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Test for normal parameters (one sample test)

Let Y1, · · · ,Yn be a random sample from N(µ, σ2).

Prob. 1 Find a test statistic Λ in order to test H0 : µ = µ0 v.s. H1 : µ 6= µ0.

When σ2 is known: Λ =
Y − µ0

σ/
√

n
∼ N(0, 1)

When σ2 is unknown: Λ =? Λ
?
=

Y − µ0

s/
√

n
∼ ?

Prob. 2 Find a test statistic Λ in order to test H0 : σ2 = σ2
0 v.s. H1 : σ2 6= σ2

0 .
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Prob. 1 Find a test statistic for H0 : µ = µ0 v.s. H1 : µ 6= µ0, with σ2 unknown

Sol. Composite-vs-composite test with:

ω =
{
(µ, σ2) : µ = µ0, σ

2 > 0
}

Ω =
{
(µ, σ2) : µ ∈ R, σ2 > 0

}
The MLE under the two spaces are:

ωe = (µe, σ
2
e ) : µe = µ0 and σ2

e =
1

n

n∑
i=1

(yi − µ0)
2 (Under ω)

Ωe = (µe, σ
2
e ) : µe = ȳ and σ2

e =
1

n

n∑
i=1

(yi − ȳ)2 (Under Ω)
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L(µ, σ2) = (2πσ2)−n exp

(
−1

2

n∑
i=1

(yi − µ

σ

)2)

L(ωe) = · · · =
[

ne−1

2π
∑n

i=1(yi − µ0)2

]n/2

L(Ωe) = · · · =
[

ne−1

2π
∑n

i=1(yi − ȳ)2

]n/2

8



L(µ, σ2) = (2πσ2)−n exp

(
−1

2

n∑
i=1

(yi − µ

σ

)2)

L(ωe) = · · · =
[

ne−1

2π
∑n

i=1(yi − µ0)2

]n/2

L(Ωe) = · · · =
[

ne−1

2π
∑n

i=1(yi − ȳ)2
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Hence,

λ =
L(ωe)

L(Ωe)
=

[ ∑n
i=1(yi − ȳ)2∑n

i=1(yi − µ0)2

]n/2

= · · · =
[
1 +

n(ȳ − µ0)
2∑n

i=1(yi − ȳ)2

]−n/2

=

1 + 1

n − 1

 ȳ − µ0√
1

n−1

∑n
i=1(yi − ȳ)2

/√
n


2

−n/2

=

[
1 +

1

n − 1

(
ȳ − µ0

s /
√

n

)2
]−n/2

=

[
1 +

t2

n − 1

]−n/2

, t =
ȳ − µ0

s /
√

n
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−3 −2 −1 0 1 2 3

0.5

1

λ∗

c−c

t

λ(t) = (1 + t2
n−1

)−
n
2

λ ∈ (0, λ∗] ⇔ |t | ≥ c.
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Finally, the test statistic is

T =
Y − µ0

S/
√

n

with Y =
1

n

n∑
i=1

Yi and S2 =
1

n − 1

n∑
i=1

(
Yi − Y

)2
.

The critical region takes the form: |t | ≥ c.

Question: Find the exact distribution of T .
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Prob. 2 Find a test statistic for H0 : σ2 = σ2
0 v.s. H1 : σ2 6= σ2

0 , with µ unknown

Sol. Composite-vs-composite test with:

ω =
{
(µ, σ2) : µ ∈ R, σ2 = σ2

0

}
Ω =

{
(µ, σ2) : µ ∈ R, σ2 > 0

}
The MLE under the two spaces are:

ωe = (µe, σ
2
e ) : µe = ȳ and σ2

e = σ2
0 (Under ω)

Ωe = (µe, σ
2
e ) : µe = ȳ and σ2

e =
1

n

n∑
i=1

(yi − ȳ)2 (Under Ω)
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Hence,

λ =
L(ωe)

L(Ωe)
=

[∑n
i=1(yi − ȳ)2

nσ2
0

]n/2

exp

(
−1

2

n∑
i=1

(
yi − ȳ
σ0

)2

+
n
2

)

=

[
1

n−1

∑n
i=1(yi − ȳ)2

n
n−1

σ2
0

]n/2

exp

(
−n − 1

2σ2
0

1

n − 1

n∑
i=1

(yi − ȳ)2 +
n
2

)

=

[
s2

n
n−1

σ2
0

]n/2

exp
(
−n − 1

2σ2
0

s2 +
n
2

)

⇓

λ(s2) =

[
s2

n
n−1

σ2
0

]n/2

exp
(
−n − 1

2σ2
0

s2 +
n
2

)
⇐⇒ v(s2) = (s2)

n
2 e−λs2
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By setting n = 6 and λ = 0.8, we see ...

0 1 2 3 4 5 6 7 8 9
3.75

2.63

c1 c2

λ∗

s2

v(s2) = (s2)3e−0.8s2

This suggests that the critical region should be of the form in terms of s2:

(0, c1) ∪ (c2,∞)

For convenience, we put α/2 mass on each tails of S2:

Find c1 and c2 such that∫ c1

0

fS2(z)dz =

∫ ∞

c2

fS2(z)dz =
α

2
.
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Finally, the test statistic is

S2 =
1

n − 1

n∑
i=1

(
Yi − Y

)2
with Y =

1

n

n∑
i=1

Yi

Question: Find the exact distribution of S2.
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Ref. Student’s t distribution comes from William Sealy Gosset’s 1908 paper in
Biometrika under the pseudonym ”Student”.

Gosset worked at the Guinness Brewery in Dublin, Ireland, and was interested in
the problems of small samples – for example, the chemical properties of barley
where sample sizes might be as few as 3.

V1 One version of the origin of the pseudonym is that Gosset’s employer preferred
staff to use pen names when publishing scientific papers instead of their real
name, so he used the name ”Student” to hide his identity.

V2 Another version is that Guinness did not want their competitors to know that
they were using the t-test to determine the quality of raw material
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Def. Sampling distributions

Distributions of functions of random sample of given size.
statistics / estimators

E.g. A random sample of size n from N(µ, σ2) with σ2 known.

Sample mean Y = 1
n

∑n
i=1 Yi ∼ N(µ, σ2/n)

Aim: Determine distributions for

Sample variance S2 := 1
n−1

∑n
i=1

(
Yi − Y

)2
Chi square distr.

T :=
Y − µ

S/
√

n
Student t distr.

S2
1

σ2
1

/
S2

2

σ2
2

F distr.
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Thm 7.3.1. Let U =
∑m

i=1 Z 2
j , where Zj are independent N(0, 1) normal r.v.s. Then

U ∼ Gamma(shape=m/2, rate=1/2).

namely,
fU(u) =

1

2m/2Γ(m/2)
u

m
2
−1e−u/2, u ≥ 0.

Def 7.3.1. U in Thm 7.3.1 is called chi square distribution with m dgs of
freedom.

24
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Proof. We first consider the case when m = 1. In this case,

FZ2(u) = P
(
Z 2 ≤ u

)
= P

(
−
√

u ≤ Z ≤
√

u
)

= 2P(0 ≤ Z ≤
√

u)

=
2√
2π

∫ 2π

0

e−z2/2dz

Differentiating both sides of the above eq. in order to obtain the pdf:

fZ2(u) =
d

du
FZ2(u)

=
2√
2π

1

2
√

u
e−u/2

=
1√

2Γ(1/2)
u(1/2)−1e−u/2,

which is the pdf of a gamma distribution with r = λ = 1/2.
Then adding m independent copies of gamma distributions gives anther
gamma distribution with r = m/2 and λ = 1/2 (See Theorem 4.6.4). �
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FZ2(u) = P
(
Z 2 ≤ u

)
= P

(
−
√

u ≤ Z ≤
√

u
)

= 2P(0 ≤ Z ≤
√

u)

=
2√
2π

∫ 2π

0

e−z2/2dz

Differentiating both sides of the above eq. in order to obtain the pdf:

fZ2(u) =
d

du
FZ2(u)

=
2√
2π

1

2
√

u
e−u/2

=
1√

2Γ(1/2)
u(1/2)−1e−u/2,
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Chi Square Table

P(χ2
5 ≤ 1.145) = 0.05 ⇐⇒ χ2

0.05,5 = 1.145

P(χ2
5 ≤ 15.086) = 0.99 ⇐⇒ χ2

0.99,5 = 15.086

1 > pchisq(1.145, df = 5)
2 [1] 0.04995622
3 > pchisq(15.086, df = 5)
4 [1] 0.9899989

1 > qchisq(0.05, df = 5)
2 [1] 1.145476
3 > qchisq(0.99, df = 5)
4 [1] 15.08627
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Chi Square Table

P(χ2
5 ≤ 1.145) = 0.05 ⇐⇒ χ2

0.05,5 = 1.145

P(χ2
5 ≤ 15.086) = 0.99 ⇐⇒ χ2

0.99,5 = 15.086

1 > scipy.stats.chi2.cdf(1.145, 5)
2 [1]: 0.04995622155207728
3 > scipy.stats.chi2.cdf(15.086, 5)
4 [1]: 0.9899988752378142

1 > scipy.stats.chi2.ppf(0.05, 5)
2 [1]: 1.1454762260617692
3 > scipy.stats.chi2.ppf(0.99, 5)
4 [1]: 15.08627246938899
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Thm 7.3.2. Let Y1, · · · ,Yn be a random sample from N(µ, σ2). Then
(a) S2 and Y are independent.

(b) (n − 1)S2

σ2
=

1

σ2

n∑
i=1

(
Yi − Y

)2
∼ Chi Square(n − 1).

Proof. We will prove the case n = 2.

Y =
Y1 + Y2

2
, Y1 − Y =

Y1 − Y2

2
, Y2 − Y =

Y2 − Y1

2

S2 = ... =
1

2
(Y1 − Y2)

2

(a) It is equivalanet to show Y1 + Y2 ⊥ Y1 − Y2. Since they are normal, it
suffices to show that

E[(Y1 + Y2)(Y1 − Y2)] = E[Y1 + Y2]E[Y1 − Y2]

(b) (n−1)S2

σ2 =
(

Y1−Y2√
2σ

)2
and Y1−Y2√

2σ
∼ N(0, 1) ... �
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Def 7.3.2. If U ∼ Chi Square(n) and V ∼ Chi Square(m), and U ⊥ V , then

F :=
V/m
U/n

follows the (Snedecor’s) F distribution with m and n degrees of
freedom.

Thm 7.3.3. Let Fm,n = V/m
U/n be an F r.v. with m and n degrees of freedom. Then

fFm,n (w) =
Γ
(m+n

2

)
mm/2nn/2

Γ(m/2)Γ(n/2)
× wm/2−1

(n + mw)(m+n)/2 , w ≥ 0

Equivalently,

fFm,n (w) = B(m/2, n/2)−1
(m

n

)m
2

w
m
2
−1
(
1 +

m
n

w
)− m+n

2

where B(a, b) = Γ(a)Γ(b)/Γ(a + b).
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Recall

Thm 3.8.4 Let X and Y be independent continuous random variables, with pdf
fX (x) and fY (y), respectively.
Assume that X is zero for at most a set of isolated points.
Then W = Y/X follows a distribution with pdf:

fW (w) =

∫ ∞

−∞
|x |fX (x)fY (wx)dx .

Thm 3.8.2 Suppose X is a continuous random variable and a 6= 0.
Then Y = aX + b follows a distribution with pdf:

fY (y) =
1

|a| fX
(

y − b
a

)
.
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Proof. Let us first find the pdf for W := V/U. By Theorem 7.3.1,

fV (v) =
1

2m/2Γ(m/2)
v (m/2)−1e−v/2,

fU(u) =
1

2n/2Γ(n/2)
u(n/2)−1e−u/2.

Then by Theorem 3.8.4, we see that the pdf of W is

fW (w) =

∫ ∞

−∞
|u|fU(u) fV (uw)du

=

∫ ∞

0

u
1

2n/2Γ(n/2)
u(n/2)−1e−u/2 1

2m/2Γ(m/2)
(uw)(m/2)−1e−uw/2du

=
1

2(n+m)/2Γ(n/2)Γ(m/2)
w (m/2)−1

∫ ∞

0

u
n+m
2

−1e− 1+w
2

udu
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Then by the change of variables, y = 1+w
2

u, we see that

fW (w) =
1

2(n+m)/2Γ(n/2)Γ(m/2)
w (m/2)−1

(
2

1 + w

) n+m
2
∫ ∞

0

y
n+m
2

−1e−y dy

=
1

2(n+m)/2Γ(n/2)Γ(m/2)
w (m/2)−1

(
2

1 + w

) n+m
2

Γ
(n + m

2

)
where the last equality is due to the definition of the Gamma function.

Finally, by Theorem 3.8.2, we see that F = V/m
U/n = n

m W follows a
distribution with pdf

fF (y) =
m
n

fW
(m

n
y
)

=
m
n

1

2(n+m)/2Γ(n/2)Γ(m/2)

(m
n

y
)(m/2)−1

(
2

1 + m
n y

) n+m
2

Γ
(n + m

2

)
= · · · y ≥ 0.

�
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1 # Draw F density
2 x=seq(0,5,0.01)
3 pdf= cbind(df(x, df1 = 1, df2 = 1),
4 df(x, df1 = 2, df2 = 1),
5 df(x, df1 = 5, df2 = 2),
6 df(x, df1 = 10, df2 = 1),
7 df(x, df1 = 100, df2 = 100))
8 matplot(x,pdf, type = ”l”)
9 title(”F with various dgrs of freedom”)
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F- Table

P(F3,5 ≤ 5.41) = 0.95 ⇐⇒ F0.95,3,5 = 5.41

1 > pf(5.41, df1 = 3, df2 = 5)
2 [1] 0.9500093

1 > qf(0.95, df1 = 3, df2 = 5)
2 [1] 5.409451

1 > scipy.stats.f.cdf(5.41, 3, 5)
2 [1] 0.9500092950699683

1 > scipy.stats.f.ppf(0.95, 3, 5)
2 [1] 5.40945131805649
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Def 7.3.3. Suppose Z ∼ N(0, 1), U ∼ Chi Square(n), and Z ⊥ U. Then

Tn =
Z√
U/n

follows the Student’s t-distribution of n degrees of freedom.

Remark T 2
n ∼ F -distribution with 1 and n degrees of freedom.

Thm 7.3.4. The pdf of the Student t of degree n is

fTn (t) =
Γ
( n+1

2

)
√

nπΓ
( n
2

) ×
(
1 +

t2

n

)− n+2
2

, t ∈ R.
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Proof. Note that T 2
n = Z2

U/n follows an F (1, n) distribution. Hence,

fT2
n
(t) =

n
n
2Γ( n+1

2
)

Γ( 1
2
)Γ( n

2
)

t−
1
2

1

(n + t)
n+1
2

, t > 0.

Therefore,

FTn (t) = P(Tn ≤ t) = P(−∞ < Tn ≤ 0) + P(0 ≤ Tn ≤ t).

The term P(−∞ < Tn ≤ 0) is a constant which will disappear upon
differentiation.
Notice that{

T 2
n ≤ t2

}
= {−t ≤ Tn ≤ t} = {−t ≤ Tn ≤ 0} ∪ {0 ≤ Tn ≤ t}

=
{
−t
√

U/n ≤ Z ≤ 0
}
∪
{
0 ≤ Z ≤ t

√
U/n

}
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By symmetry of the distribution of Z ,

P
(
−t
√

U/n ≤ Z ≤ 0
)
= P

(
0 ≤ Z ≤ t

√
U/n

)
Therefore,

P
(
T 2

n ≤ t2
)
= P

(
−t
√

U/n ≤ Z ≤ 0
)
+ P

(
0 ≤ Z ≤ t

√
U/n

)
= 2P

(
0 ≤ Z ≤ t

√
U/n

)
= 2P(0 ≤ Tn ≤ t).

Hence,

FTn (t) = const .+
1

2
P
(
T 2

n ≤ t2
)

Finally, differentiation gives the density:

fTn (t) =
d
dt

FTn (t) =
d
dt

1

2
FT2

n
(t2) = t · fT2

n
(t2) = · · · .

�
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1 # Draw Student t−density
2 x=seq(−5,5,0.01)
3 pdf= cbind(dt(x, df = 1),
4 dt(x, df = 2),
5 dt(x, df = 5),
6 dt(x, df = 100))
7 matplot(x,pdf, type = ”l”)
8 title(”Student’s t−distributions”)
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t Table

P (T3 > 4.541) = 0.01 ⇐⇒ t0.01,3 = 4.541

1 > 1−pt(4.541, df =3)
2 [1] 0.009998238

1 > alpha = 0.01
2 > qt(1−alpha, df = 3)
3 [1] 4.540703

1 > 1 − scipy.stats.t.cdf(4.541, 3)
2 [1] 0.00999823806449407

1 > scipy.stats.t.ppf(1−0.01, 3)
2 [1] 4.540702858698419
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Thm 7.3.5. Let Y1, · · · ,Yn be a random sample from N(µ, σ2). Then

Tn−1 =
Y − µ

S/
√

n
∼ Student’s t of degree n − 1.

Proof.

Y − µ

S/
√

n
=

Y − µ

σ/
√

n√
(n − 1)S2

σ2(n − 1)

Y − µ

σ/
√

n
∼ N(0, 1) ⊥ (n − 1)S2

σ2
∼ Chi Square(n − 1)

By Def. 7.3.3 ... �
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As n → ∞, Students’ t distribution will converge to N(0, 1):

Thm 7.3.6. fTn (x) → fZ (x) =
1√
2π

e− x2
2 as n → ∞, where Z ∼ N(0, 1).

Proof By Stirling’s formula:

Γ(z) =

√
2π

z

(z
e

)z
(1 + O(1/z)) as z → ∞

=⇒ lim
n→∞

Γ
( n+1

2

)
√

nπ Γ
( n
2

) =
1√
2π

...... �
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σ/
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Chapter 7. Inference Based on The Normal Distribution

§ 7.1 Introduction
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Let Y1, · · · ,Yn be a random sample from N(µ, σ2).

Question Find a test statistic Λ in order to test H0 : µ = µ0 v.s. H1 : µ 6= µ0.

Case I. σ2 is known: Λ =
Y − µ0

σ/
√

n

Case II. σ2 is unknown: Λ =? Λ
?
=

Y − µ0

s/
√

n
∼ ?
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Summary

A random sample of size n from
a normal distribution N(µ, σ2)

σ2 known σ2 unknown

Statistic Z = Y−µ
σ/

√
n

Tn−1 = Y−µ
S/

√
n

Score z = y−µ

σ/
√

n
t = y−µ

s/
√

n

Table zα tα,n−1

100(1− α)% C.I.
(

ȳ − zα/2
σ√

n
, ȳ + zα/2

σ√
n

) (
ȳ − tα/2,n−1

s√
n
, ȳ + tα/2,n−1

s√
n

)
Test H0 : µ = µ0

H1 : µ > µ0 Reject H0 if z ≥ zα Reject H0 if t ≥ tα,n−1

H1 : µ < µ0 Reject H0 if z ≤ zα Reject H0 if t ≤ tα,n−1

H1 : µ 6= µ0 Reject H0 if |z| ≥ zα/2 Reject H0 if |t | ≥ tα/2,n−1
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Computing s from data

Step 1 a =

n∑
i=1

yi

Step 2. b =
n∑

i=1

y2
i

Step 3. s =

√
nb − a2

n(n − 1)

Proof.

s2 =
1

n − 1

n∑
i=1

(yi − ȳ)2 =
n
(∑n

i=1 y2
i
)
−
(∑n

i=1 yi
)2

n(n − 1)

�
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Case 7.4.1 How far apart are the bat and the insect when the bat first senses that
insect is there?
Or, what is the effective range of a bat’s echolocation system?

Answer the question by contruct a 95% C.I.

Sol. ... �
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1 # Case7_4_1.py
2 import numpy as np
3 import scipy.stats as st
4

5

6 # returns confidence interval of mean
7 def confIntMean(a, conf=0.95):
8 mean, sem, m = np.mean(a), st.sem(a), st.t.ppf((1+conf)/2., len(a)−1)
9 return mean − m∗sem, mean + m∗sem

10

11

12 def main():
13 alpha = 5
14 data = np.array([62, 52, 68, 23, 34, 45, 27, 42, 83, 56, 40])
15 lower, upper = confIntMean(data, 1−alpha/100)
16 print(”””\
17

18 The {alpha}% confidence interval is ({lower:.2f},{upper:.2f})
19

20 ”””.format(∗∗locals()))
21

22

23 if __name__ == ”__main__”:
24 main()

1 In [83]: run Case7_4_1.py
2

3 The 95% confidence interval is (36.21,60.51)
48



Eg. 7.4.2 Bank approval rates for inner-city residents v.s. rural ones.
Approval rate for rural residents is 62%.
Do bank treat two groups equally? α = 0.05

Sol.
H0 : µ = 62 v .s. H1 : µ 6= 62.
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1 # Eg7_4_2.py
2 import numpy as np
3 import scipy.stats as st
4

5 data = np.array([59, 65, 69, 53, 60, 53, 58, 64, 46, 67, 51, 59])
6 alpha = 5
7 mean, sem = np.mean(data), st.sem(data)
8 n = len(data)
9 s = sem ∗ np.sqrt(n)

10 cv = st.t.ppf(1−alpha/200., len(data)−1)
11 tRatio = (mean−62)/sem
12

13

14 print(”””\
15

16 n={n}, sample mean={mean:.3f}, s={s:.3f}, t Ratio={tRatio:.2f}, Critical values
={cv:.4f}

17 ”””.format(∗∗locals()))

1 In [113]: run Eg7_4_2.py
2

3 n=12, sample mean=58.667, s=6.946, t Ratio=−1.66, Critical values=2.2010
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For a random sample of size n from N(µ, σ2):

S2 =
1

n − 1

n∑
i=1

(
Yi − Y

)2
⇓

(n − 1)S2

σ2
=

1

σ2

n∑
i=1

(
Yi − Y

)2
∼ Chi Square(n − 1)

P
(
χ2
α/2,n−1 ≤ (n − 1)S2

σ2
≤ χ2

1−α/2,n−1

)
= 1− α.

100(1− α)% C.I. for σ2:(
(n − 1)s2

χ2
1−α/2,n−1

,
(n − 1)s2

χ2
α/2,n−1

) 100(1− α)% C.I. for σ:(√
(n − 1)s2

χ2
1−α/2,n−1

,

√
(n − 1)s2

χ2
α/2,n−1

)
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Testing H0 : σ2 = σ2
0

v.s.

(at the α level of significance)

χ2 = (n−1)s2

σ2
0

H1 : σ2 < σ2
0 :

Reject H0 if

χ2 ≤ χ2
α,n−1

H1 : σ2 6= σ2
0 :

Reject H0 if

χ2 ≤ χ2
α/2,n−1 or

χ2 ≥ χ2
1−α/2,n−1

H1 : σ2 > σ2
0 :

Reject H0 if

χ2 ≥ χ2
1−α,n−1
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E.g. 1. The width of a confidence interval for σ2 is a function of n and S2:

W =
(n − 1)S2

χ2
α/2,n−1

− (n − 1)S2

χ2
1−α/2,n−1

Find the smallest n such that the average width of a 95% C.I. for σ2 is
no greater than 0.8σ2.

Sol. Notice that E[S2] = σ2. Hence, we need to find n s.t.

(n − 1)

(
1

χ2
0.025,n−1

− 1

χ2
0.975,n−1

)
≤ 0.8.

Trial and error (numerics on R) gives n = 57.
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1 > # Example 7.5.1
2 > n=seq(45,60,1)
3 > l=qchisq(0.025,n−1)
4 > u=qchisq(0.975,n−1)
5 > e=(n−1)∗ (1/l−1/u)
6 > m=cbind(n,l,u,e)
7 > colnames(m) = c(”n”,
8 + ”chi(0.025,n−1)”,
9 + ”chi(0.975,n−1)”,

10 + ”error”)
11 > m
12 n chi(0.025,n−1) chi(0.975,n−1) error
13 [1,] 45 27.57457 64.20146 0.9103307
14 [2,] 46 28.36615 65.41016 0.8984312
15 [3,] 47 29.16005 66.61653 0.8869812
16 [4,] 48 29.95620 67.82065 0.8759533
17 [5,] 49 30.75451 69.02259 0.8653224
18 [6,] 50 31.55492 70.22241 0.8550654
19 [7,] 51 32.35736 71.42020 0.8451612
20 [8,] 52 33.16179 72.61599 0.8355901
21 [9,] 53 33.96813 73.80986 0.8263340
22 [10,] 54 34.77633 75.00186 0.8173761
23 [11,] 55 35.58634 76.19205 0.8087008
24 [12,] 56 36.39811 77.38047 0.8002937
25

26 [13,] 57 37.21159 78.56716 0.7921414
27 [14,] 58 38.02674 79.75219 0.7842313
28 [15,] 59 38.84351 80.93559 0.7765517
29 [16,] 60 39.66186 82.11741 0.7690918
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