Math 362: Mathematical Statistics II

Le Chen
le.chen@emory.edu
Emory University Atlanta, GA

Last updated on April 13, 2021

2021 Spring

Chapter 10. Goodness-of-fit Tests

§ 10.1 Introduction
§ 10.2 The Multinomial Distribution
§ 10.3 Goodness-of-Fit Tests: All Parameters Known
§ 10.4 Goodness-of-Fit Tests: Parameters Unknown
§ 10.5 Contingency Tables

Plan

§ 10.1 Introduction
§ 10.2 The Multinomial Distribution
§ 10.3 Goodness-of-Fit Tests: All Parameters Known
§ 10.4 Goodness-of-Fit Tests: Parameters Unknown
§ 10.5 Contingency Tables

Chapter 10. Goodness-of-fit Tests

§ 10.1 Introduction
§ 10.2 The Multinomial Distribution
§ 10.3 Goodness-of-Fit Tests: All Parameters Known
§ 10.4 Goodness-of-Fit Tests: Parameters Unknown
§ 10.5 Contingency Tables

p_{i} are known	p_{i} are unknown
$D=\sum_{i=1}^{t} \frac{\left(X_{i}-n p_{i}\right)^{2}}{n \rho_{i}}$	$D_{1}=\sum_{i=1}^{t} \frac{\left(X_{i}-n \hat{p}_{i}\right)^{2}}{n \hat{p}_{i}}$
χ^{2} with f.d. $t-1$	χ^{2} with f.d. $t-1-s$
$d=\sum_{i=1}^{t} \frac{\left(k_{i}-n p_{i}\right)^{2}}{n p_{i 0}}$	$d_{1}=\sum_{i=1}^{t} \frac{\left(k_{i}-n \hat{p}_{i 0}\right)^{2}}{n \hat{p}_{i 0}}$
$n p_{i 0} \geq 5$	$n \hat{p}_{i 0} \geq 5$
$d>\chi_{1-\alpha, t-1}^{2}$	$d_{1}>\chi_{1-\alpha, t-1-s}^{2}$

$\dagger s$ is the number of unknown parameters.

$$
\mathrm{df}=\underline{\text { number of classes }}-1-\underline{\text { number of unknown parameters }}
$$

E.g. 1 Binomial data: 4096 students, each shots basketball 4 times. Let X_{i} be the number of hits for the ith student.

> People believe that X_{i} should following binomial $(4, p)$, that is, shotting basketball should be something like trying to get red chocolate beans from a jar of beans of two colors. Find the NTE for p. Use the data to make a conclusion.

Sol. 1) $H_{0}: X_{i} \sim \operatorname{binomal}(4, p)$.
2) Under H_{0}, the MLE for p is $p_{e}=\ldots=0.251$
E.g. 1 Binomial data: 4096 students, each shots basketball 4 times. Let X_{i} be the number of hits for the ith student.

Number of Hits, i
$r_{i}^{\prime s}\left\{\begin{array}{lc}0 & \text { Obs. Freq., } k_{i} \\ 1 & 1280 \\ 2 & 1717 \\ 3 & 915 \\ 4 & 167 \\ \end{array}\right)$

People believe that X_{i} should following binomial $(4, p)$, that is, shotting basketball should be something like trying to get red chocolate beans from a jar of beans of two colors.

Find the MLE for p. Use the data to make a conclusion

Sol. 1) $H_{0}: X_{i} \sim \operatorname{binomal}(4, p)$.
2) Under Ho. the MTE for ρ is $\rho_{e}=\ldots=0.251$
E.g. 1 Binomial data: 4096 students, each shots basketball 4 times. Let X_{i} be the number of hits for the ith student.

Number of Hits, i
$r_{i}^{\prime s}$ Obs. Freq., k_{i}
$\left(\begin{array}{lc}0 & 1280 \\ 1 & 1717 \\ 2 & 915 \\ 3 & 167 \\ 4 & 17\end{array}\right.$

People believe that X_{i} should following binomial $(4, p)$, that is, shotting basketball should be something like trying to get red chocolate beans from a jar of beans of two colors.

Find the MLE for p. Use the data to make a conclusion.

Sol. 1) $H_{0}: X_{i} \sim \operatorname{binomal}(4, p)$.
2) Tnder Ho. the MTE for ρ is $\rho_{e}=\ldots=0.251$
E.g. 1 Binomial data: 4096 students, each shots basketball 4 times. Let X_{i} be the number of hits for the ith student.

Number of Hits, i
$r_{i}^{\prime s}$ Obs. Freq., k_{i}
$\left(\begin{array}{lc}0 & 1280 \\ 1 & 1717 \\ 2 & 915 \\ 3 & 167 \\ 4 & 17\end{array}\right.$

People believe that X_{i} should following binomial $(4, p)$, that is, shotting basketball should be something like trying to get red chocolate beans from a jar of beans of two colors.

Find the MLE for p. Use the data to make a conclusion.

Sol. 1) $H_{0}: X_{i} \sim \operatorname{binomal}(4, p)$.
2) Under H_{0}, the MLE for p is $p_{e}=$
E.g. 1 Binomial data: 4096 students, each shots basketball 4 times. Let X_{i} be the number of hits for the ith student.

Number of Hits, i
$r_{i}^{\prime s}$ Obs. Freq., k_{i}
$\left(\begin{array}{ll}0 & 1280 \\ 1 & 1717 \\ 2 & 915 \\ 3 & 167 \\ 4 & 17\end{array}\right.$

People believe that X_{i} should following binomial $(4, p)$, that is, shotting basketball should be something like trying to get red chocolate beans from a jar of beans of two colors.

Find the MLE for p. Use the data to make a conclusion.

Sol. 1) $H_{0}: X_{i} \sim \operatorname{binomal}(4, p)$.
2) Under H_{0}, the MLE for p is $p_{e}=\ldots=0.251$
3) Compute the expected frequenies:

$$
\Longrightarrow \quad d_{1}=\cdots=6.401 .
$$

4) Critical region: $\left(\chi_{.95,5-1-1}^{2},+\infty\right)=(7.815,+\infty)$
5) Conclusion: Fail to reject.
6) Alternatively, P-value $=\mathbb{P}\left(\chi_{3}^{2} \geq 6.401\right)=0.094, \ldots$ discuss...
7) Compute the expected frequenies:

Table IO.4.I		
Number of Hits, i	Obs. Freq., k_{i}	Estimated Exp. Freq., $n \hat{p}_{i_{o}}$
$r_{i}^{\prime} s$	1280	1289.1
1	1717	1728.0
2	915	868.6
3	167	194.0
4	17	16.3
		$d_{1}=\cdots=6.401$.

4) Critical region: $\left(\chi_{.95,5-1-1}^{2},+\infty\right)=(7.815,+\infty)$
5) Compute the expected frequenies:

Table 10.4.I		
Number of Hits, i	Obs. Freq., k_{i}	Estimated Exp. Freq., $n \hat{p}_{i_{o}}$
$r_{i}^{\prime} s$	1280	1289.1
1	1717	1728.0
2	915	868.6
3	167	194.0
4	17	16.3
		$d_{1}=\cdots=6.401$.

4) Critical region: $\left(\chi_{.95,5-1-1}^{2},+\infty\right)=(7.815,+\infty)$
5) Conclusion: Fail to reject.
6) Compute the expected frequenies:

Table 10.4.I		
Number of Hits, i	Obs. Freq., k_{i}	Estimated Exp. Freq., $n \hat{p}_{i_{o}}$
$r_{i}^{\prime} s$	1280	1289.1
1	1717	1728.0
2	915	868.6
3	167	194.0
4	17	16.3
		$d_{1}=\cdots=6.401$.

4) Critical region: $\left(\chi_{.95,5-1-1}^{2},+\infty\right)=(7.815,+\infty)$
5) Conclusion: Fail to reject.
6) Alternatively, P-value $=\mathbb{P}\left(\chi_{3}^{2} \geq 6.401\right)=0.094, \ldots$ discuss...
E.g. 2 Does the number of death per day follow the Poisson distribution?
E.g. 2 Does the number of death per day follow the Poisson distribution?

Number of Deaths, i	Obs. Freq., k_{i}
0	162
1	267
2	271
3	185
4	111
5	61
6	27
7	8
8	3
9	1
$10+$	0
	1096

Sol. 1) Let X_{i} be the number of death in i th day, $1 \leq i \leq 1096$.

Sol. 1) Let X_{i} be the number of death in i th day, $1 \leq i \leq 1096$.
2) $H_{0}: X_{i}$ follow Poisson (λ).

Sol. 1) Let X_{i} be the number of death in i th day, $1 \leq i \leq 1096$.
2) $H_{0}: X_{i}$ follow Poisson (λ).
3) The MLE for λ is: $\lambda_{e}=\cdots=2.157$.

Sol. 1) Let X_{i} be the number of death in i th day, $1 \leq i \leq 1096$.
2) $H_{0}: X_{i}$ follow Poisson (λ).
3) The MLE for λ is: $\lambda_{e}=\cdots=2.157$.
4) Compute the expected frequencies:

Sol. 1) Let X_{i} be the number of death in i th day, $1 \leq i \leq 1096$.
2) $H_{0}: X_{i}$ follow Poisson (λ).
3) The MLE for λ is: $\lambda_{e}=\cdots=2.157$.
4) Compute the expected frequencies:

Table 10.4.2

Number of Deaths, i	Obs. Freq., k_{i}	Est. Exp. Freq., $n \hat{p}_{i_{o}}$
0	162	126.8
1	267	273.5
2	271	294.9
3	185	212.1
4	111	114.3
5	61	49.3
6	27	17.8
7	8	5.5
8	3	1.4
9	1	0.3
$10+$	0	0.1
	1096	1096

Number of Deaths, i	Obs. Freq., k_{i}	Est. Exp. Freq., $n \hat{p}_{i_{o}}$
$r_{1}, r_{2}, \ldots, r_{8}\left\{\begin{array}{l}0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7+\end{array}\right.$	162	126.8
	267	273.5
	271	294.9
	185	212.1
	111	114.3
	61	49.3
	27	17.8
	12	7.3
	1096	1096

Sol. 1) Let X_{i} be the number of death in i th day, $1 \leq i \leq 1096$.
2) $H_{0}: X_{i}$ follow Poisson (λ).
3) The MLE for λ is: $\lambda_{e}=\cdots=2.157$.
4) Compute the expected frequencies:

Table 10.4.2

Number of Deaths, i	Obs. Freq., k_{i}	Est. Exp. Freq., $n \hat{p}_{i_{o}}$
0	162	126.8
1	267	273.5
2	271	294.9
3	185	212.1
4	111	114.3
5	61	49.3
6	27	17.8
7	8	5.5
8	3	1.4
9	1	0.3
$10+$	0	0.1
	1096	1096

Number of Deaths, i	Obs. Freq., k_{i}	Est. Exp. Freq., $n \hat{p}_{i_{o}}$
$r_{1}, r_{2}, \ldots, r_{8}\left\{\begin{array}{l}0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7+\end{array}\right.$	162	126.8
	267	273.5
	271	294.9
	185	212.1
	111	114.3
	61	49.3
	27	17.8
	12	7.3
	1096	1096

$$
\Longrightarrow \quad d_{1}=\cdots=25.98 .
$$

Sol. 1) Let X_{i} be the number of death in i th day, $1 \leq i \leq 1096$.
2) $H_{0}: X_{i}$ follow Poisson (λ).
3) The MLE for λ is: $\lambda_{e}=\cdots=2.157$.
4) Compute the expected frequencies:

Table 10.4.2		
Number of Deaths, i	Obs. Freq., \boldsymbol{k}_{i}	Est. Exp. Freq., $n \hat{p}_{i_{i}}$
0	162	126.8
1	267	273.5
2	271	294.9
3	185	212.1
4	111	114.3
5	61	49.3
6	27	17.8
7	8	5.5
8	3	1.4
9	1	0.3
$10+$	$\underline{1096}$	$\underline{0.1}$
		1096

Number of Deaths, i	Obs. Freq., k_{i}	Est. Exp. Freq., $n \hat{p}_{i_{e}}$
$r_{1}, r_{2}, \ldots, r_{8}\left\{\begin{array}{l}0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7+\end{array}\right.$	162	126.8
	267	273.5
	271	294.9
	185	212.1
	111	114.3
	61	49.3
	27	17.8
	12	7.3
	1096	1096

$$
\Longrightarrow \quad d_{1}=\cdots=25.98 .
$$

5) P-value $=\mathbb{P}\left(\chi_{1,8-1-1}^{2} \geq 25.98\right)=0.00022$. Reject!
