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Instead of numerical estimates of parameters, in the form of either single
points or confidence intervals, we want to make a choice between two
conflicting theories, or hypothesis:

1. H0: the null hypothesis
v.s.

2. H1: the alternative hypothesis

Comments: Hypothesis testing and confidence intervals are dual concepts
to each other:
I One can be obtained from the other.
I However, it is often difficult to specify µ0 to the null hypothesis.
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Go over the example first....
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Suppose our friend Jory claims that he has
some magic power to predict the side of a

randomly tossed fair-coin.

Jory claims that he could do more than
1/2

of the time on average.

Let’s test Jory to see if we believe his claim.
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We made Jory guess a repeatedly tossed coin
for 100 times.

He guesses correctly 54 times.

Question:
Does this provide strong evidence that Jory

has the proclaimed magic power?
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If Jory is guessing randomly, the number of correct guesses would follow a
binomial distribution with parameters n = 100 and p = 1/2.
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What is probability that Jory gets 54 or more correct when guessing
randomly?

P (X ≥ 54) =

100∑
n=54

(
100

n

)(
1

2

)n (
1

2

)100−n

= 0.2421.
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It is not unlikely to get this many correct
guesses due to chance.

Conclusion:

There is No strong evidence that Jory has
better than a 1/2 chance of correctly

guessing the coin.
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What is probability that Jory gets 60 or more correct when guessing
randomly?

P (X ≥ 60) =

100∑
n=60

(
100

n

)(
1

2

)n (
1

2

)100−n

= 0.0284.
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Either

Jory is purely guessing with probability of
success of 1

2
, and we witnessed a very

unusual event due to chance.

Or

Jory is truly having the magic power to guess
the coin.

Conclusion:

We have strong evidence against
Red Hypothesis

Or the test is in favor of
Green Hypothesis
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Before testing Jory, could you set up a
threshold above which we will believe Jory’s

super power?

Find smallest m such that

P (X ≥ m) =

100∑
n=m

(
100

n

)(
1

2

)n (
1

2

)100−n

≤ 0.05

⇓

m = 59

b.c. P (X ≥ 58) = 0.067 & P (X ≥ 59) = 0.044
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We have just informally conducted a
hypothesis test with the

null hypothesis

H0 : p =
1

2

against the
alternative hypothesis

H1 : p >
1

2

under the
significance level α = 0.05

which is equivalent to either

producing the
critical region

m ≥ 59
or comparing with

the p-value.
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I Test statistic: Any function of the observed data whose numerical
value dictates whether H0 is accepted or rejected.

I Critical region C: The set of values for the test statistic that result in
the null hypothesis being rejected.

Critical value: The particular point in C that separates the rejection
region from the acceptance region.

I Level of significance α: The probability that the test statistic lies in
the critical region C under H0.
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Test Normal mean H0 : µ = µ0 (σ known)

Setup:
1. Let Y1 = y1, · · · ,Yn = yn be a random sample of size n from N(µ, σ2)

with σ known.
2. Set ȳ = 1

n (y1 + · · ·+ yn) and z = ȳ−µ0

σ/
√

n .

3. The level of significance is α.

Test:{
H0 : µ = µ0

H1 : µ > µ0

reject H0 if z ≥ zα.

{
H0 : µ = µ0

H1 : µ < µ0

reject H0 if z ≤ −zα.

{
H0 : µ = µ0

H1 : µ 6= µ0

reject H0 if |z| ≥ zα/2.
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n (y1 + · · ·+ yn) and z = ȳ−µ0
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I Simple hypothesis: Any hypothesis which specifies the population
distribution completely.

I Composite hypothesis: Any hypothesis which does not specify the
population distribution completely.

Conv. We always assume H0 is simple and H1 is composite.
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Definition. The P-value associated with an observed test statistic is the
probability of getting a value for that test statistic as extreme as or more
extreme than what was actually observed (relative to H1) given that H0 is
true.

Note: Test statistics that yield small P-values should be interpreted as
evidence against H0.

E.g. Suppose that test statistic z = 0.60. Find P-value for{
H0 : µ = µ0

H1 : µ > µ0

P(Z ≥ 0.60) = 0.2743.

{
H0 : µ = µ0

H1 : µ < µ0

P(Z ≤ 0.60) = 0.7257.

{
H0 : µ = µ0

H1 : µ 6= µ0

P(|Z | ≥ 0.60)

= 2× 0.2743

= 0.5486.
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Setup: Let X1 = k1, · · · ,Xn = kn be a‘ random sample of size n from
Bernoulli(p). X =

∑n
i=1 Xi ∼ Binomial(n, p). We want to test H0 : p = p0.

1. When n is large, use Z score. Large-sample test
2. Otherwise, use the exact binomial distribution. Small-sample test

n is large
m

0 < np0 − 3
√

np0(1− p0) < np0 + 3
√

np0(1− p0) < n

m

n > 9× max
(
1− p0

p0
,

p0

1− p0

)
.
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Large-sample test for p

Setup:
1. Let X1 = k1, · · · ,Xn = kn be a random sample of size n from

Bernoulli(p).

2. Suppose n > 9max
(

1−p0
p0

, p0
1−p0

)
.

3. Set k = k1 + · · ·+ kn and z = k−np0√
np0(1−p0)

.

4. The level of significance is α.

Test:{
H0 : p = p0

H1 : p > p0

reject H0 if z ≥ zα.

{
H0 : p = p0

H1 : p < p0

reject H0 if z ≤ −zα.

{
H0 : p = p0

H1 : p 6= p0

reject H0 if |z| ≥ zα/2.
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reject H0 if z ≥ zα.

{
H0 : p = p0

H1 : p < p0

reject H0 if z ≤ −zα.

{
H0 : p = p0

H1 : p 6= p0

reject H0 if |z| ≥ zα/2.
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Small-sample test for p

E.g. n = 19, p0 = 0.85, α = 0.10. Find critical region for the two-sided test{
H0 : p = p0

H1 : p 6= p0

Sol. 19 = n < 9× max
(
0.85
0.15

, 0.15
0.85

)
= 51, so small sample test.

By checking the table, the critical region is

C = {k : k ≤ 13 or k = 19},

so that

α = P(X ∈ C|H0 is true)
= P(X ≤ 13|p = 0.85) + P(X = 19|p = 0.85)

= 0.099295 ≈ 0.10.
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1 # Eg_6−3−1.py
2 from scipy.stats import binom
3 n = 19
4 p = 0.85
5 rv = binom(n, p)
6 low = rv.ppf(0.05)
7 upper = rv.ppf(0.95)
8 left = round(rv.cdf(low), 6)
9 right = round(1−rv.cdf(upper), 6)

10 both = round(rv.cdf(low)+1−rv.cdf(upper), 6)
11 Results = ”””\
12 The critical regions is less or equal to {low:.0f}, or strictly greater than {upper:.0f}.
13 The size of the tail is {left:.6f} and that of the right tail is {right:.6f}.
14 Under this critical region, the level of significance is {both:.6f}
15 ”””.format(∗∗locals())
16 print(Results)
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X ∼ Binomial(100, 1/2)

P (X ≥ 54) =

100∑
n=54

(
100

n

)(
1

2

)n (
1

2

)100−n

= 0.2421.

vs

P

 X − 50√
100× 1

2
× 1

2

≥ 54− 50√
100× 1

2
× 1

2

 ≈ P
(

Z ≥ 4

5

)
= 0.2119
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X ∼ Binomial(100, 1/2)

P (X ≥ 60) =

100∑
n=60

(
100

n

)(
1

2

)n (
1

2

)100−n

= 0.0284.

vs

P

 X − 50√
100× 1

2
× 1

2

≥ 60− 50√
100× 1

2
× 1

2

 ≈ P (Z ≥ 2) = 0.0228
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True State of Nature

H0 is true H1 is true

Fail to reject H0 Correct Type II error

Reject H0 Type I error Correct
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Type I error ∼ α

α := P(Type I error) = P(Reject H0|H0 is true)

By convention, H0 is always of the form, e.g., µ = µ0. So this probability
can be exactly determined. It is equal to the level of significance α.

(Simple null test)
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Type II error ∼ β

β := P(Type II error) = P(Fail to reject H0|H1 is true)

In order to compute Type II error, we need to specify a concrete alternative
hypothesis.

Figure: One-sided inference H1 : µ > µ0
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Type II error ∼ β

β := P(Type II error) = P(Fail to reject H0|H1 is true)

In order to compute Type II error, we need to specify a concrete alternative
hypothesis.

Figure: One-sided inference H1 : µ > µ0
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Figure: Two-sided inference H1 : µ 6= µ0
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Power of test 1− β

Power of test = P(Reject H0|H1 is true) = 1− β

One online interactive show all α, β and 1− β:
https://rpsychologist.com/d3/NHST/

37
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Two-sided test
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One-sided test
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Use the power curves to select methods
(steepest one!)

40



α ↑ =⇒ β ↓ and (1− β) ↑
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σ ↓ =⇒ β ↓ and (1− β) ↑

42



One usually cannot control the given parameter σ. But one can achieve the
same power of test by increasing the sample size n.

E.g. Test H0 : µ = 100 v.s. H1 : µ > 100 at α = 0.05 with σ = 14 known.
Requirement: 1− β = 0.60 when µ = 103.
Find smallest sample size n.

Remark: Two condisions: α = 0.05 and 1− β = 0.60
Two unknowns: Critical value y∗ and sample size n

Sol.

C =

{
z : z =

ȳ − µ0

σ/
√

n
≥ zα

}
.
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1− β = P
(

Y − µ0

σ/
√

n
≥ zα

∣∣∣∣µ1

)
= P

(
Y − µ1

σ/
√

n
+

µ1 − µ0

σ/
√

n
≥ zα

∣∣∣∣µ1

)
= P

(
Z ≥ −µ1 − µ0

σ/
√

n
+ zα

∣∣∣∣µ1

)
= Φ

(
µ1 − µ0

σ/
√

n
− zα

)
µ1 − µ0

σ/
√

n
− zα = Φ−1(1− β) ⇐⇒ n =

(
σ × Φ−1(1− β) + zα

µ1 − µ0

)2

n =

⌈(
14× 0.2533 + 1.645

103− 100

)2
⌉
= d78.48e = 79.

�

R
zα = qnorm(1− α)

Φ−1(1− β) = qnorm(1− β)

Python
zα = scipy.stats.norm.ppf(1− α)

Φ−1(1− β) = scipy.stats.norm.ppf(1− β)
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Nonnormal data

Test H0 : θ = θ0, with fY (y ; θ) is not normal distribution.

1. Identify a sufficient estimator θ̂ for θ

2. Find the critical region C: Least compatible with H0 but
still admissible under H1

3. Three types of questions:
Given α → find C → β, 1− β...
From C → determine α

From θe → find P-value
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Examples for nonnormal data

E.g. 1. A random sample of size n from uniform distr. fY (y ; θ) = 1/θ, y ∈ [0, θ].
To test

H0 : θ = 2.0 v.s. H1 : θ < 2.0

at the level α = 0.10 of significance, one can use the decision rule based
on Ymax . Find the probability of committing a Type II error when
θ = 1.7.

Remark: Ymax is a sufficient estimator for θ. Why?

Sol. 1) The critical region should has the form: C = {ymax : ymax ≤ c}.

2) We need to use the condition α = 0.10 to find c.

3) Find the prob. of Type II error.
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θ = 1.7.

Remark: Ymax is a sufficient estimator for θ. Why?

Sol. 1) The critical region should has the form: C = {ymax : ymax ≤ c}.

2) We need to use the condition α = 0.10 to find c.

3) Find the prob. of Type II error.
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fYmax (y) = ... = n
yn−1

θn y ∈ [0, θ].

α =

∫ c

0

n
yn−1

θn
0

dy =

(
c
θ0

)n

=⇒ c = θ0α
1/n (Under H0 : θ = θ0)

β =

∫ θ1

θ0α
1/n

n
yn−1

θn
1

dy = 1−
(
θ0
θ1

)n

α (Under θ = θ1)

Finally, we need only plug in the values θ0 = 2, θ1 = 1.7 and α = 0.10. �
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E.g. 2. A random sample of size 4 from Poisson(λ): pX (k ;λ) = e−λλk/k !,
k = 0, 1, · · · . One wants to test

H0 : λ = 0.8 v.s. H1 : λ > 0.8.

at the level α = 0.10. Find power of test when λ = 1.2.

Sol. 1) We’ve seen: X =
∑4

i=1 Xi is a sufficent estimator for λ;

X ∼ Poisson(3.2)

2) C = {k̄ ; k̄ ≥ c}.

3) α = 0.10 → c = 6.

4) Alternative λ = 1.2 → 1− β = 0.35.
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1 > qpois(1−0.10,3.2)
2 [1] 6

1 > scipy.stats.poisson.ppf(1−0.10,3.2)
2 [1] 6
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1− β = P (Reject H0 | H1 is true) = P(X ≥ 6|X ∼ Poisson(4.8))

�

1 > 1−ppois(6−1,4.8)
2 [1] 0.3489936

1 > 1−scipy.stats.poisson.cdf(6−1,4.8)
2 [1] 0.3489935627305083
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1 PlotPoissonTable <− function(n=14,lambda=3.2,png_filename,TableTitle) {
2 library(gridExtra)
3 library(grid)
4 library(gtable)
5 x = seq(1,n,1)
6 # qpois(0.90,lambda)
7 tb = cbind(x,
8 round(dpois(x,lambda),4),
9 round(ppois(x,lambda),4),

10 round(1−ppois(x,lambda),4),
11 round(c(1,(1−ppois(x,lambda))[1:n]),4))
12 colnames(tb) <− c(”k”, ”P(X=k)”, ”P(X<= k)”, ”P(X>k)”, ”P(X>=k)”)
13 rownames(tb) <−x
14 table <− tableGrob(tb,rows = NULL)
15 title <− textGrob(TableTitle,gp=gpar(fontsize=12))
16 footnote <− textGrob(paste(”Poisson lambda=”,lambda),
17 x=0, hjust=0, gp=gpar( fontface=”italic”))
18 padding <− unit(0.2,”line”)
19 table <− gtable_add_rows(table, heights = grobHeight(title) + padding,pos = 0)
20 table <− gtable_add_rows(table, heights = grobHeight(footnote)+ padding)
21 table <− gtable_add_grob(table, list(title, footnote),
22 t=c(1, nrow(table)), l=c(1,2),r=ncol(table))
23 png(png_filename)
24 grid.draw(table)
25 dev.off()
26 }
27

28 PlotPoissonTable(14,3.2,”Example_6−4−3_1.png”,”Finding critical region”)
29 PlotPoissonTable(20,4.8,”Example_6−4−3_2.png”,”Computing power of test”)

The R code to produce the previous two Poisson tables.
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E.g. 3. A random sample of size 7 from fY (y ; θ) = (θ + 1)yθ, y ∈ [0, 1]. Test

H0 : θ = 2.0 v.s. H1 : θ > 2.0

Decision rule: Let X be the number of yi ’s that exceed 0.9;
Reject H0 if X ≥ 4.

Find α.

Sol. 1) X ∼ binomial(7, p).
2) Find p:

p = P(Y ≥ 0.9|H0 is true)

=

∫ 1

0.9

3y2dy = 0.271

3) Compute α:

α = P(X ≥ 4|θ = 2) =
7∑

k=4

(
7

k

)
0.271k0.7297−k = 0.092.

�

1 > 1−pbinom(3,7,0.271)
2 [1] 0.09157663

1 > 1−scipy.stats.binom.cdf(3, 7, 0.271)
2 [1] 0.09157663095582469
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Difficulties

Scalar parameter

Simple-vs-Composite test
H0 : θ = θ0 vs H1 : θ 6= θ0

⇒
Vector parameter

Composite-vs-Composite test
H0 : θ ∈ ω vs H1 : θ ∈ Ω ∩ ωc

E.g. Two normal populations N(µi , σi), i = 1, 2.
σi are known, µi unknown.

H0 : µ1 = µ2 vs H1 : µ1 6= µ2.

Equivalently,

H0 : (µ1, µ2) ∈ ω vs H1 : (µ1, µ2) 6∈ ω.

µ1

µ2

ω
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I Let Y1, · · · ,Yn be a random sample of size n from fY (y ; θ1, · · · , θk )

I Let Ω be all possible values of the parameter vector (θ1, · · · , θk )

I Let ω ⊆ Ω be a subset of Ω.

I Test:
H0 : θ ∈ ω vs H1 : θ ∈ Ω \ ω.

I The generalized likelihood ratio, λ, is defined as

λ :=

max
(θ1,··· ,θk )∈ω

L(θ1, · · · , θk )

max
(θ1,··· ,θk )∈Ω

L(θ1, · · · , θk )
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λ ∈ (0, 1]

λ close to zero
data NOT compatible with H0

reject H0

λ close to one
data compatible with H0

accept H0

I Generalized likelihood ratio test (GLRT): Use the following critical
region

C = {λ : λ ∈ (0, λ∗]}

to reject H0 with either α or y∗ being determined through

α = P
(
0 < Λ ≤ λ∗

∣∣∣∣H0 is true
)
.
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Remarks:

1. Maximization over Ω instead of Ω \ ω in denominator:
In practice, little effect on this change.
In theory, much easier/nicer: L(θ1, · · · , θk ) is maximized over the whole
space Ω by the max. likelihood estimates: Ωe := (θe,1, · · · , θe,k ) ∈ Ω.

2. Suppose the maximization over ω is achieved at ωe ∈ ω.

3. Hence:
λ =

L(ωe)

L(Ωe)
.
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Remarks;

4. For simple-vs-composite test, ω = {ω0} consists only one point:

λ =
L(ω0)

L(Ωe)
.

5. Working with Λ is hard since fΛ(λ|H0) is hard to obtain.

If Λ is a (monotonic) function of some r.v. W , whose pdf is known.

Suggesting testing procedure

Test based on λ ⇐⇒ Test based on w .
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E.g. 1 Let Y1, · · · ,Yn be a random sample of size n from the uniform pdf:
fY (y : θ) = 1/θ, y ∈ [0, θ]. Find the form of GLRT for

H0 : θ = θ0 v.s. H1 : θ < θ0 with given α.

Sol. 1) The null hypothesis is simple, and hence

L(ωe) = L(θ0) = θ−n
0

n∏
i=1

I[0,θ0](yi) = θ−nI[0,θ0](ymax).

2) The MLE for θ is ymax and hence,

L(Ωe) = L(ymax) = y−n
max I[0,ymax ](ymax) = y−n

max .
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3) Hence,

λ =
L(ωe)

L(Ωe)
=

(
ymax

θ0

)n

I[0,θ0](ymax)

that is, the test statistic is

Λ =

(
Ymax

θ0

)n

I[0,θ0](Ymax).

4) α and critical value λ∗:

α = P(0 < Λ ≤ λ∗|H0 is true)

= P
([

Ymax

θ0

]n

I[0,θ0](Ymax) ≤ λ∗
∣∣∣∣H0 is true

)
= P

(
Ymax ≤ θ0(λ

∗)1/n
∣∣∣∣H0 is true

)

Λ suggests the test statistic Ymax :
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5) Let’s find the pdf of Ymax . The cdf of Y is FY (y ; θ0) = y/θ0 for
y ∈ [0, θ0]. Hence,

fYmax (y ; θ0) = nFY (y ; θ0)n−1fY (y ; θ0)

=
nyn−1

θn
0

, y ∈ [0, θ0].

6) Finally, by setting y∗ := θ0(λ
∗)1/n, we see that

α = P
(

Ymax ≤ y∗
∣∣∣∣H0 is true

)
=

∫ y∗

0

nyn−1

θn
0

dy

=
(y∗)n

θn
0

⇐⇒ y∗ = θ0α
1/n.

7) Therefore, H0 is rejected if

ymax ≤ θ0α
1/n.

�
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E.g. 2 Let X1, · · · ,Xn be a random sample from the geometric distribution
with parameter p.
Find a test statistic Λ for testing H0 : p = p0 versus H1 : p 6= p0.

Sol. Let X and k be the sample mean. Because the null hypothesis is simple,

L(ωe) = L(p0) =

n∏
i=1

(1− p0)
ki−1p0 = (1− p0)

nk̄−npn
0,

which shows that k̄ is a sufficient estimator.
On the other hand, the MLE for the parameter p is 1/k̄ . So

L(Ωe) = L(1/k̄) =
n∏

i=1

(
1− 1

k̄

)ki−1
1

k̄
=

(
k̄ − 1

k̄

)nk̄−n
1

k̄n
.

Hence,

λ =
L(ωe)

L(Ωe)
=

(
k̄(1− p0)

k̄ − 1

)nk̄−n

(p0k̄)n

Finally, Λ =
(

X(1−p0)
X−1

)nX−n
(p0X )n. �
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E.g. 3 Let Y1, · · · ,Yn be a random sample from the exponential distribution
with parameter λ.
Find a test statistic V for testing H0 : λ = λ0 versus H1 : λ 6= λ0.

Sol. Since the null hypothesis is simple,

L(ωe) = L(λ0) =
n∏

i=1

λ0e−λ0yi = λn
0e−λ0

∑n
i=1 yi

Let Z =
∑n

i=1 Yi ∼ Gamma(n, λ), which is a sufficient estimator.
On the other hand, the MLE for λ is 1/ȳ = n/z:

L(Ωe) = L(1/ȳ) = (n/z)ne−n.

Hence,
λ =

L(ωe)

L(Ωe)
= znn−nλn

0e−λ0z+n

Finally, Λ = Z nn−nλn
0e−λ0Z+n or V = Z ne−λ0Z . �

64



E.g. 3 Let Y1, · · · ,Yn be a random sample from the exponential distribution
with parameter λ.
Find a test statistic V for testing H0 : λ = λ0 versus H1 : λ 6= λ0.

Sol. Since the null hypothesis is simple,

L(ωe) = L(λ0) =
n∏

i=1

λ0e−λ0yi = λn
0e−λ0

∑n
i=1 yi

Let Z =
∑n

i=1 Yi ∼ Gamma(n, λ), which is a sufficient estimator.
On the other hand, the MLE for λ is 1/ȳ = n/z:
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L(Ωe) = L(1/ȳ) = (n/z)ne−n.

Hence,
λ =

L(ωe)

L(Ωe)
= znn−nλn

0e−λ0z+n

Finally, Λ = Z nn−nλn
0e−λ0Z+n or V = Z ne−λ0Z . �

64



E.g. 3 Let Y1, · · · ,Yn be a random sample from the exponential distribution
with parameter λ.
Find a test statistic V for testing H0 : λ = λ0 versus H1 : λ 6= λ0.

Sol. Since the null hypothesis is simple,

L(ωe) = L(λ0) =
n∏

i=1

λ0e−λ0yi = λn
0e−λ0

∑n
i=1 yi

Let Z =
∑n

i=1 Yi ∼ Gamma(n, λ), which is a sufficient estimator.
On the other hand, the MLE for λ is 1/ȳ = n/z:
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The critical region in terms of V should be:

0.05 = α = P
(

V ∈ (0, y∗]

∣∣∣∣H0 is true
)

=

∫ y∗

0

fV (v)dv

However, it is not easy to find the exact distribution of V .

One can also make the inference based on the test statistic Z ...
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0 1 2 3 4 5 6 7 8 9
3.75

2.63

c1 c2

λ∗

z

v(z) = z3e−0.8z

This suggests that the critical region in terms of z should be of the form:

(0, c1) ∪ (c2,∞)

For convenience, we put α/2 mass on each tails of the density of Z :

Find c1 and c2 such that∫ c1

0

fZ (z)dz =

∫ ∞

c2

fZ (z)dz =
α

2
.
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using V using Z

Critical region (0, v∗] (0, z1] ∪ [z2,∞)

pdf hard to obtain Gamma (n, λ)
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E.g. 4 Let Y1, · · · ,Yn be a random sample from N(µ, 1).
Find a test statistic Λ for testing H0 : µ = µ0 versus H1 : µ 6= µ0.

Sol. Since the null hypothesis is simple,

L(ωe) = L(µ0) =
n∏

i=1

1√
2π

e− (yi−µ0)2

2 .

On the other hand, the MLE for µ is ȳ :

L(Ωe) = L(ȳ) =
n∏

i=1

1√
2π

e− (yi−ȳ)2

2 .

Hence,

λ =
L(ωe)

L(Ωe)
= exp

(
−

n∑
i=1

(yi − µ0)
2 − (yi − ȳ)2

2

)
= exp

(
−n(ȳ − µ0)

2

2

)
.

Finally, Λ = exp
(
− n

2

(
Y − µ0

)2)
or V = Y−µ0

1/
√

n ∼ N(0, 1) �
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n∏

i=1

1√
2π

e− (yi−ȳ)2
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