# Math 362: Mathematical Statistics II 

Le Chen<br>le.chen@emory.edu<br>Emory University Atlanta, GA

Last updated on April 13, 2021

2021 Spring

## Chapter 6. Hypothesis Testing

§ 6.1 Introduction
§ 6.2 The Decision Rule
§ 6.3 Testing Binomial Data $-H_{0}: p=p_{0}$
§ 6.4 Type I and Type II Errors
§ 6.5 A Notion of Optimality: The Generalized Likelihood Ratio

# Chapter 6. Hypothesis Testing 

§ 6.1 Introduction
§ 6.2 The Decision Rule
$\S$ 6.3 Testing Binomial Data $-H_{0}: p=p_{0}$
§ 6.4 Type I and Type II Errors
§ 6.5 A Notion of Optimality: The Generalized Likelihood Ratio

Instead of numerical estimates of parameters, in the form of either single points or confidence intervals, we want to make a choice between two conflicting theories, or hypothesis:

1. $H_{0}$ : the null hypothesis
V.S.
2. $H_{1}$ : the alternative hypothesis

Comments: Hypothesis testing and confidence intervals are dual concepts to each other:

- One can be obtained from the other.
- However, it is often difficult to specify $\mu_{0}$ to the null hypothesis.


# Chapter 6. Hypothesis Testing 

§ 6.1 Introduction
§ 6.2 The Decision Rule
§ 6.3 Testing Binomial Data $-H_{0}: p=p_{0}$
§ 6.4 Type I and Type II Errors
§ 6.5 A Notion of Optimality: The Generalized Likelihood Ratio

Go over the example first....

Suppose our friend Jory claims that he has some magic power to predict the side of a randomly tossed fair-coin.

Jory claims that he could do more than $1 / 2$
of the time on average.

Let's test Jory to see if we believe his claim.

# We made Jory guess a repeatedly tossed coin for 100 times. 

He guesses correctly 54 times.

## Question:

Does this provide strong evidence that Jory has the proclaimed magic power?

If Jory is guessing randomly, the number of correct guesses would follow a binomial distribution with parameters $n=100$ and $p=1 / 2$.


What is probability that Jory gets 54 or more correct when guessing randomly?


$$
\mathbb{P}(X \geq 54)=\sum_{n=54}^{100}\binom{100}{n}\left(\frac{1}{2}\right)^{n}\left(\frac{1}{2}\right)^{100-n}=0.2421 .
$$

It is not unlikely to get this many correct guesses due to chance.

## Conclusion:

There is No strong evidence that Jory has better than a $1 / 2$ chance of correctly guessing the coin.

What is probability that Jory gets 60 or more correct when guessing randomly?
0.0284


$$
\mathbb{P}(X \geq 60)=\sum_{n=60}^{100}\binom{100}{n}\left(\frac{1}{2}\right)^{n}\left(\frac{1}{2}\right)^{100-n}=0.0284
$$

## Either

# Jory is purely guessing with probability of success of $\frac{1}{2}$, and we witnessed a very unusual event due to chance. 

Or

Jory is truly having the magic power to guess the coin.

## Conclusion:

We have strong evidence against
Red Hypothesis
Or the test is in favor of
Green Hypothesis

Before testing Jory, could you set up a threshold above which we will believe Jory's super power?

Find smallest $m$ such that

$$
\begin{gathered}
\mathbb{P}(X \geq m)=\sum_{n=m}^{100}\binom{100}{n}\left(\frac{1}{2}\right)^{n}\left(\frac{1}{2}\right)^{100-n} \leq 0.05 \\
\Downarrow \\
m=59 \\
\text { b.c. } \mathbb{P}(X \geq 58)=0.067 \& \mathbb{P}(X \geq 59)=0.044
\end{gathered}
$$

We have just informally conducted a hypothesis test with the null hypothesis

$$
H_{0}: p=\frac{1}{2}
$$

against the
alternative hypothesis

$$
H_{1}: p>\frac{1}{2}
$$

under the significance level $\alpha=0.05$
which is equivalent to either
producing the critical region
or
$m \geq 59$

- Test statistic: Any function of the observed data whose numerical value dictates whether $H_{0}$ is accepted or rejected.
- Critical region $C$ : The set of values for the test statistic that result in the null hypothesis being rejected.

Critical value: The particular point in $C$ that separates the rejection region from the acceptance region.

- Level of significance $\alpha$ : The probability that the test statistic lies in the critical region $C$ under $H_{0}$.


## Test Normal mean $H_{0}: \mu=\mu_{0}(\sigma$ known)

## Setup:

1. Let $Y_{1}=y_{1}, \cdots, Y_{n}=y_{n}$ be a random sample of size $n$ from $N\left(\mu, \sigma^{2}\right)$ with $\sigma$ known.
2. Set $\bar{y}=\frac{1}{n}\left(y_{1}+\cdots+y_{n}\right)$ and $z=\frac{\bar{y}-\mu_{0}}{\sigma / \sqrt{n}}$.
3. The level of significance is $\alpha$.

## Test:

$$
\left\{\begin{array}{l}
H_{0}: \mu=\mu_{0} \\
H_{1}: \mu>\mu_{0}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
H_{0}: \mu=\mu_{0} \\
H_{1}: \mu<\mu_{0}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
H_{0}: \mu=\mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{array}\right.
$$

reject $H_{0}$ if $z \geq z_{\alpha}$.
reject $H_{0}$ if $z \leq-z_{\alpha}$. reject $H_{0}$ if $|z| \geq z_{\alpha / 2}$.

- Simple hypothesis: Any hypothesis which specifies the population distribution completely.
- Composite hypothesis: Any hypothesis which does not specify the population distribution completely.

Conv. We always assume $H_{0}$ is simple and $H_{1}$ is composite.

Definition. The P-value associated with an observed test statistic is the probability of getting a value for that test statistic as extreme as or more extreme than what was actually observed (relative to $H_{1}$ ) given that $H_{0}$ is true.

Note: Test statistics that yield small P-values should be interpreted as evidence against $H_{0}$.
E.g. Suppose that test statistic $z=0.60$. Find $P$-value for

$$
\begin{array}{r}
\left\{\begin{array}{l}
H_{0}: \mu=\mu_{0} \\
H_{1}: \mu>\mu_{0}
\end{array}\right. \\
\begin{array}{l}
H_{0}: \mu=\mu_{0} \\
H_{1}: \mu<\mu_{0}
\end{array}
\end{array}\left\{\begin{array}{l}
H_{0}: \mu=\mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{array}\right\}
$$

# Chapter 6. Hypothesis Testing 

§ 6.1 Introduction
§ 6.2 The Decision Rule
§ 6.3 Testing Binomial Data $-H_{0}: p=p_{0}$
§ 6.4 Type I and Type II Errors
§ 6.5 A Notion of Optimality: The Generalized Likelihood Ratio

Setup: Let $X_{1}=k_{1}, \cdots, X_{n}=k_{n}$ be a ${ }^{\text {a }}$ random sample of size $n$ from $\operatorname{Bernoulli}(p) . X=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$. We want to test $H_{0}: p=p_{0}$.

1. When $n$ is large, use $Z$ score.
2. Otherwise, use the exact binomial distribution.

Large-sample test
Small-sample test

$$
\begin{gathered}
n \text { is large } \\
\mathbb{\imath} \\
0<n p_{0}-3 \sqrt{n p_{0}\left(1-p_{0}\right)}<n p_{0}+3 \sqrt{n p_{0}\left(1-p_{0}\right)}<n \\
\Uparrow
\end{gathered}
$$

## Large-sample test for $p$

## Setup:

1. Let $X_{1}=k_{1}, \cdots, X_{n}=k_{n}$ be a random sample of size $n$ from Bernoulli $(p)$.
2. Suppose $n>9 \max \left(\frac{1-p_{0}}{p_{0}}, \frac{p_{0}}{1-p_{0}}\right)$.
3. Set $k=k_{1}+\cdots+k_{n}$ and $z=\frac{k-n p_{0}}{\sqrt{n p_{0}\left(1-p_{0}\right)}}$.
4. The level of significance is $\alpha$.

Test:

$$
\left\{\begin{array} { l } 
{ H _ { 0 } : p = p _ { 0 } } \\
{ H _ { 1 } : p > p _ { 0 } }
\end{array} \quad \left\{\begin{array} { l } 
{ H _ { 0 } : p = p _ { 0 } } \\
{ H _ { 1 } : p < p _ { 0 } }
\end{array} \quad \left\{\begin{array}{l}
H_{0}: p=p_{0} \\
H_{1}: p \neq p_{0}
\end{array}\right.\right.\right.
$$

reject $H_{0}$ if $z \geq z_{\alpha}$.
reject $H_{0}$ if $z \leq-Z_{\alpha}$.
reject $H_{0}$ if $|z| \geq z_{\alpha / 2}$.

## Small-sample test for $p$

E.g. $n=19, p_{0}=0.85, \alpha=0.10$. Find critical region for the two-sided test

$$
\left\{\begin{array}{l}
H_{0}: p=p_{0} \\
H_{1}: p \neq p_{0}
\end{array}\right.
$$

Sol. $19=n<9 \times \max \left(\frac{0.85}{0.15}, \frac{0.15}{0.85}\right)=51$, so small sample test.
By checking the table, the critical region is

$$
C=\{k: k \leq 13 \quad \text { or } \quad k=19\}
$$

so that

$$
\begin{aligned}
\alpha & =\mathbb{P}\left(X \in C \mid H_{0} \text { is true }\right) \\
& =\mathbb{P}(X \leq 13 \mid p=0.85)+\mathbb{P}(X=19 \mid p=0.85) \\
& =0.099295 \approx 0.10
\end{aligned}
$$

Binomial with $\mathrm{n}=19$ and $\mathrm{p}=0.85$

| x | $\mathrm{P}(\mathrm{X}=\mathrm{x})$ |  |
| ---: | :--- | :--- |
| 6 | 0.000000 |  |
| 7 | 0.000002 |  |
| 8 | 0.000018 |  |
| 9 | 0.000123 |  |
| 10 | 0.000699 |  |
| 11 | 0.003242 |  |
| 12 | 0.012246 |  |
| 13 | 0.037366 |  |
| 14 | 0.090746 |  |
| 15 | 0.171409 |  |
| 16 | 0.242829 |  |
| 17 | 0.242829 |  |
| 18 | 0.152892 |  |
| 19 | 0.045599 | $\rightarrow P(X \leq 13)=0.053696$ |
|  |  |  |

```
\# Eg_6-3-1.py
from scipy.stats import binom
\(\mathrm{n}=19\)
\(\mathrm{p}=0.85\)
\(\mathrm{rv}=\operatorname{binom}(\mathrm{n}, \mathrm{p})\)
low \(=r v \cdot p p f(0.05)\)
upper \(=\) rv.ppf(0.95)
left \(=\) round(rv.cdf(low), 6)
right \(=\) round ( \(1-\) rv.cdf(upper), 6 )
both \(=\) round(rv.cdf(low) \(+1-\) rv.cdf(upper), 6)
Results = " " "
    The critical regions is less or equal to \{low:.0f\}, or strictly greater than \{upper:.0f\}.
    The size of the tail is \(\{l\) left:. 6 f\(\}\) and that of the right tail is \{right:. 6 f\(\}\).
    Under this critical region, the level of significance is \(\{\) both:. 6 f\(\}\)
"" ".format(**locals())
print(Results)
```

```
In [487]: run Eg_6-3-1.py
    The critical regions is less or equal to 13, or strictly greater than 18.
    The size of the left tail is 0.053696 and that of the right tail is 0.045599.
    Under this critical region, the level of significance is 0.099296
```

$$
X \sim \operatorname{Binomial}(100,1 / 2)
$$



$$
\begin{gathered}
\mathbb{P}(X \geq 54)=\sum_{n=54}^{100}\binom{100}{n}\left(\frac{1}{2}\right)^{n}\left(\frac{1}{2}\right)^{100-n}=0.2421 . \\
\mathbb{P}\left(\frac{X-50}{\sqrt{100 \times \frac{1}{2} \times \frac{1}{2}}} \geq \frac{54-50}{\sqrt{100 \times \frac{1}{2} \times \frac{1}{2}}}\right) \approx \mathbb{P}\left(Z \geq \frac{4}{5}\right)=0.2119
\end{gathered}
$$

$$
X \sim \operatorname{Binomial}(100,1 / 2)
$$



$$
\mathbb{P}(X \geq 60)=\sum_{n=60}^{100}\binom{100}{n}\left(\frac{1}{2}\right)^{n}\left(\frac{1}{2}\right)^{100-n}=0.0284
$$

VS

$$
\mathbb{P}\left(\frac{X-50}{\sqrt{100 \times \frac{1}{2} \times \frac{1}{2}}} \geq \frac{60-50}{\sqrt{100 \times \frac{1}{2} \times \frac{1}{2}}}\right) \approx \mathbb{P}(Z \geq 2)=0.0228
$$

# Chapter 6. Hypothesis Testing 

§ 6.1 Introduction
§ 6.2 The Decision Rule
§ 6.3 Testing Binomial Data $-H_{0}: p=p_{0}$
§ 6.4 Type I and Type II Errors
§ 6.5 A Notion of Optimality: The Generalized Likelihood Ratio

|  | True State of Nature |  |
| :---: | :---: | :---: |
|  | $H_{0}$ is true | $H_{1}$ is true |
| Fail to reject $H_{0}$ | Correct | Type II error |
|  | Type I error | Correct |


|  |  | Null hypothesis $\left(H_{0}\right)$ is |  |
| :---: | :---: | :---: | :---: |
| Table of error types | True |  | False |
|  | Don't <br> reject | Correct inference <br> (true negative) <br> (probability = 1 - $\alpha$ ) | Type II error <br> (false negative) <br> (probability = $\beta$ ) |
| about null <br> hypothesis $\left(H_{0}\right)$ | Reject | Type I error <br> (false positive) <br> (probability $=\alpha)$ | Correct inference <br> (true positive) |
| (probability = 1- $\beta$ ) |  |  |  |

$$
\alpha:=\mathbb{P}(\text { Type } I \text { error })=\mathbb{P}\left(\text { Reject } H_{0} \mid H_{0} \text { is true }\right)
$$

By convention, $H_{0}$ is always of the form, e.g., $\mu=\mu_{0}$. So this probability can be exactly determined. It is equal to the level of significance $\alpha$.
(Simple null test)

## Type II error $\sim \beta$

$$
\beta:=\mathbb{P}(\text { Type II error })=\mathbb{P}\left(\text { Fail to reject } H_{0} \mid H_{1} \text { is true }\right)
$$

In order to compute Type II error, we need to specify a concrete alternative hypothesis.


Figure: One-sided inference $H_{1}: \mu>\mu_{0}$


Figure: Two-sided inference $H_{1}: \mu \neq \mu_{0}$

## Power of test $1-\beta$

Power of test $=\mathbb{P}\left(\right.$ Reject $H_{0} \mid H_{1}$ is true $)=1-\beta$


One online interactive show all $\alpha, \beta$ and $1-\beta$ : https://rpsychologist.com/d3/NHST/

## Two-sided test




## One-sided test




Use the power curves to select methods (steepest one!)


$$
\alpha \uparrow \quad \Longrightarrow \quad \beta \downarrow \quad \text { and } \quad(1-\beta) \uparrow
$$



Accept $H_{0} \longleftrightarrow$ Reject $H_{0}$


Accept $H_{0} \longleftrightarrow$ Reject $H_{0}$

$$
\sigma \downarrow \quad \Longrightarrow \quad \beta \downarrow \quad \text { and } \quad(1-\beta) \uparrow
$$

When $\sigma=2.4$


One usually cannot control the given parameter $\sigma$. But one can achieve the same power of test by increasing the sample size $n$.
E.g. Test $H_{0}: \mu=100$ v.s. $H_{1}: \mu>100$ at $\alpha=0.05$ with $\sigma=14$ known. Requirement: $1-\beta=0.60$ when $\mu=103$.
Find smallest sample size $n$.
Remark: Two condisions: $\alpha=0.05$ and $1-\beta=0.60$
Two unknowns: Critical value $y^{*}$ and sample size $n$

Sol.

$$
C=\left\{z: z=\frac{\bar{y}-\mu_{0}}{\sigma / \sqrt{n}} \geq z_{\alpha}\right\} .
$$

$$
\begin{aligned}
1-\beta & =\mathbb{P}\left(\left.\frac{\bar{Y}-\mu_{0}}{\sigma / \sqrt{n}} \geq z_{\alpha} \right\rvert\, \mu_{1}\right) \\
& =\mathbb{P}\left(\left.\frac{\bar{Y}-\mu_{1}}{\sigma / \sqrt{n}}+\frac{\mu_{1}-\mu_{0}}{\sigma / \sqrt{n}} \geq z_{\alpha} \right\rvert\, \mu_{1}\right) \\
& =\mathbb{P}\left(\left.Z \geq-\frac{\mu_{1}-\mu_{0}}{\sigma / \sqrt{n}}+z_{\alpha} \right\rvert\, \mu_{1}\right) \\
& =\Phi\left(\frac{\mu_{1}-\mu_{0}}{\sigma / \sqrt{n}}-z_{\alpha}\right) \\
\frac{\mu_{1}-\mu_{0}}{\sigma / \sqrt{n}}-z_{\alpha} & =\Phi^{-1}(1-\beta) \Longleftrightarrow n=\left(\sigma \times \frac{\Phi^{-1}(1-\beta)+z_{\alpha}}{\mu_{1}-\mu_{0}}\right)^{2} \\
n= & {\left[\left(14 \times \frac{0.2533+1.645}{103-100}\right)^{2}\right]=\lceil 78.48\rceil=79 . }
\end{aligned}
$$

R

$$
\begin{gathered}
z_{\alpha}=\operatorname{qnorm}(1-\alpha) \\
\Phi^{-1}(1-\beta)=\operatorname{qnorm}(1-\beta)
\end{gathered}
$$

Python
$z_{\alpha}=$ scipy.stats.norm.ppf( $\left.1-\alpha\right)$ $Z_{\alpha}=$ scipy.stats.norm.ppf( $\left.1-\alpha\right)$
$\Phi^{-1}(1-\beta)=$ scipy.stats.norm. $\operatorname{ppf}(1-\beta)$

## Nonnormal data

Test $H_{0}: \theta=\theta_{0}$, with $f_{Y}(y ; \theta)$ is not normal distribution.

1. Identify a sufficient estimator $\widehat{\theta}$ for $\theta$
2. Find the critical region $C$ : Least compatible with $H_{0}$ but still admissible under $H_{1}$
3. Three types of questions:

Given $\alpha \rightarrow$ find $C \rightarrow \beta, 1-\beta \ldots$
From $C \rightarrow$ determine $\alpha$
From $\theta_{e} \rightarrow$ find $P$-value

## Examples for nonnormal data

E.g. 1. A random sample of size $n$ from uniform distr. $f_{Y}(y ; \theta)=1 / \theta, y \in[0, \theta]$. To test

$$
H_{0}: \theta=2.0 \quad \text { v.s. } \quad H_{1}: \theta<2.0
$$

at the level $\alpha=0.10$ of significance, one can use the decision rule based on $Y_{\max }$. Find the probability of committing a Type II error when $\theta=1.7$.

Remark: $Y_{\max }$ is a sufficient estimator for $\theta$. Why?

Sol. 1) The critical region should has the form: $C=\left\{y_{\max }: y_{\max } \leq c\right\}$.
2) We need to use the condition $\alpha=0.10$ to find $c$.
3) Find the prob. of Type II error.

$$
\begin{aligned}
& f_{Y_{\max }}(y)=\ldots=n \frac{y^{n-1}}{\theta^{n}} \quad y \in[0, \theta] \\
& \alpha=\int_{0}^{c} n \frac{y^{n-1}}{\theta_{0}^{n}} \mathrm{~d} y=\left(\frac{c}{\theta_{0}}\right)^{n} \quad \Longrightarrow \quad c=\theta_{0} \alpha^{1 / n} \quad\left(\text { Under } H_{0}: \theta=\theta_{0}\right) \\
& \beta=\int_{\theta_{0} \alpha^{1 / n}}^{\theta_{1}} n \frac{y^{n-1}}{\theta_{1}^{n}} \mathrm{~d} y=1-\left(\frac{\theta_{0}}{\theta_{1}}\right)^{n} \alpha \\
& \text { (Under } \theta=\theta_{1} \text { ) }
\end{aligned}
$$

Finally, we need only plug in the values $\theta_{0}=2, \theta_{1}=1.7$ and $\alpha=0.10$.
E.g. 2. A random sample of size 4 from $\operatorname{Poisson}(\lambda): p_{X}(k ; \lambda)=e^{-\lambda} \lambda^{k} / k$ !, $k=0,1, \cdots$. One wants to test

$$
H_{0}: \lambda=0.8 \quad \text { v.s. } \quad H_{1}: \lambda>0.8
$$

at the level $\alpha=0.10$. Find power of test when $\lambda=1.2$.

Sol. 1) We've seen: $\bar{X}=\sum_{i=1}^{4} X_{i}$ is a sufficent estimator for $\lambda$;

$$
\bar{X} \sim \text { Poisson }(3.2)
$$

2) $C=\{\bar{k} ; \bar{k} \geq c\}$.
3) $\alpha=0.10 \rightarrow c=6$.
4) Alternative $\lambda=1.2 \rightarrow 1-\beta=0.35$.

Finding critical region

| k | $\mathrm{P}(\mathrm{X}=\mathrm{k})$ | $\mathbf{P}(\mathbf{X}<=k)$ | P(X>k) | $\mathrm{P}(\mathrm{X}>=\mathrm{k})$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0.0408 | 0.0408 | 0.9592 | 1 |
| 1 | 0.1304 | 0.1712 | 0.8288 | 0.9592 |
| 2 | 0.2087 | 0.3799 | 0.6201 | 0.8288 |
| 3 | 0.2226 | 0.6025 | 0.3975 | 0.6201 |
| 4 | 0.1781 | 0.7806 | 0.2194 | 0.3975 |
| 5 | 0.114 | 0.8946 | 0.1054 | 0.2194 |
| 6 | 0.0608 | 0.9554 | 0.0446 | 0.1054 |
| 7 | 0.0278 | 0.9832 | 0.0168 | 0.0446 |
| 8 | 0.0111 | 0.9943 | 0.0057 | 0.0168 |
| 9 | 0.004 | 0.9982 | 0.0018 | 0.0057 |
| 10 | 0.0013 | 0.9995 | 0.0005 | 0.0018 |
| 11 | 0.0004 | 0.9999 | 0.0001 | 0.0005 |
| 12 | 0.0001 | 1 | 0 | 0.0001 |
| 13 | 0 | 1 | 0 | 0 |
| 14 | 0 | 1 | 0 | 0 |
| Poisson lambda= 3.2 |  |  |  |  |

```
1 > qpois(1-0.10,3.2) 1 > scipy.stats.poisson.ppf(1-0.10,3.2)
2 [1] 6 2 [1] 6
```

| $\mathbf{k}$ | $\mathbf{P}(\mathbf{X}=\mathbf{k})$ | $\mathbf{P}(\mathbf{X}<=\mathbf{k})$ | $\mathbf{P}(\mathbf{X}>\mathbf{k})$ | $\mathbf{P}(\mathbf{X}>=\mathrm{k})$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0.0082 | 0.0082 | 0.9918 | 1 |
| 1 | 0.0395 | 0.0477 | 0.9523 | 0.9918 |
| 2 | 0.0948 | 0.1425 | 0.8575 | 0.9523 |
| 3 | 0.1517 | 0.2942 | 0.7058 | 0.8575 |
| 4 | 0.182 | 0.4763 | 0.5237 | 0.7058 |
| 5 | 0.1747 | 0.651 | 0.349 | 0.5237 |
| 6 | 0.1398 | 0.7908 | 0.2092 | 0.349 |
| 7 | 0.0959 | 0.8867 | 0.1133 | 0.2092 |
| 8 | 0.0575 | 0.9442 | 0.0558 | 0.1133 |
| 9 | 0.0307 | 0.9749 | 0.0251 | 0.0558 |
| 10 | 0.0147 | 0.9896 | 0.0104 | 0.0251 |
| 11 | 0.0064 | 0.996 | 0.004 | 0.0104 |
| 12 | 0.0026 | 0.9986 | 0.0014 | 0.004 |
| 13 | 0.0009 | 0.9995 | 0.0005 | 0.0014 |
| 14 | 0.0003 | 0.9999 | 0.0001 | 0.0005 |
| 15 | 0.0001 | 1 | 0 | 0.0001 |
| 16 | 0 | 1 | 0 | 0 |
| 17 | 0 | 1 | 0 | 0 |
| 18 | 0 | 1 | 0 | 0 |
| 19 | 0 | 1 | 0 | 0 |
| 20 | 0 | 1 | 0 | 0 |

$$
1-\beta=\mathbb{P}\left(\text { Reject } H_{0} \mid H_{1} \text { is true }\right)=\mathbb{P}(\bar{X} \geq 6 \mid \bar{X} \sim \operatorname{Poisson}(4.8))
$$

```
1 > 1-ppois(6-1,4.8) 1 > 1-scipy.stats.poisson.cdf(6-1,4.8)
2 [1] 0.3489936 2 [1] 0.3489935627305083
```

```
PlotPoissonTable <- function(n=14,lambda=3.2,png_filename,TableTitle) \{
    library (gridExtra)
    library (grid)
    library(gtable)
    \(\mathrm{x}=\operatorname{seq}(1, \mathrm{n}, 1)\)
    \# qpois(0.90,lambda)
    \(\mathrm{tb}=\mathrm{cbind}(\mathrm{x}\),
        round(dpois(x,lambda),4),
        round(ppois(x,lambda),4),
        round(1-ppois(x,lambda),4),
        round \((c(1,(1-\operatorname{ppois}(x, l a m b d a))[1: n]), 4))\)
    colnames \((\mathrm{tb})<-\mathrm{c}(" \mathrm{k} "\), " \(\mathrm{P}(\mathrm{X}=\mathrm{k})\) ", "P \((\mathrm{X}<=\mathrm{k})\) ", " \(\mathrm{P}(\mathrm{X}>\mathrm{k}) "\), " \(\mathrm{P}(\mathrm{X}>=\mathrm{k}) ")\)
    rownames \((\mathrm{tb})<-\mathrm{x}\)
    table \(<-\) tableGrob(tb,rows \(=\) NULL \()\)
    title \(<-\) textGrob(TableTitle,gp=gpar(fontsize=12))
    footnote \(<-\) textGrob(paste("Poisson lambda=",lambda),
                \(\mathrm{x}=0\), hjust \(=0, \mathrm{gp}=\operatorname{gpar}(\) fontface \(=\) "italic" \())\)
    padding \(<-\) unit( 0.2, "line")
    table \(<-\) gtable_add_rows(table, heights \(=\) grobHeight(title) + padding,pos \(=0\) )
    table \(<-\) gtable_add_rows(table, heights \(=\) grobHeight(footnote) + padding \()\)
    table \(<-\) gtable_add_grob(table, list(title, footnote),
                        \(\mathrm{t}=\mathrm{c}(1\), nrow \((\) table \()), \mathrm{l}=\mathrm{c}(1,2), \mathrm{r}=\mathrm{ncol}(\) table \())\)
    png(png filename)
    grid.draw(table)
    dev.off()
\}
PlotPoissonTable(14,3.2,"Example_6-4-3_1.png","Finding critical region")
PlotPoissonTable(20,4.8,"Example_6-4-3_2.png","Computing power of test")
```

The $R$ code to produce the previous two Poisson tables.
E.g. 3. A random sample of size 7 from $f_{y}(y ; \theta)=(\theta+1) y^{\theta}, y \in[0,1]$. Test

$$
H_{0}: \theta=2.0 \quad \text { v.s. } \quad H_{1}: \theta>2.0
$$

Decision rule: Let $X$ be the number of $y_{i}$ 's that exceed 0.9 ;

$$
\text { Reject } H_{0} \text { if } X \geq 4
$$

Find $\alpha$.
Sol. 1) $X \sim \operatorname{binomial}(7, p)$.
2) Find $p$ :

$$
\begin{aligned}
p & =\mathbb{P}\left(Y \geq 0.9 \mid H_{0} \text { is true }\right) \\
& =\int_{0.9}^{1} 3 y^{2} \mathrm{~d} y=0.271
\end{aligned}
$$

3) Compute $\alpha$ :

$$
\alpha=\mathbb{P}(X \geq 4 \mid \theta=2)=\sum_{k=4}^{7}\binom{7}{k} 0.271^{k} 0.729^{7-k}=0.092 .
$$

```
1 > 1-pbinom(3,7,0.271) 1 > 1-scipy.stats.binom.cdf(3, 7, 0.271)
2 [1] 0.09157663 2 [1] 0.09157663095582469
```


# Chapter 6. Hypothesis Testing 

§ 6.1 Introduction
§ 6.2 The Decision Rule
§ 6.3 Testing Binomial Data $-H_{0}: p=p_{0}$
§ 6.4 Type I and Type II Errors
§ 6.5 A Notion of Optimality: The Generalized Likelihood Ratio

## Difficulties

Scalar parameter
Simple-vs-Composite test
$H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta \neq \theta_{0}$

Vector parameter
$\Rightarrow \quad$ Composite-vs-Composite test $H_{0}: \theta \in \omega$ vs $H_{1}: \theta \in \Omega \cap \omega^{c}$
E.g. Two normal populations $N\left(\mu_{i}, \sigma_{i}\right), i=1,2$. $\sigma_{i}$ are known, $\mu_{i}$ unknown.

$$
H_{0}: \mu_{1}=\mu_{2} \quad \text { vs } \quad H_{1}: \mu_{1} \neq \mu_{2}
$$

Equivalently,

$$
H_{0}:\left(\mu_{1}, \mu_{2}\right) \in \omega \quad \text { vs } \quad H_{1}:\left(\mu_{1}, \mu_{2}\right) \notin \omega .
$$



Let $Y_{1}, \cdots, Y_{n}$ be a random sample of size $n$ from $f_{Y}\left(y ; \theta_{1}, \cdots, \theta_{k}\right)$
Let $\Omega$ be all possible values of the parameter vector $\left(\theta_{1}, \cdots, \theta_{k}\right)$

- Let $\omega \subseteq \Omega$ be a subset of $\Omega$.
- Test:

$$
H_{0}: \theta \in \omega \quad \text { vs } \quad H_{1}: \theta \in \Omega \backslash \omega .
$$

- The generalized likelihood ratio, $\lambda$, is defined as

$$
\lambda:=\frac{\max _{\left(\theta_{1}, \cdots, \theta_{k}\right) \in \omega} L\left(\theta_{1}, \cdots, \theta_{k}\right)}{\max _{\left(\theta_{1}, \cdots, \theta_{k}\right) \in \Omega} L\left(\theta_{1}, \cdots, \theta_{k}\right)}
$$

$$
\lambda \in(0,1]
$$

```
\(\lambda\) close to zero
data NOT compatible with \(H_{0}\) reject \(H_{0}\)
```

$\lambda$ close to one
data compatible with $H_{0}$ accept $H_{0}$

- Generalized likelihood ratio test (GLRT): Use the following critical region

$$
C=\left\{\lambda: \lambda \in\left(0, \lambda^{*}\right]\right\}
$$

to reject $H_{0}$ with either $\alpha$ or $y^{*}$ being determined through

$$
\alpha=\mathbb{P}\left(0<\Lambda \leq \lambda^{*} \mid H_{0} \text { is true }\right) .
$$

Remarks:

1. Maximization over $\Omega$ instead of $\Omega \backslash \omega$ in denominator:

In practice, little effect on this change.
In theory, much easier/nicer: $L\left(\theta_{1}, \cdots, \theta_{k}\right)$ is maximized over the whole space $\Omega$ by the max. likelihood estimates: $\Omega_{e}:=\left(\theta_{e, 1}, \cdots, \theta_{e, k}\right) \in \Omega$.
2. Suppose the maximization over $\omega$ is achieved at $\omega_{e} \in \omega$.
3. Hence:

$$
\lambda=\frac{L\left(\omega_{e}\right)}{L\left(\Omega_{e}\right)} .
$$

Remarks;
4. For simple-vs-composite test, $\omega=\left\{\omega_{0}\right\}$ consists only one point:

$$
\lambda=\frac{L\left(\omega_{0}\right)}{L\left(\Omega_{e}\right)} .
$$

5. Working with $\Lambda$ is hard since $f_{\Lambda}\left(\lambda \mid H_{0}\right)$ is hard to obtain.

If $\Lambda$ is a (monotonic) function of some r.v. $W$, whose pdf is known.
Suggesting testing procedure Test based on $\lambda \quad \Longleftrightarrow$ Test based on $w$.
E.g. 1 Let $Y_{1}, \cdots, Y_{n}$ be a random sample of size $n$ from the uniform pdf: $f_{Y}(y: \theta)=1 / \theta, y \in[0, \theta]$. Find the form of GLRT for

$$
H_{0}: \theta=\theta_{0} \quad \text { v.s. } \quad H_{1}: \theta<\theta_{0} \quad \text { with given } \alpha .
$$

Sol. 1) The null hypothesis is simple, and hence

$$
L\left(\omega_{e}\right)=L\left(\theta_{0}\right)=\theta_{0}^{-n} \prod_{i=1}^{n} I_{\left[0, \theta_{0}\right]}\left(y_{i}\right)=\theta^{-n} I_{\left[0, \theta_{0}\right]}\left(y_{\max }\right) .
$$

2) The MLE for $\theta$ is $y_{\text {max }}$ and hence,

$$
L\left(\Omega_{e}\right)=L\left(y_{\max }\right)=y_{\max }^{-n} I_{\left[0, y_{\max }\right]}\left(y_{\max }\right)=y_{\max }^{-n} .
$$

3) Hence,

$$
\lambda=\frac{L\left(\omega_{e}\right)}{L\left(\Omega_{e}\right)}=\left(\frac{y_{\max }}{\theta_{0}}\right)^{n} I_{\left[0, \theta_{0}\right]}\left(y_{\max }\right)
$$

that is, the test statistic is

$$
\Lambda=\left(\frac{Y_{\max }}{\theta_{0}}\right)^{n} I_{\left[0, \theta_{0}\right]}\left(Y_{\max }\right)
$$

4) $\alpha$ and critical value $\lambda^{*}$ :

$$
\begin{aligned}
\alpha & =\mathbb{P}\left(0<\Lambda \leq \lambda^{*} \mid H_{0} \text { is true }\right) \\
& =\mathbb{P}\left(\left.\left[\frac{Y_{\max }}{\theta_{0}}\right]^{n} I_{\left[0, \theta_{0}\right]}\left(Y_{\max }\right) \leq \lambda^{*} \right\rvert\, H_{0} \text { is true }\right) \\
& =\mathbb{P}\left(Y_{\max } \leq \theta_{0}\left(\lambda^{*}\right)^{1 / n} \mid H_{0} \text { is true }\right)
\end{aligned}
$$

$\Lambda$ suggests the test statistic $Y_{\text {max }}$ :

Test based on $\lambda \Longleftrightarrow$ Test based of $y_{\max }$
5) Let's find the pdf of $Y_{\max }$. The cdf of $Y$ is $F_{Y}\left(y ; \theta_{0}\right)=y / \theta_{0}$ for $y \in\left[0, \theta_{0}\right]$. Hence,

$$
\begin{aligned}
f_{Y_{\max }}\left(y ; \theta_{0}\right) & =n F_{Y}\left(y ; \theta_{0}\right)^{n-1} f_{Y}\left(y ; \theta_{0}\right) \\
& =\frac{n y^{n-1}}{\theta_{0}^{n}}, \quad y \in\left[0, \theta_{0}\right] .
\end{aligned}
$$

6) Finally, by setting $y^{*}:=\theta_{0}\left(\lambda^{*}\right)^{1 / n}$, we see that

$$
\begin{aligned}
\alpha & =\mathbb{P}\left(Y_{\max } \leq y^{*} \mid H_{0} \text { is true }\right) \\
& =\int_{0}^{y^{*}} \frac{n y^{n-1}}{\theta_{0}^{n}} \mathrm{~d} y \\
& =\frac{\left(y^{*}\right)^{n}}{\theta_{0}^{n}} \Longleftrightarrow y^{*}=\theta_{0} \alpha^{1 / n} .
\end{aligned}
$$

7) Therefore, $H_{0}$ is rejected if

$$
y_{\max } \leq \theta_{0} \alpha^{1 / n}
$$

E.g. 2 Let $X_{1}, \cdots, X_{n}$ be a random sample from the geometric distribution with parameter $p$.
Find a test statistic $\Lambda$ for testing $H_{0}: p=p_{0}$ versus $H_{1}: p \neq p_{0}$.
Sol. Let $\bar{X}$ and $\bar{k}$ be the sample mean. Because the null hypothesis is simple,

$$
L\left(\omega_{e}\right)=L\left(p_{0}\right)=\prod_{i=1}^{n}\left(1-p_{0}\right)^{k_{i}-1} p_{0}=\left(1-p_{0}\right)^{n \bar{k}-n} p_{0}^{n},
$$

which shows that $\bar{k}$ is a sufficient estimator.
On the other hand, the MLE for the parameter $p$ is $1 / \bar{k}$. So

$$
L\left(\Omega_{e}\right)=L(1 / \bar{k})=\prod_{i=1}^{n}\left(1-\frac{1}{\bar{k}}\right)^{k_{i}-1} \frac{1}{\bar{k}}=\left(\frac{\bar{k}-1}{\bar{k}}\right)^{n \bar{k}-n} \frac{1}{\bar{k}^{n}} .
$$

Hence,

$$
\lambda=\frac{L\left(\omega_{e}\right)}{L\left(\Omega_{e}\right)}=\left(\frac{\bar{k}\left(1-p_{0}\right)}{\bar{k}-1}\right)^{n \bar{k}-n}\left(p_{0} \bar{k}\right)^{n}
$$

Finally, $\Lambda=\left(\frac{\bar{X}\left(1-p_{0}\right)}{\bar{X}-1}\right)^{n \bar{X}-n}\left(p_{0} \bar{X}\right)^{n}$.
E.g. 3 Let $Y_{1}, \cdots, Y_{n}$ be a random sample from the exponential distribution with parameter $\lambda$.
Find a test statistic $V$ for testing $H_{0}: \lambda=\lambda_{0}$ versus $H_{1}: \lambda \neq \lambda_{0}$.

Sol. Since the null hypothesis is simple,

$$
L\left(\omega_{e}\right)=L\left(\lambda_{0}\right)=\prod_{i=1}^{n} \lambda_{0} e^{-\lambda_{0} y_{i}}=\lambda_{0}^{n} e^{-\lambda_{0} \sum_{i=1}^{n} y_{i}}
$$

Let $Z=\sum_{i=1}^{n} Y_{i} \sim \operatorname{Gamma}(n, \lambda)$, which is a sufficient estimator.
On the other hand, the MLE for $\lambda$ is $1 / \bar{y}=n / z$ :

$$
L\left(\Omega_{e}\right)=L(1 / \bar{y})=(n / z)^{n} e^{-n}
$$

Hence,

$$
\lambda=\frac{L\left(\omega_{e}\right)}{L\left(\Omega_{e}\right)}=z^{n} n^{-n} \lambda_{0}^{n} e^{-\lambda_{0} z+n}
$$

Finally, $\Lambda=Z^{n} n^{-n} \lambda_{0}^{n} e^{-\lambda_{0} Z+n} \quad$ or $\quad V=Z^{n} e^{-\lambda_{0} Z}$.

The critical region in terms of $V$ should be:

$$
\begin{aligned}
0.05=\alpha & =\mathbb{P}\left(V \in\left(0, y^{*}\right] \mid H_{0} \text { is true }\right) \\
& =\int_{0}^{y^{*}} f_{V}(v) \mathrm{d} v
\end{aligned}
$$

However, it is not easy to find the exact distribution of $V$.

One can also make the inference based on the test statistic $Z \ldots$


This suggests that the critical region in terms of $z$ should be of the form:

$$
\left(0, c_{1}\right) \cup\left(c_{2}, \infty\right)
$$

For convenience, we put $\alpha / 2$ mass on each tails of the density of $Z$ :
Find $C_{1}$ and $C_{2}$ such that

$$
\int_{0}^{c_{1}} f_{Z}(z) d z=\int_{c_{2}}^{\infty} f_{Z}(z) d z=\frac{\alpha}{2}
$$

|  | using $V$ | using $Z$ |
| :---: | :---: | :---: |
| Critical region | $\left(0, v^{*}\right]$ | $\left(0, z_{1}\right] \cup\left[z_{2}, \infty\right)$ |
| pdf | hard to obtain | $\operatorname{Gamma}(n, \lambda)$ |

E.g. 4 Let $Y_{1}, \cdots, Y_{n}$ be a random sample from $N(\mu, 1)$.

Find a test statistic $\Lambda$ for testing $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu \neq \mu_{0}$.

Sol. Since the null hypothesis is simple,

$$
L\left(\omega_{e}\right)=L\left(\mu_{0}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\left(y_{i}-\mu_{0}\right)^{2}}{2}} .
$$

On the other hand, the MLE for $\mu$ is $\bar{y}$ :

$$
L\left(\Omega_{e}\right)=L(\bar{y})=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\left(y_{i}-\bar{y}\right)^{2}}{2}} .
$$

Hence,
$\lambda=\frac{L\left(\omega_{e}\right)}{L\left(\Omega_{e}\right)}=\exp \left(-\sum_{i=1}^{n} \frac{\left(y_{i}-\mu_{0}\right)^{2}-\left(y_{i}-\bar{y}\right)^{2}}{2}\right)=\exp \left(-\frac{n\left(\bar{y}-\mu_{0}\right)^{2}}{2}\right)$.
Finally, $\Lambda=\exp \left(-\frac{n}{2}\left(\bar{Y}-\mu_{0}\right)^{2}\right) \quad$ or $\quad V=\frac{\bar{Y}-\mu_{0}}{1 / \sqrt{n}} \sim N(0,1)$

