information:
Infy(y;0) = —1n6 — g

o 1 1%
— Infy(y;0) = ——
gg mivyif) =—5+

92
o 1 2y
T MO =t
9? 12y 1 20 .
_]E|:%lnfy(Y;9):|=E[—0—2+0—3}=—9—2+9—3—9
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E.g. 2. Exponential distr.: fy(y;0) = 6"'e /% for y > 0. 0 =Y efficent?

Step. 1. Compute Fisher’s Information:
Infy(y;0) = —1n6 — g

o 1 1%
— Infy(y;0) = ——
50 (i 0) i

92
o 1 2y
“ 520 Infy(y;0) = ) + e
o? 12y 120 .
—E {%lnfy(Y;é))} =E [—0—2 + 0—3} =% + 5= 0
109)
Step 2. Compute Var(f):
- . 1 0
Var(Y) = — Var(Y;) = ﬁn(i2 = —
i=1
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E.g. 2. Exponential distr.: fy(y;0) =0 te /% for y > 0. 6 =Y efficent?
Step. 1.

Compute Fisher’s Information:

Infy(y;0) = —1n6 — g

. y
7lan(y’9) **‘9’9*2
2 1 2y
Torg M= T
9? 12y 1 20 .
- |:829 In fy(Y; «9):| [——-‘,——} = + Ve =0
1(6)

Step 2. Compute Var(f):

1, 62
Var(Y) = Z Var(Y;) = —no” =

Conclusion. Because @ is unbiased and Var(p) = (nl(p))~*, 0 is efficient.
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E.g. 3. fy(y;0) = 2y/6% for y € [0,6]. § = 3 efficent?

Step. 1. Compute Fisher’s Information:

Infy(y;0) =1In(2y) —21In6

alf(-e)f 2
aenv% =79
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E.g. 3. fy(y;0) = 2y/6° for y €[0,6]. 6 = 2 efficent?

Step. 1. Compute Fisher’s Information:

Infy(y;0) =1In(2y) —21In6

o 2
— Infy(y;0) = ——
Tk v(y:0) 7

By the definition of Fisher’s information,

0 =5[(Zmii0)] =[(-2)] = &
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E.g. 3. fy(y;0) = 2y/6° for y €[0,6]. 6 = 2 efficent?

Step. 1. Compute Fisher’s Information:

Infy(y;0) =1In(2y) —21In6

o
20 In fy (y; 0)

By the definition of Fisher’s information,

10) =& [ (55 iy 0))2]

However, if we compute

Il
=
—
/T\
ESEN
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E.g. 3. fy(y;0) = 2y/6° for y €[0,6]. 6 = 2 efficent?

Step. 1. Compute Fisher’s Information:

Infy(y;0) =1In(2y) —21In6

7]
— Infy(y;0) = ——
20 y(¥;6)
By the definition of Fisher’s information,

0 =5[(Zmii0)] =[(-2)] = &

However, if we compute

o
2| pmnrio)| =2 [-2] =% % 4 — o)
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E.g. 3. fy(y;0) = 2y/6° for y €[0,6]. 6 = 2 efficent?

Step. 1. Compute Fisher’s Information:
Infy(y;0) =1In(2y) —21In6

o
20 In fy (y; 0)

By the definition of Fisher’s information,

10) =& [ (55 iy 0))2]

However, if we compute

Il

=
—
/T\
ESEN
~
N
[

Il
NS

9* 2
*ﬂlnﬁ/(}’% 6) = T2

920 02

2
—E |:i 1nfy(Y;9)j| B |:_3i| _ _932 + % _ 1(9)_

Step 2. Compute Var(6):
9 6% 6°

9
Var(f) = -Var(Y) = o= .
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E.g. 3. fy(y;0) = 2y/6° for y €[0,6]. 6 = 2 efficent?

Step. 1. Compute Fisher’s Information:
Infy(y;0) =1In(2y) —21In6

o 2
— Infy(y;0) = ——
Tk v(y:0) 7

By the definition of Fisher’s information,

0 =5[(Zmii0)] =[(-2)] = &

However, if we compute

020

-E |:8—21nfy(Y;6)] =E [—3} -2 % = 1(0).

Step 2. Compute Var(6):

~ 9 9 0% 0°
Var(0) = —Var(Y) = —— = —.
4an 4n 18 8n
Discussion. Even though 8 is unbiased, we have two discripencies: (1) and
0% o2 1

Var(9) = — < — =
ar(6) 8n — 4n  nl(0)
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o 2
— Infy(y;0) = ——
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By the definition of Fisher’s information,

0 =5[(Zmii0)] =[(-2)] = &

However, if we compute

020
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E.g. 3. fy(y;0) = 2y/6° for y €[0,6]. 6 = 2 efficent?

Step. 1. Compute Fisher’s Information:
Infy(y;0) =1In(2y) —21In6

o
— Infy(y;0) = —=
20 nfy(y; 0)

By the definition of Fisher’s information,

10) =& [ (55 iy 9))2]

However, if we compute

Il
=
—
/T\
ESEN
~

N
[
|
NS

9* 2
7%lnfy(y;0) =72

920 02

-E |:8—21nfy(Y;6)] =E [—3} -2 % = 1(0).

Step 2. Compute Var(6):

9 0% 0°

s  sn’
Discussion. Even though 8 is unbiased, we have two discripencies: (1) and

9
Var(f) = - Var(Y) =

0% ? 1
Var(f) = — < — =
8n — 4n  nl(0)

This is because this is not a regular estimation!
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§ 5.6 Sulfficient Estimators

Rationale: Let 0 be an estimator to the unknown parameter 6. Whether
does 6 contain all information about 67

Equivalently, how can one reduce the random sample of size n, denoted by
(X1, , Xn), to a function without losing any information about 67

E.g., let’s choose the function h(Xi,- -, Xp) := % >, Xi, the sample mean.
In many cases, h(Xi,---, X,) contains all relevant information about the
true mean E(X). In that case, h(Xi,- -, Xp), as an estimator, is sufficient.
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Definition. Let (Xi,---,X;5) be a random sample of size n from a discrete
population with a unknown parameter 6, of which 0 (resp. 0¢) be an
estimator (resp. estimate). We call 6 and 0. sufficient if

~

P (x1 — ki, Xn=kn |0 = ) =b(ki, - kn) (Sufficency-1)

is a function that does not depend on 6.

In case for random sample (Yi,---, Yp) from the continuous population,
(Sufficency-1) should be

fylf.‘,yn@:ge <y17" > Vn (/9\ >_b(y1, J’n)

Note: 6 = h(Xy,- -+, Xn) and 6 = h(ki, - , kn).
or 0 =h(Yi, -+, Yn) and e = h(y1,- -+ , ¥n).
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Equivalently,

Definition. ... 6 (or 0e) is sufficient if the likelihood function can be
factorized as:

HPX(kH 0) = g(0e,0) b(ki,--- ,kn) Discrete
L(O) = (Sufficency-2)
H fy (yi; 0 9(0e,0) b(y1,---,yn) Continous

where g is a function of two arguments only and b is a function that does
not depend on 6.
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E.g. 1. A random sample of size n from Bernoulli(P). p = Y7 | Xi. Check
sufficiency of p for p by (Sufficency-1):
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Case I If ki, , ko € {0,1} such that Y] | ki # c, then
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E.g. 1. A random sample of size n from Bernoulli(P). p = Y7 | Xi. Check
sufficiency of p for p by (Sufficency-1):

Case I If ki, , ko € {0,1} such that Y] | ki # c, then
]P)(Xlzkl,"- 7)(n:kn|ﬁIC) =0.

Case II: If ki, - -+ , ko € {0,1} such that 37 | k = ¢, then
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]P’(Xlzkl,“‘,Xn:kn‘ﬁ:C)

il



]P’(Xlzkl,“‘,Xn:kn‘ﬁ:C)
7P(X1:k1,“‘,Xn:kn,ﬁ:C)

B P(p = c)

il



P(Xi =k, Xo=kn| P =)
CP(Xi=ki,- X0 = kn, P = ©)
B P(p = c)
P (X =ki,o  Xo = Kn, Xo + S0 X =€)

- P (27:1 Xi = C)

il



]P’(Xlzkl,“‘,Xn:kn‘ﬁ:C)
7P(X1:k1,“‘,Xn:kn,ﬁ:C)

P(p=c)
_ P(Xl =k, - 7Xn=kn7Xn+Z,t11Xf:C)
a IP’(ZLX;:C)

B ]P’(Xl =k, -, Xpm1 =Ko, Xn=C — 27;11 k")

a P (Zf:l Xi = C)

il



]P’(Xlzkl,“‘,Xn:kn‘ﬁ:C)
7P(X1:k1,“‘,Xn:kn,ﬁ:C)

P(p=c)
CP(Xa =k, Xn= ke Xo+ 30 X = ©)
P(Z?:l)(" - C)
CP(Xi =k, X1 = Koot Xe = € — 1K)
N P(ZLIX;:C)

n— g —k; =1y - n—1
([T P (L= p)' ) x p*Eimr (1 — p)! ot i

ki

D= pye
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]P’(Xlzkl,“‘,Xn:kn‘ﬁ:C)
7P(X1:k1,“‘,Xn:kn,ﬁ:C)

P(p=c)
CP(Xa =k, Xn= ke Xo+ 30 X = ©)
P(Z?:l)(" - C)
CP(Xi =k, X1 = Koot Xe = € — 1K)
N P(ZLIX;:C)

n— g —k; =1y - n—1
([T P (L= p)' ) x p*Eimr (1 — p)! ot i

ki

D= pye
1

s

il



In summary,

]P’(X1=k1,“‘,xn:kn|ﬁzc):{

@
0]

if ki € {0,1} s.t. 320 ki =c,

otherwise.
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In summary,
A~ if k€ {0,1} st. Y1 ki =c,

P(Xi=ki, - Xo=ko|p=¢C) = (2
0 otherwise.

Hence, by (Sufficency-1), p = >_7_, X; is a sufficient estimator for p.
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E.g. 1. Asin E.g. 1, check sufficiency of p for p by (Sufficency-2):

Notice that pe = 27:1 ki. Then

n n
L(p) = [T px(kip) =[] P (1 —p)" "
i=1 i=1
= p=i k(1 p) Rk
=p*(1-p" "
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E.g. 1. Asin E.g. 1, check sufficiency of p for p by (Sufficency-2):

Notice that pe = 27:1 ki. Then

n n
L(p) =[] px(kisp) = [ (1 —p)' "
i=1 i=1
= p=iEifi(1 — p)" R
=p*(1-p" "
Therefore, pe (or p) is sufficient since (Sufficency-2) is satisfied with

g(pe,p) = p*(1 —p)" P and b(ki, - kn) = 1.
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pzz 1 ( p)n—ZLl ki
— (1)
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2. Any one-to-one function of a sufficient estimator is again a sufficient
estimator. E.g., P2 1= %f), which is a unbiased, sufficient, and MVE.
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E.g. 1. Asin E.g. 1, check sufficiency of p for p by (Sufficency-2):

Notice that pe = 27:1 ki. Then

n n
(p) = [ [ px(kisp) = Hpk"(l —p)th
i=1 '
pzz 1 ( p)n—ZLl ki
— (1)
Therefore, pe (or p) is sufficient since (Sufficency-2) is satisfied with

g(pe,p) = p*(1 —p)" P and b(ki, - kn) = 1.

Comment 1. The estimator p is sufficient but not unbiased since E(p) = np # p.

2. Any one-to-one function of a sufficient estimator is again a sufficient
estimator. E.g., P2 1= %f), which is a unbiased, sufficient, and MVE.

3. P3 := Xi is not sufficient!
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E.g. 2. Poisson()\), px(k;\) = e *\/k!, k =0,1,---. Show that
A= (31, Xi)? is sufficient for A for a sample of size n.
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E.g. 2. Poisson()\), px(k;\) = e *\/k!, k =0,1,---. Show that
A= (31, Xi)? is sufficient for A for a sample of size n.

Sol: The Corresponding estimate is Ae = (31, ki)*.

Ly =1]

i=1

n -1
— e Mk (H k,-!)
i=1
n —1
— e M\ x <H k,-!> .
i=1

9g(XesA) b(ky ;- ,kn)

e M\
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E.g. 2. Poisson()\), px(k;\) = e *\/k!, k =0,1,---. Show that
A= (31, Xi)? is sufficient for A for a sample of size n.

Sol: The Corresponding estimate is Ae = (31, ki)*.

Ly =1]

i=1

n -1
— e Mk (H k,-!)
i=1
n —1
— e M\ x <H k,-!> .
i=1

9g(XesA) b(ky ;- ,kn)

e M\
k;!

Hence, \ is sufficient estimator for \. a
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E.g. 3. Let Y1, -+, Yn be a random sample from fy(y;0) = ;—"2/ for y € [0, 6].
Whether is the MLE § = Ymax sufficient for 67
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E.g. 3. Let Y1, -+, Yn be a random sample from fy(y;0) = ;—"2/ for y € [0, 6].
Whether is the MLE § = Ymax sufficient for 67

Sol: The corresponding estimate is 0e¢ = Ymax-

n n n
2 _
L(6) = ] 55 lom () = 276" (H w) [T o)
i=1 i=1 i=1

n
=2Mp—2" <H }/i> X 0,61 (Ymax)

i=1
n
=2"0"""lo.e1(0e) x [
=1
<~
=g(6e,0) =b(y1, Vi)

Hence, 0 is a sufficient estimator for 6.

Note: MME 8 = %7 is NOT sufficient for 0!
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Definition. An estimator 6, = h(Wi, - -- , W,) is said to be consistent if it
converges to 0 in probability, i.e., for any € > 0,

lim IP’(|§,,70| < e) = 1.

n— oo
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Definition. An estimator 6, = h(Wi, - -- , W,) is said to be consistent if it
converges to 0 in probability, i.e., for any € > 0,

lim IP’(|§,,79| < e) = 1.

n— oo

Comment: In the e-d language, the above convergence in probability says

Ve > 0, V6 > 0, 3n(e,0) > 0, s.t.Yn > n(e, 9),

P(\é\n—e\<e)>1—5.
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A useful tool to check convergence in probability is

Theorem. (Chebyshev’s inequality) Let W be any r.v. with finite mean g
and variance o. Then for any e > 0

2
o
POW—pl < >1-7,
or, equivalently,
o
€2’

P(W—plze <

Proof. ... O
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As a consequence of Chebyshev’s inequality, we have

Proposition. The sample mean i, = 1 37 | W, is consistent for E(W) = p,

provided that the population W has finite mean p and variance o2.

Proof.
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E.g. 1.

Let Yi,---, Yn be a random sample of size n from the uniform pdf
fy(y;0) =1/6, y € [0,0]. Let 0y = Ymax. We know that Ymax is biased.
Is it consistent?

83



E.g. 1.

Let Yi,---, Yn be a random sample of size n from the uniform pdf
fy(y;0) =1/6, y € [0,0]. Let 0y = Ymax. We know that Ymax is biased.
Is it consistent?

83



E.g. 1.

Let Yi,---, Yn be a random sample of size n from the uniform pdf
fy(y;0) =1/6, y € [0,0]. Let 0y = Ymax. We know that Ymax is biased.
Is it consistent?

Sol. The c.d.f. of Y is equal to Fy(y) = y/6 for y € [0,6].

83



E.g. 1.

Let Yi,---, Yn be a random sample of size n from the uniform pdf
fy(y;0) =1/6, y € [0,0]. Let 0y = Ymax. We know that Ymax is biased.
Is it consistent?

Sol. The c.d.f. of Y is equal to Fy(y) = y/6 for y € [0, 6]. Hence,

B nyn— 1

Frnae () = NPy ()" y(y) = =50—, ¥ €[0,0].

83



E.g. 1.

Let Yi,---, Yn be a random sample of size n from the uniform pdf
fy(y;0) =1/6, y € [0,0]. Let 0y = Ymax. We know that Ymax is biased.
Is it consistent?

Sol. The c.d.f. of Y is equal to Fy(y) = y/6 for y € [0, 6]. Hence,

B nyn— 1

Frnae () = NPy ()" y(y) = =50—, ¥ €[0,0].

Therefore,

P(|0y— 0] <€) =P8 — € < 0y < 6 +¢)

83



E.g. 1. Let Yi,---,Ys be a random sample of size n from the uniform pdf
fy(y;0) =1/6, y € [0,0]. Let 0y = Ymax. We know that Ymax is biased.
Is it consistent?
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Let Yi,---, Yn be a random sample of size n from the uniform pdf
fy(y;0) =1/6, y € [0,0]. Let 0y = Ymax. We know that Ymax is biased.
Is it consistent?

Sol. The c.d.f. of Y is equal to Fy(y) = y/6 for y € [0, 6]. Hence,

nyn—l
e en s

Frma (V) = NFy ()" fy (y) y €10,6].

Therefore,

P(|0y— 0] <€) =P8 — € < 0y < 6 +¢)

) n—1 O+e
:/ ”yan dy+/ 0dy
O—e 6
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E.g. 1.

Let Yi,---, Yn be a random sample of size n from the uniform pdf
fy(y;0) =1/6, y € [0,0]. Let 0y = Ymax. We know that Ymax is biased.
Is it consistent?

Sol. The c.d.f. of Y is equal to Fy(y) = y/6 for y € [0, 6]. Hence,

B nyn— 1

Frnae () = NPy ()" y(y) = =50—, ¥ €[0,0].

Therefore,

P(|0y— 0] <€) =P8 — € < 0y < 6 +¢)

) n—1 O+e
:/ ”yan dy+/ 0dy
O—e 6
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E.g. 2. Suppose Y1, Y2, -+, Yp is a random sample from the exponential pdf,
fy(y; A) = )\ef)‘y, ¥ > 0. Show that )\n = Y} is not consistent for \.

Sol. To prove A, is not consistent for A, we need only to find out one
€ > 0 such that the following limit does not hold:

lim P (|Xn A< e) 1. 3)
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Sol. To prove A, is not consistent for A, we need only to find out one
€ > 0 such that the following limit does not hold:
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n—oo
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E.g. 2. Suppose Y1, Y2, -+, Yp is a random sample from the exponential pdf,
fy(y; A) = )\ef)‘y, ¥ > 0. Show that )\n = Y} is not consistent for \.

Sol. To prove A, is not consistent for A, we need only to find out one
€ > 0 such that the following limit does not hold:

lim P (|Xn ) < e) =1. &)
n—oo

We can choose ¢ = A\/m for any m > 1. Then

LD (kl)xging (1+l),\

m m m

= an(l—l))\.
m

Ao — Al
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Hence,

IP’(|X,77)\|<A) gJP(an (171),\)
m m
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Hence,

IP’(|X,77)\|<A) gJP(an (171),\)
m m
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Hence,
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Hence,
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Hence,

Therefore, the limit in (3) cannot hold. O
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Rationale: Let W be an estimator dependent on a parameter 6.

1. Frequentists view 6 as a parameter whose exact value is to be
estimated.
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Rationale: Let W be an estimator dependent on a parameter 6.

1.

Frequentists view 6 as a parameter whose exact value is to be
estimated.

. Bayesians view 6 is the value of a random variable ©.

One can incorporate our knowledge on © — the prior distribution
Ppo(0) if © is discrete and fo () if © is continuous — and use Bayes’
formula to update our knowledge on © upon new observation W = w:

pw(w|© = 0)pe (0)

i W is dis
B(W = w) i is discrete

go(O|W = w) =
fw(w|© = 0)fo(0)
fw(w)

where ge (0|W = w) is called posterior distribution of ©.

if W is continuous
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Poste-
rior of ©

Prior distri-
bution of ©

Total

Probability
of sample W
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Four cases for computing posterior distribution

pw(w|© = 0)pe(8) fw(w|© = 0)pe (0)
> pw(wW|© = 0;)pe (6)) > fw(w|© = 0;)pe (0i)

pw(w|© = 0)fo(0) fw(w|© = 0)fo(0)
Jo Pw(W|© = 0")fe(0/)d0" | [, fw(w|© = 0")fe(6")d0"
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Gamma distributions

NG ::/ y~ledy, r>o.
0

91



Gamma distributions

NG ::/ y~leVdy, r>o.
0

Two parametrizations for Gamma distributions:

1. With a shape parameter r and a scale parameter 6:
yr—l e—y/e

fY(Y§f79)=W7

y>0,r,60>0.
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2. With a shape parameter r and a rate parameter A = 1/6,

)\ryrfle—/\y

fY(Y%C)\):W7
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Gamma distributions

NG ::/ y~leVdy, r>o.
0

Two parametrizations for Gamma distributions:

1. With a shape parameter r and a scale parameter 6:

r—1,—y/6

y'~le

fY(Y§f79)=W7

y>0,r,60>0.
2. With a shape parameter r and a rate parameter A = 1/6,

)\ryrfle—/\y

fY(Y%C)\):W7

EY] = § —rf and Var(Y)= 7’2 = rp?

y>0,r,A>0.
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# Plot gamma distributions

x = seq(0,20,0.01)

k= 3 # Shape parameter

theta = 0.5 # Scale parameter
plot(x,dgamma(x, k, scale = theta

tyf)e:
col= )

18 20
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Beta distributions

1
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Beta distributions

/y”

Yy, o, 8> 0.

(see Appendix)
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Beta distributions

/y -y ldy, a,B>0.

= . (see Appendix)

Beta distribution

y -yt

yelo,1],a,8>0.
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Beta distributions

B(a, B) : /y T1-y)f Ty, a8 >0.

“Tatp) (see Appendix)
Beta distribution
fe(yia, B) = % y€0,1],0,8> 0.
E[Y] = ai,@ and Var(Y) = (a+5)2?§+5+1)
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# Plot Beta distributions
x = seq(0,1,0.01)
a =13
b=2
plot(x,dbeta(x,a,b),
type="1",
col= )
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E.g. 1. Let Xi,---, X, be a random sample from Bernoulli(6):
px; (k;0) = 0(1 — 0)* ¥ for k =0, 1.
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E.g. 1. Let Xi,---, X, be a random sample from Bernoulli(6):
px; (k;0) = 0(1 — 0)* ¥ for k =0, 1.

Let X =37 Xi. Then X follows binomial(n, 6).

Prior distribution: © ~beta(r, s), i.e., fo(0) = Fr((rg;(sg)wfl(l —0)*! for
0 € [0,1].

0 ~ Binomial(n,6)

n
X, Xn |9 ~  Bernoulli(9) X= Z Xi
© ~ Beta(r,s) =

© ~ Beta(r,s)
r & s are known

r & s are known

Qg5



Example

5.8.2

Max, a video game pirate (and Bayesian), is trying to decide how many illegal copies
of Zombie Beach Party to have on hand for the upcoming holiday season. To get a
rough idea of what the demand might be, he talks with n potential customers and
finds that X = k would buy a copy for a present (or for themselves). The obvious
choice for a probability model for X, of course, would be the binomial pdf. Given n
potential customers, the probability that & would actually buy one of Max’s illegal
copies is the familiar

px(k|9)=(:)9k(l—9)”’k, k=0,1,....n

where the maximum likelihood estimate for 6 is given by 6, = %

It may very well be the case, though, that Max has some additional insight about
the value of # on the basis of similar video games that he illegally marketed in
previous years. Suppose he suspects, for example, that the percentage of potential
customers who will buy Zombie Beach Party is likely to be between 3% and 4% and
probably will not exceed 7%. A reasonable prior distribution for ®, then, would be
a pdf mostly concentrated over the interval 0 to 0.07 with a mean or median in the

0.035 range.
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e e

One such probability model whose shape would comply with the restraints that
Max is imposing is the beta pdf. Written with © as the random variable, the (two-
parameter) beta pdf is given by

T'(r+s)

— o1 —0)y!, 0<o<1
TrTes)

fa0)=
The beta distribution with » =2 and s = 4 is pictured in Figure 5.8.1. By choosing
different values for r and s, fo() can be skewed more sharply to the right or
to the left, and the bulk of the distribution can be concentrated close to zero or
close to one. The question is, if an appropriate beta pdf is used as a prior dis-
tribution for @, and if a random sample of & potential customers (out of n) said
they would buy the video game, what would be a reasonable posterior distribution
for ©?7

24 |
o L6}
= (4
z —1o(®)
5
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X is discrete and © is continuous.

go (01X = k) = px(k|© = 0)fo(0)

= L px(K|© = 0")fe(0")d0"
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X is discrete and © is continuous.

go(0|1X = k) =

px(k|© = 0)fo(0) = (

n
k

px (k|© = 0)fo (0)
= L px(K|© = 0")fe(0")d0"

n— F(f+$) r—1 s—1
>0k(1_9) " x NGHOK (1-0)

g8



X is discrete and © is continuous.

)~ Px(K[©=0)fe(6)
go(B1X = k)= Jz pxx(k|e = 0)fo(6")d0"

px(K|© = 0)fo(6) = (Z) 64 (1 — 0)"* x g((r’);:(?) o1 (1 — )"

N (n) F(r—|— S) 0k+r—1(1 B G)n_k+3_1, 0c [O7 1].

k) T(NT(s)

g8



X is discrete and © is continuous.

px(k|© = 0)fo (0)

go (61X = k) = Iz px(K|© = 6")fo (60")d6"

(r+s) 1
x(K|© = 6)fo (6 (>¢1—9 (0N$0 (1

( ) k+r 1 1_9)n—k+s—17

— [ pxkie = 6o (6')d0

— )=t

0 €10,1].

g8



X is discrete and © is continuous.

px(k|© = 0)fo (0)

9o (BIX = k) = T 0x (K1 = 0')fo (6706
L(r+s) 1 s—1
x(K|© = 6)fo (6 ( >0k1—9 (r)r(s)e (1-10)
( > g1 — )R g e o).
/p GEEYAIU

IK+r— 1 n k+s— 1d9

()

g8



X is discrete and © is continuous.

px(k|© = 0)fo (0)

go (61X = k) = [ px(k|© = 0")fo(6")d0’
L(r+s) 1 s—1
x(K|© = 6)fo (6 ( >0k1—9 (r)r(s)e (1-10)
( > g1 — )R g e o).

)L'(s )
+s) +nNT(n—k+s)
Fs) k+r) (n—k+s))



L(r+s)

( )F(S) > 0k+r71(1 . €)n7k+s—1
I(r+ ) I'k+rT'(n—k+s)
T(NT(s) “ T((k+ 1)+ (n—k+5))

Q9



k) T(r)I(s)

<n> P(I’-}— S) > 0k+r71(1 . €)n7k+s—1

9o (61X = k) =

k
ING R )]

“T(k+trT(n—k+s)

n\I'(r+s) » I'k+rT'(n—k+s)
r(nNr(s)  T((k+r) +(n—k+s))

Qk+r— 1 (1 o 9)n7k+s— 1

0 €10,1]

Q9



<Z> g((:)‘rf"(‘?) > 0k+r71(1 . €)n7k+s—1

(n) I(r+s) T(k+nT(n—k+s)

9o (61X = k) =

k) T(NT(s) “ T((k+r) +(n—k+s))

F(n +r+ S) k+r—1 n—k+s—1
= 1 —
F(k+r)1“(n—k+s)g (1-9)

)

Conclusion: the posterior ~ beta distribution(k + r,n— k + ).

Recall that the prior ~ beta distribution(r, s).

0 €10,1]
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It remains to determine the values of r and § to incorporate the prior
knowledge:

PK 1. Mean is about 0.035.

r r
E(©) =0. —— =0. It
(©)=0035 = =003 = -=1o
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It remains to determine the values of r and § to incorporate the prior
knowledge:

PK 1. Mean is about 0.035.

r r
E(©) =0. —— =0. It
(©)=0035 = =003 = -=1o

PK 2. The pdf mostly concentrated over [0,0.07]. ... trial ...
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1
2
3
4
5
6
7
8

10
11
12
13

15
16
17
18
19
20
21
22

23
24

25

x <— seq(0, 1, length = 1025)
plot(x,dbeta(x,4,102),

type=
plot(x,dbeta(x,7,193),
type="1")
dev.off()
pdf=cbind(dbeta(x,4,102),dbeta(x
7,193))
matplot(x,pdf,
type="1",
Ity = 1:2,
xlab = , ylab =

lwd = 2 # Line width

)
legend(O.Q, 25, # Position of legend

o

col = 1:2, Ity = 1:2,

ncol = 1, # Number of columns

cex = 1.5, # Fontsize

» 71

lwd=2 # Line width

)
abline(v=0.07, col=
)
text(0.07, —0.5,
abline(v=0.035, col=
lwd=2)
text(0.035, 1, )

, Ity=1,lwd

) Iby=3,

PDF

30

25

20

15

10

—— Beta(4,102)
--- Beta(7,193)

theta




If we choose r =7 and s = 193:

R I'(n+ 200) K461 pyn—k+192
90X =h) =t rimn—k+193)” 7 » fel0

Moreover, if n =10 and k = 2,

I'(210)

9o =19 =g r 201

0*(1—0)*°,  6el0,1]
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1 x <— seq(0, 0.1, length = 1025)
2 pdf=cbind(dbeta(x,7,193),dbeta(x

,9,201))
3 matplot(x,pdf,
4 type="17,
5 Ity = 1:2,
6 xlab = , ylab = s
7 lwd = 2 # Line width
8 )
9 legend(0.05, 25, # Position of legend
10 c( s
)
11 col = 1:2, Ity = 1:2,
12 ncol = 1, # Number of columns
13 cex = 1.5, # Fontsize
14 lwd=2 # Line width
15
16 abline(v=0.07,col= , lty=1,lwd
=1.5)
17 text(0.07, —0.5, )
18 abline(v=0.035,col= , Ity=3,lwd
=2)
19 text(0.035, 1, )

PDF

- L
v

Poster
Prior B

ior Beta(9,201)
eta(7,193)

jutic
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Definition. If the posterior distributions p(©|X) are in the same
probability distribution family as the prior probability distribution p(©),
the prior and posterior are then called conjugate distributions, and the
prior is called a conjugate prior for the likelihood function.

1. Beta distributions are conjugate priors for Bernoulli, binomial, nega.
binomial, geometric likelihood.
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Definition. If the posterior distributions p(©|X) are in the same
probability distribution family as the prior probability distribution p(©),
the prior and posterior are then called conjugate distributions, and the
prior is called a conjugate prior for the likelihood function.

1. Beta distributions are conjugate priors for Bernoulli, binomial, nega.
binomial, geometric likelihood.

2. Gamma distributions are conjugate priors for Poisson and exponential
likelihood.
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E.g. 2. Let Xi, -+, Xn be a random sample from Poisson(6): px(k;0) =
for k=0,1,---.

e %%
k!
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E.g. 2. Let Xi, -+, Xn be a random sample from Poisson(6): px(k;0) =
for k=0,1,---.

Let W=7 X.

e %%
k!
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E.g. 2. Let Xi, -+, Xn be a random sample from Poisson(6): px(k;0) =
for k=0,1,---.

Let W =37, Xi. Then W follows Poisson(nf).

e %%
k!
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E.g. 2. Let Xi, -+, Xn be a random sample from Poisson(6): px(k;0) = e—sek

for k=0,1,---.

Let W =37, Xi. Then W follows Poisson(nf).

Prior distribution: © ~ Gamma(s, p), i.e., fo(8) = %03_1(—)—“9 for
0> 0.
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E.g. 2. Let Xi, -+, Xn be a random sample from Poisson(6): px(k;0) = e—sek

for k=0,1,---.

Let W =37, Xi. Then W follows Poisson(nf).

Prior distribution: © ~ Gamma(s, p), i.e., fo(8) = %03_16’_“0 for
0> 0.

n
X, Xn ‘9 ~  Poisson(6) W= ZX/ ’9 ~  Poisson(no)
i=1

© ~ Gamma(s,pu)
© ~ Gamma(s,p)
s & p are known
s & p are known
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9o (O|W = w)

_ pw(w|©=10)fe(0)

= L pw(W]© = 0)fe(6")d6’
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9o (O|W = w)

pw(w|© = 0)fo(0) =

_ pw(w|©=10)fe(0)

= L pw(W]© = 0)fe(6")d6’

e ()" p

S
s—1 ,—pb
w! P(s)e e
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pw(w[© = 0)fe(0) = X

N pw(w|© = 0)fe(0)
Go(U|W =w) = i Pw(W[© = 0" (6)d0"

e—ne(ne)w [ 9~ lgH0

w! INE))

T wlT(s)

nv NS » 9W+57167(H+n)97 9 >0.
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pw(w[© = 0)fe(0) = X

N pw(w|© = 0)fe(0)
Go(U|W =w) = i Pw(W[© = 0" (6)d0"

e—ne(ne)w [ 9~ lgH0

w! INE))

T wlT(s)

pu(w) = / Pu(W|© = 0')fo (6)d0’

NI gurslgm(etmo g g
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pw(w[© = 0)fe(0) = X

N pw(w|© = 0)fe(0)
Go(U|W =w) = T Pw(W|© = 0")fo (67)d0"

e—ne(ne)w [ 9~ lgH0

w! INE))

T wlT(s)

pu(w) = / P (WO = 0)fo (6')d0/

nW S

N 1% = wHs—1 —(u+no’ 1
=— 0 e de
w! I'(s) /0

NI gurslgm(etmo g g

106



pw(w|© = 0)fo (0)

9o OIW =w) = 1 W6 = 0)fo(0') 40"

_ . e " (ng) wso1 e
pw(w|© = 0)fs(0) = Wl X P(s)e e

T wlT(s)

pu(w) = / Pu(W|© = 0')fo (6)d0’

nw NS = 9/W+s—1e—(u+n)6'd0/
Twil(s )
" F(W +5)

(s) * Gt nywts

T wl

W guiaignGein? g,
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’LW ne « rts—1lg=(utme
(01X = K) = w! T'(s)
Jo - T MS F(W-I— S)

wiT(s) " (u+ nwts

— (M + n)W+S 0W+s—1ef(pd+n)97 0> 0.

D(w+s)

Conclusion: the posterior of © ~ gamma distribution(w + s, n+ p).

Recall that the prior of © ~ gamma distribution(s, u).
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Case Study 5.8.1

1 x <— seq(0, 4, length = 1025)
2 pdf=cbind(dgamma(x, shape=88, rate

=50),
3 dgamma(x, shape=88+92,
100),
4 dgamma(x, 88+92+72, 150))
5 matplot(x,pdf,
6 type="17,
7 Ity = 1:3,
8 xlab = , ylab = s
9 lwd = 2 # Line width
10

11 legend(2, 3.5, # Position of legend
c

)

13 s

14 ),
15 col = 1:3, Ity = 1:3,

16 ncol = 1, # Number of columns
17 cex = 1.5, # Fontsize

18 lwd=2 # Line width

PDF

Table 5.8.1

Years Number of Hurricanes

1851-1900
1901-1950
1951-2000

88
92
72

— Prior Gamma(88,50)
— - Posterior! Beta(180,100)
-~ Posterior2 Beta(252,150)
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Bayesian Point Estimation

Question. Can one calculate an appropriate point estimate 0 given the
posterior ge (0|W = w)?
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Bayesian Point Estimation

Question. Can one calculate an appropriate point estimate 0 given the
posterior ge (0|W = w)?

Definitions. Let 0 be an estimate for 6 based on a statistic W. The loss
function associated with fe is denoted L(fe,6), where L(fe,6) > 0 and
L(0,0) =0.
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Bayesian Point Estimation

Question. Can one calculate an appropriate point estimate 0 given the
posterior ge (0|W = w)?

Definitions. Let 0 be an estimate for 6 based on a statistic W. The loss
function associated with fe is denoted L(fe,6), where L(fe,6) > 0 and
L(0,0) =0.

Let ge (0]|W = w) be the posterior distribution of the random variable ©.
Then the risk associated with ¢ is the expected value of the loss function
with respect to the posterior distribution of ©:

/ L(é\7 0)ge (0|W = w)dl if © is continuous
R

risk = N
Z L(0,0i)9e(0i|W = w) if © is discrete
i
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Theorem. Let ge (0|W = w) be the posterior distribution of the random
variable ©.

1. If L(0e,0) = |0e — 0], then the Bayes point estimate for 0 is the median
of go (0|W = w).
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Theorem. Let ge (0|W = w) be the posterior distribution of the random
variable ©.

1. If L(0e,0) = |0e — 0], then the Bayes point estimate for 0 is the median
of go (0|W = w).

2. If L(0e,0) = (fe — 0)?, then the Bayes point estimate for 0 is the mean
of go(O|W = w).
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Theorem. Let ge (0|W = w) be the posterior distribution of the random
variable ©.

1. If L(0e,0) = |0e — 0], then the Bayes point estimate for 0 is the median
of go (0|W = w).

2. If L(0e,0) = (fe — 0)?, then the Bayes point estimate for 0 is the mean
of go(O|W = w).

Remarks

1. Median usually does not have a closed form formula.
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Theorem. Let ge (0|W = w) be the posterior distribution of the random
variable ©.

1. If L(0e,0) = |0e — 0], then the Bayes point estimate for 0 is the median
of go (0|W = w).

2. If L(0e,0) = (fe — 0)?, then the Bayes point estimate for 0 is the mean
of go(O|W = w).

Remarks
1. Median usually does not have a closed form formula.

2. Mean usually has a closed formula.
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Proof. (of Part 1. )

Let m be the median of the random variable W. We first claim that
E(|W — m|) <E(|W)). (*)

For any constant b € R, because

%:]P’(ng):P(W—bgm—b)

we see that m — b is the median of W — b. Hence, by (x),
E(W-m)=E(|(W-b)—(m—-D>b)|) <E(|W-1>b]), forallbeR,

which proves the statement.
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Proof. ( of Part 1. continued )

It remains to prove (x). Without loss of generality, we may assume m > 0.
Then

]E(\me\):/R|me|fW(w)dw

:/m (m— w)fW(W)dW—i—/oo(w—m)fw(w)dw

m

:_/m wfw(w)dw+/°°wfw(w)dw+%(m—m)

m

__ /io why (w)dw — /Om wa(W)dW-i-/oo w fy (w)dw

m

>0

<_/0 Wi (w )dw+/ooowfw(w)dw

/|W|fw

= E(|W]).

113



Proof. ( of Part 2. )
Let v be the mean of W. Then for any b € R, we see that
E[(W—b)*] =E[([W — ] + [ — b])’]

= E[(W— )*] + 20— b)E(W — ) +u — b}’
T
=E[(W—w)?] + [ b

that is,

E[(W—pu)? <E[(W-b)?], forallbeR.
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n
X1, Xn |9 ~  Bernoulli(0) X = ZXI ¢ ~ Binomial(n,0)
© ~ Beta(r,s) =

r & s are known

E.g. 1.
© ~ Beta(r,s)

r & s are known
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n
X1, Xn |9 ~  Bernoulli(0) X = in ¢ ~ Binomial(n,0)
© ~ Beta(r,s) =

r & s are known

E.g. 1.
© ~ Beta(r,s)

r & s are known

Prior Beta(r, s) — posterior Beta(k 4+ r,n— k + s)
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n
X1, Xn |9 ~  Bernoulli(0) X = in ¢ ~ Binomial(n,0)
© ~ Beta(r,s) =

r & s are known

E.g. 1.
© ~ Beta(r,s)

r & s are known

Prior Beta(r, s) — posterior Beta(k 4+ r,n— k + s)
upon observing X = k for a random sample of size n.
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n
X1, Xn |9 ~  Bernoulli(0) X = in ¢ ~ Binomial(n,0)
© ~ Beta(r,s) =

r & s are known

E.g. 1.
© ~ Beta(r,s)

r & s are known

Prior Beta(r, s) — posterior Beta(k 4+ r,n— k + s)
upon observing X = k for a random sample of size n.

Consider the L? loss function.

0e = mean of Beta(k +r,n— Kk +s)

115



n
Eq 1 X1, ,Xn|0 ~ Bernoulli(f) X = in 0 ~ Binomial(n,0)
ot © ~ Beta(r,s) =1

© ~ Beta(r,s)
r & s are known

r & s are known

Prior Beta(r, s) — posterior Beta(k 4+ r,n— k + s)
upon observing X = k for a random sample of size n.

Consider the L? loss function.

0e = mean of Beta(k +r,n— Kk +s)
k4
S n+r+s
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n
X1, Xn |9 ~  Bernoulli(0) X = in ¢ ~ Binomial(n,0)
© ~ Beta(r,s) =

r & s are known

E.g. 1.
© ~ Beta(r,s)

r & s are known

Prior Beta(r, s) — posterior Beta(k 4+ r,n— k + s)
upon observing X = k for a random sample of size n.

Consider the L? loss function.

0e = mean of Beta(k +r,n— Kk +s)
k+r
n+r+s

n <k> r+s ( r )
= ——=x(7])+ x
n+r+s n n+r+s r+s
~——

—_——
MLE Mean of Prior
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n
— X
n+r+s

MLE vs. Prior

(5)-

MLE

r+s

X
n+r+s

(=)

Mean of Prior
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n
)(17 e 7)(n |9 ~ Pojsson(e) W = Z )(/ ’6 ~ POiSSOn(nH)
i=1

E.g. 2.
g © ~ Gamma(s, )

0 ~ G s
s & p are known amma(s, )
s & p are known
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g © ~ Gamma(s, )

0 ~ G s
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s & p are known
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n
)(17 e 7)(n |9 ~ Pojsson(e) W = Z )(/ ’6 ~ POiSSOn(nH)
i=1

Eg. 2. © ~ Gamma(s, )

O ~ Gamma(s,p)
s & p are known
s & p are known

Prior Gamma(s, 1) — Posterior Gamma(w + s, + n)
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n
)(17 e 7)(n |9 ~ Pojsson(e) W = Z )(/ ’6 ~ Poisson(nH)
i=1

E.g. 2.
g © ~ Gamma(s, )

O ~ Gamma(s,p)

s & p are known
s & p are known

Prior Gamma(s, 1) — Posterior Gamma(w + s, + n)
upon observing W = w for a random sample of size n.

117



E.g. 2.

n
)(17 e 7)(n |9 ~ Pojsson(e) W = Z )(/ ’6 ~ Poisson(nH)
i=1

© ~ Gamma(s, )
O ~ Gamma(s,p)
s & p are known
s & p are known

Prior Gamma(s, 1) — Posterior Gamma(w + s, + n)
upon observing W = w for a random sample of size n.

Consider the L? loss function.

fe = mean of Gamma(w + S, u + n)
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n
)(17 e 7)(n |9 ~ Pojsson(e) W = Z )(/ ’6 ~ Poisson(nH)
i=1

E.g. 2.
g © ~ Gamma(s, )

O ~ Gamma(s,p)

s & p are known
s & p are known

Prior Gamma(s, 1) — Posterior Gamma(w + s, + n)
upon observing W = w for a random sample of size n.
Consider the L? loss function.

fe = mean of Gamma(w + S, u + n)
_w+s
w+n

117



E.g. 2.

n
)(17 e 7)(n |9 ~ Pojsson(e) W = Z )(/ ’6 ~ Poisson(nH)
© ~ Gammal(s,pu) = o
s & p are known

~  Gammal(s, )
s & p are known

Prior Gamma(s, 1) — Posterior Gamma(w + s, + n)
upon observing W = w for a random sample of size n.

Consider the L? loss function.

fe = mean of Gamma(w + S, u + n)
_w+s
w+n

n w 1 s

- (et (8

pt+n"\n) Tptn I
——

MLE Mean of Prior

117



MLE vs. Prior

~——
MLE Mean of Prior
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Appendix: Beta integral

Proof. Notice that
F(a):/ x*"'e¥dx and T(f) :/ y? e dy.
0 0

Hence,

D(a)T(B) = / / x> tyP e ) gy .
0] 0
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The key in the proof is the following change of variables:

x = r?cos®(6)
y = r*sin?()

ax,y) 2r cos?(6) 2r sin®(0)
- n (—2!’2 cos(0) sin(0)  2r? cos(0) sin(6)

det (8(’; ’ g’ )) ‘ — 47% sin(6) cos(6).

)
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Therefore,

T(a)T(B) :/i d@/ dr PPletf)—dg=r? cos”*2(0) sin®?2(0) x 4r® sin(0) cos(0)
0 0 —_—

Jacobian

—4 ( / ® cos21(f) sinwl(e)dé?) ( / r2<a+3)*1e*’2dr) .
0 0

Now let us compute the following two integrals separately:

I / ? cos2271(6) sin2*~1(6)d8
0

I ::/ rAeth—lg=r gy
(0]



For Iy, by change of variable r? = u (so that 2rdr = du),

I N rAleth—1 _’er

Il
M\»—\\

pAotB) =21 oy
<~

=du

/ ueth e gy

I+ B).

t\)\»—l N |
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For I1, by the change of variables \/x = cos() (so that
—sin(0)do = ﬁdx),

cos”* 71 (0) sin*? 2 (0) x sin(0)do
—_——

=—_L_dx

TR
0 | 1
= [ x*z(1-x)""" —dx
/1 VX

X711 = x)P " dx

[y
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Therefore,
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