Math 362: Mathematical Statistics II

Le Chen le.chen@emory.edu

Emory University Atlanta, GA

Last updated on April 13, 2021

2021 Spring

Chapter 11. Regression

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- $\$ 11.A Appendix Multiple/Multivariate Linear Regression
- § 11.5 The Bivariate Normal Distribution

Plan

§ 11.1 Introduction

- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regression
- § 11.5 The Bivariate Normal Distribution

Chapter 11. Regression

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regression
- § 11.5 The Bivariate Normal Distribution

Regression analysis

FITS A STRAIGHT LINE TO THIS MESSY SCATTERPLOT. 2 15 CALLED THE INDEPENDENT OR PREDICTOR VARIABLE, AND 2/15 THE PEPENDENT OR RESPONSE VARIABLE. THE RESRESSION OR PREDICTION LINE HAS THE FORM

y = a + bx

https://madhureshkumar.wordpress.com/

https://xkcd.com/

$$(x_1,y_1),\cdots,(x_n,y_n)$$

1. Purely data, no probability structure assumed.

$$(x_1, Y_1), \cdots, (x_n, Y_n)$$

 A random sample of size n, where Y_i follows a distribution depending on X_i which is deterministic.

$$(X_1, Y_1), \cdots, (X_n, Y_n)$$

$$(x_1,y_1),\cdots,(x_n,y_n)$$

1. Purely data, no probability structure assumed.

$$(x_1, Y_1), \cdots, (x_n, Y_n)$$

 A random sample of size n, where Y_i follows a distribution depending on x_i which is deterministic.

$$(X_1, Y_1), \cdots, (X_n, Y_n)$$

$$(x_1,y_1),\cdots,(x_n,y_n)$$

1. Purely data, no probability structure assumed.

$$(x_1, Y_1), \cdots, (x_n, Y_n)$$

 A random sample of size n, where Y_i follows a distribution depending on X_i which is deterministic.

$$(X_1, Y_1), \cdots, (X_n, Y_n)$$

$$(x_1,y_1),\cdots,(x_n,y_n)$$

1. Purely data, no probability structure assumed.

$$(x_1, Y_1), \cdots, (x_n, Y_n)$$

2. A random sample of size n, where Y_i follows a distribution depending on x_i which is deterministic.

$$(X_1, Y_1), \cdots, (X_n, Y_n)$$

$$(x_1,y_1),\cdots,(x_n,y_n)$$

1. Purely data, no probability structure assumed.

$$(x_1, Y_1), \cdots, (x_n, Y_n)$$

2. A random sample of size n, where Y_i follows a distribution depending on x_i which is deterministic.

$$(X_1, Y_1), \cdots, (X_n, Y_n)$$

$$(x_1,y_1),\cdots,(x_n,y_n)$$

1. Purely data, no probability structure assumed.

$$(x_1, Y_1), \cdots, (x_n, Y_n)$$

2. A random sample of size n, where Y_i follows a distribution depending on x_i which is deterministic.

$$(X_1, Y_1), \cdots, (X_n, Y_n)$$