Math 362: Mathematical Statistics II

Le Chen le.chen@emory.edu

Emory University Atlanta, GA

Last updated on April 13, 2021

2021 Spring

Chapter 11. Regression

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regression
- $\$ 11.5 The Bivariate Normal Distribution

Plan

§ 11.1 Introduction

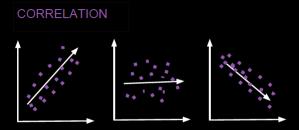
§ 11.4 Covariance and Correlation

- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regression
- § 11.5 The Bivariate Normal Distribution

Chapter 11. Regression

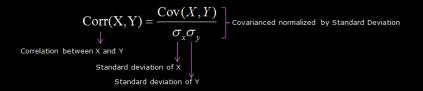
§ 11.1 Introduction

- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regression
- § 11.5 The Bivariate Normal Distribution



Positive Correlation

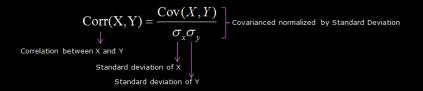
Zero Correlation Negative Correlation



Notation: $Corr(X, Y) = \rho(X, Y) = \rho_{XY}$

Computing: $\operatorname{Var}(X) = \sigma_X^2$, $\operatorname{Var}(Y) = \sigma_Y^2$, $\operatorname{Cov}(X, Y) = \sigma_{XY}$

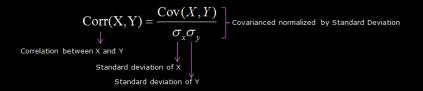
$$\downarrow \\
\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$



Notation: $Corr(X, Y) = \rho(X, Y) = \rho_{XY}$

Computing: $\operatorname{Var}(X) = \sigma_X^2$, $\operatorname{Var}(Y) = \sigma_Y^2$, $\operatorname{Cov}(X, Y) = \sigma_{XY}$

$$\downarrow \\
\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$



Notation: $Corr(X, Y) = \rho(X, Y) = \rho_{XY}$

Computing: $\operatorname{Var}(X) = \sigma_X^2$, $\operatorname{Var}(Y) = \sigma_Y^2$, $\operatorname{Cov}(X, Y) = \sigma_{XY}$

$$\downarrow \\
\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

a. $|\rho(X, Y)| \le 1$

b. $\rho(X, Y) = 1$ if and only if Y = aX + b for some a > 0 and $b \in \mathbb{R}$; $\rho(X, Y) = -1$ if and only if Y = aX + b for some a < 0 and $b \in \mathbb{R}$.

Proof. (a)

 $|\rho(X, Y)| \le 1$

 \updownarrow

 $\begin{aligned} |\mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right)| &\leq \sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)} \\ &= \sqrt{\mathbb{E}\left((X - \mathbb{E}(X))^2\right)}\sqrt{\mathbb{E}\left((Y - \mathbb{E}(Y))^2\right)} \end{aligned}$

a. $|\rho(X, Y)| \le 1$

b. $\rho(X, Y) = 1$ if and only if Y = aX + b for some a > 0 and $b \in \mathbb{R}$; $\rho(X, Y) = -1$ if and only if Y = aX + b for some a < 0 and $b \in \mathbb{R}$.

Proof. (a)

 $|\rho(X, Y)| \le 1$

 \updownarrow

 $\begin{aligned} |\mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right)| &\leq \sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)} \\ &= \sqrt{\mathbb{E}\left((X - \mathbb{E}(X))^2\right)}\sqrt{\mathbb{E}\left((Y - \mathbb{E}(Y))^2\right)} \end{aligned}$

- a. $|\rho(X, Y)| \le 1$
- **b.** $\rho(X, Y) = 1$ if and only if Y = aX + b for some a > 0 and $b \in \mathbb{R}$; $\rho(X, Y) = -1$ if and only if Y = aX + b for some a < 0 and $b \in \mathbb{R}$

Proof. (a)

 $|\rho(X, Y)| \le 1$

 \bigcirc

 $\begin{aligned} |\mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right)| &\leq \sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)} \\ &= \sqrt{\mathbb{E}\left((X - \mathbb{E}(X))^2\right)}\sqrt{\mathbb{E}\left((Y - \mathbb{E}(Y))^2\right)} \end{aligned}$

- **a.** $|\rho(X, Y)| \le 1$
- **b.** $\rho(X, Y) = 1$ if and only if Y = aX + b for some a > 0 and $b \in \mathbb{R}$; $\rho(X, Y) = -1$ if and only if Y = aX + b for some a < 0 and $b \in \mathbb{R}$.

Proof. (a)

 $|\rho(X, Y)| \le 1$

 \Rightarrow

 $\begin{aligned} |\mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right)| &\leq \sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)} \\ &= \sqrt{\mathbb{E}\left((X - \mathbb{E}(X))^2\right)}\sqrt{\mathbb{E}\left((Y - \mathbb{E}(Y))^2\right)} \end{aligned}$

- **a.** $|\rho(X, Y)| \le 1$
- **b.** $\rho(X, Y) = 1$ if and only if Y = aX + b for some a > 0 and $b \in \mathbb{R}$; $\rho(X, Y) = -1$ if and only if Y = aX + b for some a < 0 and $b \in \mathbb{R}$.

Proof. (a)

$$|\rho(\boldsymbol{X}, \boldsymbol{Y})| \le 1$$

 \Rightarrow

$$\begin{aligned} |\mathbb{E} \left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)) \right)| &\leq \sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)} \\ &= \sqrt{\mathbb{E} \left((X - \mathbb{E}(X))^2 \right)} \sqrt{\mathbb{E} \left((Y - \mathbb{E}(Y))^2 \right)} \end{aligned}$$

(b) In the Cauchy-Schwartz inequality, the equality holds if and only if for some $a \neq 0$,

$$X - \mathbb{E}(X) = a[Y - E(Y)]$$

namely,

$$X = aY + b$$
, with $b = \mathbb{E}(X) - a\mathbb{E}(Y)$.

In particular, a > 0 corresponds to the case $\rho(X, Y) = 1$ and a < 0 to $\rho(X, Y) = -1$.

(b) In the Cauchy-Schwartz inequality, the equality holds if and only if for some $a \neq 0$,

$$X - \mathbb{E}(X) = a[Y - E(Y)]$$

namely,

$$X = aY + b$$
, with $b = \mathbb{E}(X) - a\mathbb{E}(Y)$.

In particular, a > 0 corresponds to the case $\rho(X, Y) = 1$ and a < 0 to $\rho(X, Y) = -1$.

Estimating $\rho(X, Y)$ – Sample correlation coefficient

$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}}$$

$$= \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sqrt{\mathbb{E}[X^2] - \mathbb{E}[X]^2}\sqrt{\mathbb{E}[Y^2] - \mathbb{E}[Y]^2}}$$

$R = \frac{n \sum_{i=1}^{n} X_{i} Y_{i} - \left(\sum_{i=1}^{n} X_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{\sqrt{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}} \sqrt{n \sum_{i=1}^{n} Y_{i}^{2} - \left(\sum_{i=1}^{n} Y_{i}\right)^{2}}}$

Pearson product-moment correlation coefficient

or

Estimating $\rho(X, \overline{Y})$ – Sample correlation coefficient

$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}}$$

$$= \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sqrt{\mathbb{E}[X^2] - \mathbb{E}[X]^2}\sqrt{\mathbb{E}[Y^2] - \mathbb{E}[Y]^2}}$$

\Downarrow

$$R = \frac{n \sum_{i=1}^{n} X_{i} Y_{i} - \left(\sum_{i=1}^{n} X_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{\sqrt{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}} \sqrt{n \sum_{i=1}^{n} Y_{i}^{2} - \left(\sum_{i=1}^{n} Y_{i}\right)^{2}}}$$

Pearson product-moment correlation coefficient

or

Estimating $\rho(X, Y)$ – Sample correlation coefficient

$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}}$$

$$= \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sqrt{\mathbb{E}[X^2] - \mathbb{E}[X]^2}\sqrt{\mathbb{E}[Y^2] - \mathbb{E}[Y]^2}}$$

$$\Downarrow$$

$$R = \frac{n \sum_{i=1}^{n} X_i Y_i - \left(\sum_{i=1}^{n} X_i\right) \left(\sum_{i=1}^{n} Y_i\right)}{\sqrt{n \sum_{i=1}^{n} X_i^2 - \left(\sum_{i=1}^{n} X_i\right)^2 \sqrt{n \sum_{i=1}^{n} Y_i^2 - \left(\sum_{i=1}^{n} Y_i\right)^2}}}$$

Pearson product-moment correlation coefficient

or

Estimating $\rho(X, Y)$ – Sample correlation coefficient

$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}}$$

$$= \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sqrt{\mathbb{E}[X^2] - \mathbb{E}[X]^2}\sqrt{\mathbb{E}[Y^2] - \mathbb{E}[Y]^2}}$$

$$\downarrow$$

$$R = \frac{n \sum_{i=1}^{n} X_{i} Y_{i} - \left(\sum_{i=1}^{n} X_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{\sqrt{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}} \sqrt{n \sum_{i=1}^{n} Y_{i}^{2} - \left(\sum_{i=1}^{n} Y_{i}\right)^{2}}}$$

Pearson product-moment correlation coefficient

or

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$egin{aligned} & \mathcal{SSE} = \sum_{i=1}^n \left(Y_i - \widehat{Y}_i
ight)^2, \quad \widehat{Y}_i = \widehat{eta}_0 + \widehat{eta}_1 X_i \ & \mathcal{SST} = \sum_{i=1}^n \left(Y_i - \overline{Y}_i
ight)^2, \quad ext{and} \quad & \mathcal{SSTR} = \mathcal{SST} - \mathcal{SSE}. \end{aligned}$$

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. ~ the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) ~ proportion of total variation in the y_i 's that can be attributed to L.M. *Coefficient of determination* or simply *R squared*

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$egin{aligned} & \mathcal{SSE} = \sum_{i=1}^n \left(Y_i - \widehat{Y}_i
ight)^2, \quad \widehat{Y}_i = \widehat{eta}_0 + \widehat{eta}_1 X_i \ & \mathcal{SST} = \sum_{i=1}^n \left(Y_i - \overline{Y}_i
ight)^2, \quad ext{and} \quad & \mathcal{SSTR} = \mathcal{SST} - \mathcal{SSE}. \end{aligned}$$

Remark SSE: sum of square errors ~ the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. ~ the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) ~ proportion of total variation in the y_i 's that can be attributed to L.M.

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$egin{aligned} & \mathcal{SSE} = \sum_{i=1}^n \left(Y_i - \widehat{Y}_i
ight)^2, \quad \widehat{Y}_i = \widehat{eta}_0 + \widehat{eta}_1 X_i \ & \mathcal{SST} = \sum_{i=1}^n \left(Y_i - \overline{Y}_i
ight)^2, \quad ext{and} \quad & \mathcal{SSTR} = \mathcal{SST} - \mathcal{SSE}. \end{aligned}$$

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M. SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. ~ the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) ~ proportion of total variation in the y_i 's that can be attributed to L.M. *Coefficient of determination* or simply *R squared*

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$egin{aligned} & \mathcal{SSE} = \sum_{i=1}^n \left(Y_i - \widehat{Y}_i
ight)^2, \quad \widehat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i \ & \mathcal{SST} = \sum_{i=1}^n \left(Y_i - \overline{Y}_i
ight)^2, \quad ext{and} \quad & \mathcal{SSTR} = \mathcal{SST} - \mathcal{SSE}. \end{aligned}$$

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M. SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. ~ the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) ~ proportion of total variation in the y_i 's that can be attributed to L.M. *Coefficient of determination* or simply *R squared*

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$egin{aligned} & \mathcal{SSE} = \sum_{i=1}^n \left(Y_i - \widehat{Y}_i
ight)^2, \quad \widehat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i \ & \mathcal{SST} = \sum_{i=1}^n \left(Y_i - \overline{Y}_i
ight)^2, \quad ext{and} \quad & \mathcal{SSTR} = \mathcal{SST} - \mathcal{SSE}. \end{aligned}$$

Remark SSE: sum of square errors ~ the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. ~ the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) ~ proportion of total variation in the y_i 's that can be attributed to L.M.

Coefficient of determination or simply *R* squared

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$egin{aligned} & \mathcal{SSE} = \sum_{i=1}^n \left(Y_i - \widehat{Y}_i
ight)^2, \quad \widehat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i \ & \mathcal{SST} = \sum_{i=1}^n \left(Y_i - \overline{Y}_i
ight)^2, \quad ext{and} \quad & \mathcal{SSTR} = \mathcal{SST} - \mathcal{SSE}. \end{aligned}$$

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. ~ the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) ~ proportion of total variation in the y_i 's that can be attributed to L.M.

Coefficient of determination or simply R squared

Proof

Def. The adjusted R-squareed:

$$R_{adj}^2 := 1 - \frac{MSE}{MST}$$

where

$$MSE = \frac{SSE}{n-q}$$
 and $MST = \frac{SST}{n-1}$

and \boldsymbol{q} is number of parameters in the model.

Relation:

$$R_{adj}^2 = 1 - \left(1 - R^2
ight)rac{n-1}{n-q}$$

MSE: Mean squared error. MST: Mean squared total. MSR = MSTR: Mean square for treatment (or regresssion)

$$MSR = MSTR = \frac{SSTR}{q-1}$$

Def. The adjusted R-squareed:

$$R_{adj}^2 := 1 - \frac{MSE}{MST}$$

where

$$MSE = \frac{SSE}{n-q}$$
 and $MST = \frac{SST}{n-1}$

and q is number of parameters in the model.

Relation:

$$R_{adj}^2 = 1 - \left(1 - R^2
ight)rac{n-1}{n-q}$$

MSE: Mean squared error. MST: Mean squared total. MSR = MSTR: Mean square for treatment (or regresssion)

$$MSR = MSTR = \frac{SSTR}{q-1}$$

Def. The adjusted R-squareed:

$$R_{adj}^2 := 1 - \frac{MSE}{MST}$$

where

$$MSE = \frac{SSE}{n-q}$$
 and $MST = \frac{SST}{n-1}$

and q is number of parameters in the model.

Relation:

$$R_{adj}^2 = 1 - \left(1 - R^2\right) rac{n-1}{n-q}$$

MSE: Mean squared error.

MST: Mean squared total.

MSR = MSTR: Mean square for treatment (or regression)

$$MSR = MSTR = \frac{SSTR}{q-1}$$

Def. The adjusted R-squareed:

$$R_{adj}^2 := 1 - \frac{MSE}{MST}$$

where

$$MSE = \frac{SSE}{n-q}$$
 and $MST = \frac{SST}{n-1}$

and q is number of parameters in the model.

Relation:

$$R_{adj}^2 = 1 - \left(1 - R^2
ight)rac{n-1}{n-q}$$

MSE: Mean squared error. MST: Mean squared total.

MSR = MSTR: Mean square for treatment (or regression)

$$MSR = MSTR = \frac{SSTR}{q-1}$$

Def. The adjusted R-squareed:

$$R_{adj}^2 := 1 - \frac{MSE}{MST}$$

where

$$MSE = \frac{SSE}{n-q}$$
 and $MST = \frac{SST}{n-1}$

and q is number of parameters in the model.

Relation:

$$R_{adj}^2 = 1 - \left(1 - R^2
ight)rac{n-1}{n-q}$$

MSE: Mean squared error.

MST: Mean squared total.

MSR = MSTR: Mean square for treatment (or regression).

$$MSR = MSTR = \frac{SSTR}{q-1}$$