Math 362: Mathematical Statistics II

Le Chen
le.chen@emory.edu
Emory University Atlanta, GA

Last updated on April 13, 2021

2021 Spring

Chapter 11. Regression

§ 11.1 Introduction
§ 11.4 Covariance and Correlation
§ 11.2 The Method of Least Squares
§ 11.3 The Linear Model
§ 11.A Appendix Multiple/Multivariate Linear Regression
§ 11.5 The Bivariate Normal Distribution

Plan

§ 11.1 Introduction
§ 11.4 Covariance and Correlation
§ 11.2 The Method of Least Squares
§ 11.3 The Linear Model
§ 11.A Appendix Multiple/Multivariate Linear Regression
§ 11.5 The Bivariate Normal Distribution

Chapter 11. Regression

§ 11.1 Introduction
§ 11.4 Covariance and Correlation
§ 11.2 The Method of Least Squares
§ 11.3 The Linear Model
§ 11.A Appendix Multiple/Multivariate Linear Regression
§ 11.5 The Bivariate Normal Distribution

CORRELATION

Notation: $\operatorname{Corr}(X, Y)=\rho(X, Y)=\rho_{X Y}$

Notation: $\operatorname{Corr}(X, Y)=\rho(X, Y)=\rho_{X Y}$

Computing: $\operatorname{Var}(X)=\sigma_{X}^{2}, \operatorname{Var}(Y)=\sigma_{Y}^{2}, \operatorname{Cov}(X, Y)=\sigma_{X Y}$

Notation: $\operatorname{Corr}(X, Y)=\rho(X, Y)=\rho_{X Y}$

Computing: $\operatorname{Var}(X)=\sigma_{X}^{2}, \operatorname{Var}(Y)=\sigma_{Y}^{2}, \operatorname{Cov}(X, Y)=\sigma_{X Y}$

$$
\begin{gathered}
\Downarrow \\
\rho_{X Y}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
\end{gathered}
$$

Thm. For any two random variables X and Y,
b.

Proof.
which is nothing but the Cauchy-Schwartz inequality.

Thm. For any two random variables X and Y,
a. $|\rho(X, Y)| \leq 1$

Proof. (a)
which is nothing but the Cauchy-Schwartz inequality.

Thm. For any two random variables X and Y,
a. $|\rho(X, Y)| \leq 1$
b. $\rho(X, Y)=1$ if and only if $Y=a X+b$ for some $a>0$ and $b \in \mathbb{R}$;

Proof. (a)

which is nothing but the Cauchy-Schwartz inequality.

Thm. For any two random variables X and Y,
a. $|\rho(X, Y)| \leq 1$
b. $\rho(X, Y)=1$ if and only if $Y=a X+b$ for some $a>0$ and $b \in \mathbb{R}$; $\rho(X, Y)=-1$ if and only if $Y=a X+b$ for some $a<0$ and $b \in \mathbb{R}$.

Thm. For any two random variables X and Y,
a. $|\rho(X, Y)| \leq 1$
b. $\rho(X, Y)=1$ if and only if $Y=a X+b$ for some $a>0$ and $b \in \mathbb{R}$; $\rho(X, Y)=-1$ if and only if $Y=a X+b$ for some $a<0$ and $b \in \mathbb{R}$.

Proof. (a)

$$
|\rho(X, Y)| \leq 1
$$

\Uparrow

$$
\begin{aligned}
|\mathbb{E}((X-\mathbb{E}(X))(Y-\mathbb{E}(Y)))| & \leq \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)} \\
& =\sqrt{\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)} \sqrt{\mathbb{E}\left((Y-\mathbb{E}(Y))^{2}\right)}
\end{aligned}
$$

which is nothing but the Cauchy-Schwartz inequality.
(b) In the Cauchy-Schwartz inequality, the equality holds if and only if for some $a \neq 0$,

$$
X-\mathbb{E}(X)=a[Y-E(Y)]
$$

namely,

$$
X=a Y+b, \quad \text { with } \quad b=\mathbb{E}(X)-a \mathbb{E}(Y)
$$

In particular, $a>0$ corresponds to the case $\rho(X, Y)=1$ and $a<0$ to
(b) In the Cauchy-Schwartz inequality, the equality holds if and only if for some $a \neq 0$,

$$
X-\mathbb{E}(X)=a[Y-E(Y)]
$$

namely,

$$
X=a Y+b, \quad \text { with } \quad b=\mathbb{E}(X)-a \mathbb{E}(Y)
$$

In particular, $\boldsymbol{a}>0$ corresponds to the case $\rho(X, Y)=1$ and $a<0$ to $\rho(X, Y)=-1$.

Estimating $\rho(X, Y)$

- Sample correlation coefficient

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}
$$

$$
=\frac{\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]}{\sqrt{\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}} \sqrt{\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}}}
$$

Estimating $\rho(X, Y)$

- Sample correlation coefficient

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}
$$

$$
=\frac{\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]}{\sqrt{\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}} \sqrt{\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}}}
$$

Estimating $\rho(X, Y)$

- Sample correlation coefficient

$$
\begin{gathered}
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}} \\
=\frac{\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]}{\sqrt{\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}} \sqrt{\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}}} \\
\qquad=\frac{\Downarrow}{\sqrt{n \sum_{i=1}^{n} X_{i}^{2}-\left(\sum_{i=1}^{n} X_{i}\right)^{2}} \sqrt{n \sum_{i=1}^{n} Y_{i}^{2}-\left(\sum_{i=1}^{n} Y_{i}\right)^{2}}} \\
\text { Pearson product-moment correlation coefficient }
\end{gathered}
$$

Estimating $\rho(X, Y)$
 - Sample correlation coefficient

$$
\begin{gathered}
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}} \\
=\frac{\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]}{\sqrt{\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}} \sqrt{\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}}} \\
\Downarrow \\
R=\frac{n \sum_{i=1}^{n} X_{i} Y_{i}-\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{i=1}^{n} Y_{i}\right)}{\sqrt{n \sum_{i=1}^{n} X_{i}^{2}-\left(\sum_{i=1}^{n} X_{i}\right)^{2}} \sqrt{n \sum_{i=1}^{n} Y_{i}^{2}-\left(\sum_{i=1}^{n} Y_{i}\right)^{2}}}
\end{gathered}
$$

Pearson product-moment correlation coefficient

Sample correlation coefficient

Thm.

$$
R^{2}=1-\frac{S S E}{S S T}=\frac{S S T-S S E}{S S T}=\frac{S S T R}{S S T}
$$

where

$$
\begin{gathered}
\text { SSE }=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}, \quad \widehat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i} \\
S S T=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{i}\right)^{2}, \quad \text { and } \quad S S T R=S S T-S S E .
\end{gathered}
$$

CST: Total sum of squares \sim total variability. R^{2} (or r^{2} when X_{i} and Y_{i} are replaced by x_{i} and y_{i}) \sim proportion of total variation in the y_{i} 's that can be attributed to L.M.

Coefficient of determination or simply R squared

Thm.

$$
R^{2}=1-\frac{S S E}{S S T}=\frac{S S T-S S E}{S S T}=\frac{S S T R}{S S T}
$$

where

$$
\begin{gathered}
\text { SSE }=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}, \quad \widehat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i} \\
S S T=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{i}\right)^{2}, \quad \text { and } \quad S S T R=S S T-S S E .
\end{gathered}
$$

Remark SSE: sum of square errors \sim the variation in y_{i} 's not explained by L.M.

Thm.

$$
R^{2}=1-\frac{S S E}{S S T}=\frac{S S T-S S E}{S S T}=\frac{S S T R}{S S T}
$$

where

$$
\begin{gathered}
\text { SSE }=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}, \quad \widehat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i} \\
S S T=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{i}\right)^{2}, \quad \text { and } \quad S S T R=S S T-S S E .
\end{gathered}
$$

Remark SSE: sum of square errors \sim the variation in y_{i} 's not explained by L.M. SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in y_{i} 's explained by L.M. R^{2} (or r^{2} when X_{i} and Y_{i} are replaced by x_{i} and y_{i}) \sim proportion of total variation in the y_{i} 's that can be attributed to L.M.

Coefficient of determination or simply R squared

Thm.

$$
R^{2}=1-\frac{S S E}{S S T}=\frac{S S T-S S E}{S S T}=\frac{S S T R}{S S T}
$$

where

$$
\begin{gathered}
\text { SSE }=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}, \quad \widehat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i} \\
S S T=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{i}\right)^{2}, \quad \text { and } \quad S S T R=S S T-S S E .
\end{gathered}
$$

Remark SSE: sum of square errors \sim the variation in y_{i} 's not explained by L.M. SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in y_{i}^{\prime} 's explained by L.M.

total variation in the y_{i} 's that can be attributed to L.M.
Coefficient of determination or simply R squared

Thm.

$$
R^{2}=1-\frac{S S E}{S S T}=\frac{S S T-S S E}{S S T}=\frac{S S T R}{S S T}
$$

where

$$
\begin{gathered}
S S E=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}, \quad \widehat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i} \\
S S T=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{i}\right)^{2}, \quad \text { and } \quad S S T R=S S T-S S E .
\end{gathered}
$$

Remark SSE: sum of square errors \sim the variation in y_{i} 's not explained by L.M. SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in $y_{i}{ }^{\prime}$ s explained by L.M.
$R^{2}\left(\right.$ or r^{2} when X_{i} and Y_{i} are replaced by x_{i} and $\left.y_{i}\right) \sim$ proportion of total variation in the y_{i} 's that can be attributed to L.M.

Coefficient of determination or simply R squared

Thm.

$$
R^{2}=1-\frac{S S E}{S S T}=\frac{S S T-S S E}{S S T}=\frac{S S T R}{S S T}
$$

where

$$
\begin{gathered}
\text { SSE }=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}, \quad \widehat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i} \\
S S T=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{i}\right)^{2}, \quad \text { and } \quad S S T R=S S T-S S E .
\end{gathered}
$$

Remark SSE: sum of square errors \sim the variation in y_{i} 's not explained by L.M. SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in $y_{i}{ }^{\prime}$ s explained by L.M.
$R^{2}\left(\right.$ or r^{2} when X_{i} and Y_{i} are replaced by x_{i} and $\left.y_{i}\right) \sim$ proportion of total variation in the y_{i} 's that can be attributed to L.M.

Coefficient of determination or simply R squared

Proof

Adjusted R-squared

Def. The adjusted R-squareed:

$$
R_{\mathrm{adj}}^{2}:=1-\frac{M S E}{M S T}
$$

where

$$
M S E=\frac{S S E}{n-q} \quad \text { and } \quad M S T=\frac{S S T}{n-1}
$$

and q is number of parameters in the model.

$\mathrm{MSR}=\mathrm{MSTR}:$ Mean square for tr eatment (or regresssion)
$M S R=M S T R=\frac{S S T R}{q-1}$

Adjusted R-squared

Def. The adjusted R-squareed:

$$
R_{\mathrm{adj}}^{2}:=1-\frac{M S E}{M S T}
$$

where

$$
M S E=\frac{S S E}{n-q} \quad \text { and } \quad M S T=\frac{S S T}{n-1}
$$

and q is number of parameters in the model.

Relation:

$$
R_{a d j}^{2}=1-\left(1-R^{2}\right) \frac{n-1}{n-q}
$$

MSE: Mean squared error.
MST: Mean squared total.
MSR = MSTR: Mean square for treatment (or regresssion)
$M S R=M S T R=\frac{S S T R}{q-1}$

Adjusted R-squared

Def. The adjusted R-squareed:

$$
R_{\mathrm{adj}}^{2}:=1-\frac{M S E}{M S T}
$$

where

$$
M S E=\frac{S S E}{n-q} \quad \text { and } \quad M S T=\frac{S S T}{n-1}
$$

and q is number of parameters in the model.

Relation:

$$
R_{a d j}^{2}=1-\left(1-R^{2}\right) \frac{n-1}{n-q}
$$

MSE: Mean squared error.

MSR $=$ MSTR: Mean square for treatment (or regresssion)
$M S R=M S T R=\frac{\text { SSTR }}{q-1}$

Adjusted R-squared

Def. The adjusted R-squareed:

$$
R_{\mathrm{adj}}^{2}:=1-\frac{M S E}{M S T}
$$

where

$$
M S E=\frac{S S E}{n-q} \quad \text { and } \quad M S T=\frac{S S T}{n-1}
$$

and q is number of parameters in the model.

Relation:

$$
R_{a d j}^{2}=1-\left(1-R^{2}\right) \frac{n-1}{n-q}
$$

MSE: Mean squared error.
MST: Mean squared total.
MSR $=$ MSTR: Mean square for treatment (or regresssion)
$M S R=M S T R=\frac{S S T R}{q-1}$

Adjusted R-squared

Def. The adjusted R-squareed:

$$
R_{\mathrm{adj}}^{2}:=1-\frac{M S E}{M S T}
$$

where

$$
M S E=\frac{S S E}{n-q} \quad \text { and } \quad M S T=\frac{S S T}{n-1}
$$

and q is number of parameters in the model.

Relation:

$$
R_{\mathrm{adj}}^{2}=1-\left(1-R^{2}\right) \frac{n-1}{n-q}
$$

MSE: Mean squared error.
MST: Mean squared total.
MSR $=$ MSTR: Mean square for treatment (or regresssion).

$$
M S R=M S T R=\frac{S S T R}{q-1}
$$

