Math 362: Mathematical Statistics II

Le Chen le.chen@emory.edu

Emory University Atlanta, GA

Last updated on April 13, 2021

2021 Spring

Chapter 10. Goodness-of-fit Tests

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- \S 10.5 Contingency Tables

Plan

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

Chapter 10. Goodness-of-fit Tests

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

E.g. 1 Whether are the two ratings independent?

Table 10	.5.5				
			Ebert Ratings		
		Down	Sideways	Up	Total
Siskel Ratings	Down Sideways Up Total	$ \begin{array}{r} 24 \\ 8 \\ \hline 10 \\ \hline 42 \end{array} $	$ \begin{array}{c} 8\\13\\\frac{9}{30} \end{array} $	$\frac{13}{11}$ $\frac{64}{88}$	$ \begin{array}{r} 45 \\ 32 \\ \hline 83 \\ \hline 160 \end{array} $

 $\hbox{\sf E.g. 2} \ \ {\rm Whether} \ \ {\rm is \ the \ suicide \ rate \ independent \ of \ the \ mobility \ factor?}$

Table 10.5.7					
City	Suicides per $100,000, x_i$	Mobility Index, y_i	City	Suicides per $100,000, x_i$	Mobility Index, y_i
New York	19.3	54.3	Washington	22.5	37.1
Chicago	17.0	51.5	Minneapolis	23.8	56.3
Philadelphia	17.5	64.6	New Orleans	17.2	82.9
Detroit	16.5	42.5	Cincinnati	23.9	62.2
Los Angeles	23.8	20.3	Newark	21.4	51.9
Cleveland	20.1	52.2	Kansas City	24.5	49.4
St. Louis	24.8	62.4	Seattle	31.7	30.7
Baltimore	18.0	72.0	Indianapolis	21.0	66.1
Boston	14.8	59.4	Rochester	17.2	68.0
Pittsburgh	14.9	70.0	Jersey City	10.1	56.5
San Francisco	40.0	43.8	Louisville	16.6	78.7
Milwaukee	19.3	66.2	Portland	29.3	33.2
Buffalo	13.8	67.6			

 $\hbox{\sf E.g. 2} \ \ {\rm Whether} \ \ {\rm is \ the \ suicide \ rate \ independent \ of \ the \ mobility \ factor?}$

Table 10.5.7					
City	Suicides per $100,000, x_i$	Mobility Index, y_i	City	Suicides per $100,000, x_i$	Mobility Index, y_i
New York	19.3	54.3	Washington	22.5	37.1
Chicago	17.0	51.5	Minneapolis	23.8	56.3
Philadelphia	17.5	64.6	New Orleans	17.2	82.9
Detroit	16.5	42.5	Cincinnati	23.9	62.2
Los Angeles	23.8	20.3	Newark	21.4	51.9
Cleveland	20.1	52.2	Kansas City	24.5	49.4
St. Louis	24.8	62.4	Seattle	31.7	30.7
Baltimore	18.0	72.0	Indianapolis	21.0	66.1
Boston	14.8	59.4	Rochester	17.2	68.0
Pittsburgh	14.9	70.0	Jersey City	10.1	56.5
San Francisco	40.0	43.8	Louisville	16.6	78.7
Milwaukee	19.3	66.2	Portland	29.3	33.2
Buffalo	13.8	67.6			

$$\bar{x} = 20.8$$
 and $\bar{y} = 56.0$

Table 10	0.5.8		
		Mobili	ty Index
		Low (<56.0)	High (≥56.0)
Suicide Rate	High (≥20.8) Low (<20.8)	7 3	4 11

Let
$$p_i = \mathbb{P}(A_i), \ q_j = \mathbb{P}(B_j), \ p_{ij} = \mathbb{P}(A_i \cap B_j)$$

Let X_{ij} be the number of observations belonging to $A_i \cap B_j$

a) Provided that $np_{ij} \geq 5$ for all i, j, the r.v

$$D_2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(X_{ij} - np_{ij})^2}{np_{ij}} \sim \text{Chi square of f.d. } rc - 1$$

b) To test $H_0: A_i$'s are independent of B_i 's, calculate the test statistic

$$d_2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(k_{ij} - n\hat{p}_i\hat{q}_j)^2}{n\hat{p}_i\hat{q}_j}$$

where \hat{p}_i and \hat{q}_i are MLE's for p_i and q_i , respectively.

Provided that $n\hat{p}_i\hat{q}_i \geq 5$ for all i, j, the critical region is

$$(\chi^2_{1-\alpha,(r-1)(c-1)},+\infty$$

Let
$$p_i = \mathbb{P}(A_i), \ q_j = \mathbb{P}(B_j), \ p_{ij} = \mathbb{P}(A_i \cap B_j).$$

Let X_{ij} be the number of observations belonging to $A_i \cap B_j$

a) Provided that $np_{ij} \geq 5$ for all i, j, the r.v

$$D_2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(X_{ij} - np_{ij})^2}{np_{ij}} \sim \text{Chi square of f.d. } rc - 1$$

b) To test $H_0: A_i$'s are independent of B_i 's, calculate the test statistic

$$d_2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(k_{ij} - n\hat{p}_i\hat{q}_j)^2}{n\hat{p}_i\hat{q}_j}$$

where \hat{p}_i and \hat{q}_i are MLE's for p_i and q_i , respectively.

Provided that $n\hat{p}_i\hat{q}_i \geq 5$ for all i, j, the critical region is

$$(\chi^2_{1-\alpha,(r-1)(c-1)},+\infty$$

Let
$$p_i = \mathbb{P}(A_i), \ q_j = \mathbb{P}(B_j), \ p_{ij} = \mathbb{P}(A_i \cap B_j).$$

Let X_{ij} be the number of observations belonging to $A_i \cap B_j$.

a) Provided that $np_{ij} \geq 5$ for all i, j, the r.v

$$D_2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(X_{ij} - np_{ij})^2}{np_{ij}} \sim \text{Chi square of f.d. } rc - 1$$

b) To test $H_0: A_i$'s are independent of B_i 's, calculate the test statistic

$$d_2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(k_{ij} - n\hat{p}_i\hat{q}_j)^2}{n\hat{p}_i\hat{q}_j}$$

where \hat{p}_i and \hat{q}_i are MLE's for p_i and q_i , respectively.

Provided that $n\hat{p}_i\hat{q}_i \geq 5$ for all i, j, the critical region is

$$(\chi^2_{1-\alpha,(r-1)(c-1)},+\infty$$

Let
$$p_i = \mathbb{P}(A_i), \ q_j = \mathbb{P}(B_j), \ p_{ij} = \mathbb{P}(A_i \cap B_j).$$

Let X_{ij} be the number of observations belonging to $A_i \cap B_j$.

a) Provided that $np_{ij} \geq 5$ for all i, j, the r.v.

$$D_2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(X_{ij} - np_{ij})^2}{np_{ij}} \sim \text{Chi square of f.d. } rc - 1$$

b) To test $H_0: A_i$'s are independent of B_i 's, calculate the test statistic

$$d_2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(k_{ij} - n\hat{p}_i\hat{q}_j)^2}{n\hat{p}_i\hat{q}_j}$$

where \hat{p}_i and \hat{q}_i are MLE's for p_i and q_i , respectively.

Provided that $n\hat{\rho}_i\hat{q}_i \geq 5$ for all i, j, the critical region is

$$(\chi^2_{1-\alpha,(r-1)(c-1)},+\infty)$$

Let
$$p_i = \mathbb{P}(A_i), \ q_j = \mathbb{P}(B_j), \ p_{ij} = \mathbb{P}(A_i \cap B_j).$$

Let X_{ij} be the number of observations belonging to $A_i \cap B_j$.

a) Provided that $np_{ij} \geq 5$ for all i, j, the r.v.

$$D_2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(X_{ij} - np_{ij})^2}{np_{ij}} \sim \text{Chi square of f.d. } rc - 1$$

b) To test $H_0: A_i$'s are independent of B_i 's, calculate the test statistic

$$d_2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(k_{ij} - n\hat{p}_i\hat{q}_j)^2}{n\hat{p}_i\hat{q}_j}$$

where \hat{p}_i and \hat{q}_i are MLE's for p_i and q_i , respectively.

Provided that $n\hat{p}_i\hat{q}_j \geq 5$ for all i, j, the critical region is

$$(\chi^2_{1-\alpha,(r-1)(c-1)},+\infty)$$

46

Let
$$p_i = \mathbb{P}(A_i), \ q_j = \mathbb{P}(B_j), \ p_{ij} = \mathbb{P}(A_i \cap B_j).$$

Let X_{ij} be the number of observations belonging to $A_i \cap B_j$.

a) Provided that $np_{ij} \geq 5$ for all i, j, the r.v.

$$D_2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(X_{ij} - np_{ij})^2}{np_{ij}} \sim \text{Chi square of f.d. } rc - 1$$

b) To test $H_0: A_i$'s are independent of B_i 's, calculate the test statistic

$$d_2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(k_{ij} - n\hat{p}_i\hat{q}_j)^2}{n\hat{p}_i\hat{q}_j}$$

where \hat{p}_i and \hat{q}_i are MLE's for p_i and q_i , respectively.

Provided that $n\hat{p}_i\hat{q}_i \geq 5$ for all i,j, the critical region is

$$(\chi^2_{1-\alpha,(r-1)(c-1)},+\infty)$$

46

 $\mathsf{E.g.}\ 1$ Sol: Compute the expected frequencies:

Table 10.5.6						
			Ebert Ratings			
		Down	Sideways	Up	Total	
	Down	24 (11.8)	8 (8.4)	13 (24.8)	45	
Siskel Ratings	Sideways	8 (8.4)	13 (6.0)	11 (17.6)	32	
	Up	10 (21.8)	9 (15.6)	64 (45.6)	83	
	Total	42	30	88	160	

E.g. 1 Sol: Compute the expected frequencies:

Table 10.5.6						
			Ebert Ratings			
		Down	Sideways	Up	Total	
	Down	24 (11.8)	8 (8.4)	13 (24.8)	45	
Siskel Ratings	Sideways	8 (8.4)	13 (6.0)	11 (17.6)	32	
	Up	10 (21.8)	(15.6)	64 (45.6)	83	
	Total	42	30	88	160	

$$\implies$$
 $d_2 = \cdots = 45.37$

$$\left(\chi_{0.99,(3-1)\times(3-1)}^2,+\infty\right) = (13.277,+\infty)$$

Alternatively *P*-value = $\mathbb{P}(\chi_4^2 \ge 45.37) = 3.33 \times 10^{-9}$

E.g. 1 Sol: Compute the expected frequencies:

Table 10.5.6						
			Ebert Ratings			
		Down	Sideways	Up	Total	
	Down	24 (11.8)	8 (8.4)	13 (24.8)	45	
Siskel Ratings	Sideways	8 (8.4)	13 (6.0)	11 (17.6)	32	
	Up	10 (21.8)	(15.6)	64 (45.6)	83	
	Total	42	30	88	160	

$$\implies$$
 $d_2 = \cdots = 45.37$

$$\left(\chi_{0.99,(3-1)\times(3-1)}^2,+\infty\right) = (13.277,+\infty)$$

Alternatively *P*-value = $\mathbb{P}(\chi_4^2 \ge 45.37) = 3.33 \times 10^{-9}$

E.g. 1 Sol: Compute the expected frequencies:

Table 10.5.6						
			Ebert Ratings			
		Down	Sideways	Up	Total	
	Down	24 (11.8)	8 (8.4)	13 (24.8)	45	
Siskel Ratings	Sideways	8 (8.4)	13 (6.0)	11 (17.6)	32	
	Up	10 (21.8)	(15.6)	64 (45.6)	83	
	Total	42	30	88	160	

$$\implies$$
 $d_2 = \cdots = 45.37$

$$\left(\chi_{0.99,(3-1)\times(3-1)}^2,+\infty\right) = (13.277,+\infty)$$

Alternatively **P**-value = $\mathbb{P}(\chi_4^2 \ge 45.37) = 3.33 \times 10^{-9}$.

E.g. 1 Sol: Compute the expected frequencies:

Table 10.5.6						
			Ebert Ratings			
		Down	Sideways	Up	Total	
	Down	24 (11.8)	8 (8.4)	13 (24.8)	45	
Siskel Ratings	Sideways	8 (8.4)	13 (6.0)	11 (17.6)	32	
	Up	10 (21.8)	9 (15.6)	64 (45.6)	83	
	Total	42	30	88	160	

$$\implies$$
 $d_2 = \cdots = 45.37$

$$\left(\chi_{0.99,(3-1)\times(3-1)}^2,+\infty\right) = (13.277,+\infty)$$

Alternatively **P**-value = $\mathbb{P}(\chi_4^2 \ge 45.37) = 3.33 \times 10^{-9}$.

E.g. 2 Sol: Compute the expected frequencies:

Table 10.5.9					
Mobility Index					
		Low (<56.0)	High (≥56.0)		
Suicide	High (≥20.8)	4.4*	6.6		
Rate	Low (<20.8)	5.6	8.4		
$\hat{E}(X_{11}) = 4.4$ does not quite satisfy the " $n\hat{p}_i\hat{q}_j \ge 5$ " restriction stated in					

 $^{{}^{*}\}hat{E}(X_{11}) = 4.4$ does not quite satisfy the " $n\hat{p}_1\hat{q}_1 \geq 5$ " restriction stated in Theorem 10.5.1, but 4.4 is close enough to 5 to maintain the integrity of the χ^2 approximation.

E.g. 2 Sol: Compute the expected frequencies:

Table 10.5.9				
Mobility Index				
		Low (<56.0)	High (≥56.0)	
Suicide Rate	High (≥20.8) Low (<20.8)	4.4* 5.6	6.6 8.4	

$$\implies$$
 $d_2 = \cdots = 4.57$

Critical region is

$$\left(\chi_{0.95,(2-1)\times(2-1)}^2,+\infty\right) = (3.41,+\infty)$$

Alternatively *P*-value = $\mathbb{P}(\chi_1^2 \ge 4.57) = 0.033$

E.g. 2 Sol: Compute the expected frequencies:

Table 10.5.9					
		Mobility Index			
		Low (<56.0)	High (≥56.0)		
Suicide Rate	High (≥20.8) Low (<20.8)	4.4* 5.6	6.6 8.4		

$$\implies$$
 $d_2 = \cdots = 4.57$

Critical region is

$$\left(\chi_{0.95,(2-1)\times(2-1)}^2,+\infty\right) = (3.41,+\infty)$$

Alternatively *P*-value = $\mathbb{P}(\chi_1^2 \ge 4.57) = 0.033$

E.g. 2 Sol: Compute the expected frequencies:

Table 10.5.9					
		Mobility Index			
		Low (<56.0)	High (≥56.0)		
Suicide Rate	High (≥20.8) Low (<20.8)	4.4* 5.6	6.6 8.4		

$$\implies$$
 $d_2 = \cdots = 4.57$

Critical region is

$$\left(\chi^2_{0.95,(2-1)\times(2-1)},+\infty\right) = (3.41,+\infty)$$

Alternatively P-value = $\mathbb{P}(\chi_1^2 \ge 4.57) = 0.033$

E.g. 2 Sol: Compute the expected frequencies:

Table 10.5.9					
		Mobility Index			
		Low (<56.0)	High (≥56.0)		
Suicide Rate	High (≥20.8) Low (<20.8)	4.4* 5.6	6.6 8.4		

$$\implies$$
 $d_2 = \cdots = 4.57$

Critical region is

$$\left(\chi_{0.95,(2-1)\times(2-1)}^2,+\infty\right) = (3.41,+\infty)$$

Alternatively P-value = $\mathbb{P}(\chi_1^2 \ge 4.57) = 0.033$