Math 362: Mathematical Statistics II

Le Chen
le.chen@emory.edu
Emory University Atlanta, GA

Last updated on April 24, 2021

2021 Spring

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Plan

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Let $\widetilde{\mu}$ be the median of some unknown continuous pdf $f_{Y}(y)$:

$$
\mathbb{P}(Y \leq \widetilde{\mu})=\mathbb{P}(Y \geq \widetilde{\mu})=\frac{1}{2}
$$

- For a random sample of size n is taken from $f_{Y}(y)$, in order to test

Let $\widetilde{\mu}$ be the median of some unknown continuous pdf $f_{Y}(y)$:

$$
\mathbb{P}(Y \leq \widetilde{\mu})=\mathbb{P}(Y \geq \widetilde{\mu})=\frac{1}{2}
$$

- For a random sample of size n is taken from $f_{Y}(y)$, in order to test

$$
H_{0}: \widetilde{\mu}=\widetilde{\mu}_{0} \quad \text { vs } \quad H_{0}: \widetilde{\mu} \neq \widetilde{\mu}_{0},
$$

Let $\widetilde{\mu}$ be the median of some unknown continuous pdf $f_{Y}(y)$:

$$
\mathbb{P}(Y \leq \widetilde{\mu})=\mathbb{P}(Y \geq \widetilde{\mu})=\frac{1}{2}
$$

- For a random sample of size n is taken from $f_{Y}(y)$, in order to test

$$
H_{0}: \widetilde{\mu}=\widetilde{\mu}_{0} \quad \text { vs } \quad H_{0}: \widetilde{\mu} \neq \widetilde{\mu}_{0}
$$

let

$$
X:=\text { the number of observations exceeding } \widetilde{\mu}_{0}
$$

Let $\widetilde{\mu}$ be the median of some unknown continuous pdf $f_{Y}(y)$:

$$
\mathbb{P}(Y \leq \widetilde{\mu})=\mathbb{P}(Y \geq \widetilde{\mu})=\frac{1}{2}
$$

- For a random sample of size n is taken from $f_{Y}(y)$, in order to test

$$
H_{0}: \widetilde{\mu}=\widetilde{\mu}_{0} \quad \text { vs } \quad H_{0}: \widetilde{\mu} \neq \widetilde{\mu}_{0}
$$

let

$$
X:=\text { the number of observations exceeding } \widetilde{\mu}_{0}
$$

Let $\widetilde{\mu}$ be the median of some unknown continuous pdf $f_{Y}(y)$:

$$
\mathbb{P}(Y \leq \widetilde{\mu})=\mathbb{P}(Y \geq \widetilde{\mu})=\frac{1}{2}
$$

- For a random sample of size n is taken from $f_{Y}(y)$, in order to test

$$
H_{0}: \widetilde{\mu}=\widetilde{\mu}_{0} \quad \text { vs } \quad H_{0}: \widetilde{\mu} \neq \widetilde{\mu}_{0}
$$

let

$$
X:=\text { the number of observations exceeding } \widetilde{\mu}_{0}
$$

$$
\text { 1. } X \sim \operatorname{Binomial}(n, 1 / 2) \text {. }
$$

Let $\widetilde{\mu}$ be the median of some unknown continuous pdf $f_{Y}(y)$:

$$
\mathbb{P}(Y \leq \widetilde{\mu})=\mathbb{P}(Y \geq \widetilde{\mu})=\frac{1}{2}
$$

- For a random sample of size n is taken from $f_{y}(y)$, in order to test

$$
H_{0}: \widetilde{\mu}=\widetilde{\mu}_{0} \quad \text { vs } \quad H_{0}: \widetilde{\mu} \neq \widetilde{\mu}_{0}
$$

let

$$
X:=\text { the number of observations exceeding } \widetilde{\mu}_{0}
$$

1. $X \sim \operatorname{Binomial}(n, 1 / 2)$.
2. Moreover, if n is large, by CLT,

$$
\frac{X-\mathbb{E}[X]}{\sqrt{\operatorname{Var}(X)}}=\frac{X-\frac{n}{2}}{\sqrt{n / 4}} \stackrel{\text { aprox. }}{\sim} \quad N(0,1)
$$

Sign test for median of a single sample

- When sample size n is large:

Sign test for median of a single sample

- When sample size n is large:

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a random sample of size n from any continuous distribution having median $\tilde{\mu}$, where $n \geq 10$. Let k denote the number of y_{i} 's greater than $\tilde{\mu}_{0}$, and let $z=\frac{k-n / 2}{\sqrt{n / 4}}$.
a. To test $H_{0}: \tilde{\mu}=\tilde{\mu}_{0}$ versus $H_{1}: \tilde{\mu}>\tilde{\mu}_{0}$ at the α level of significance, reject H_{0} if $z \geq z_{\alpha}$.
b. To test $H_{0}: \tilde{\mu}=\tilde{\mu}_{0}$ versus $H_{1}: \tilde{\mu}<\tilde{\mu}_{0}$ at the α level of significance, reject H_{0} if $z \leq-z_{\alpha}$.
c. To test $H_{0}: \tilde{\mu}=\tilde{\mu}_{0}$ versus $H_{1}: \tilde{\mu} \neq \tilde{\mu}_{0}$ at the α level of significance, reject H_{0} if z is either $(1) \leq-z_{\alpha / 2}$ or $(2) \geq z_{\alpha / 2}$.

- When sample size n is small: use the exact distribution of binomial distribution.
E.g. 1 In a healthy adults, the median pH for synovial fluid is 7.39 .
E.g. 1 In a healthy adults, the median pH for synovial fluid is 7.39. A random sample of $n=43$ is chosen and test

$$
H_{0}: \widetilde{\mu}=7.39 \quad \text { vs } \quad H_{0}: \widetilde{\mu} \neq 7.39, \quad \text { at } \alpha=0.10 .
$$

E.g. 1 In a healthy adults, the median pH for synovial fluid is 7.39.

A random sample of $n=43$ is chosen and test

$$
H_{0}: \widetilde{\mu}=7.39 \quad \text { vs } \quad H_{0}: \widetilde{\mu} \neq 7.39, \quad \text { at } \alpha=0.10
$$

Subject	Synovial Fluid pH	Subject	Synovial Fluid pH
HW	7.02	BG	7.34
AD	7.35	GL	7.22
TK	7.32	BP	7.32
EP	7.33	NK	7.40
AF	7.15	LL	6.99
LW	7.26	KC	7.10
LT	7.25	FA	7.30
DR	7.35	ML	7.21
VU	7.38	CK	7.33
SP	7.20	LW	7.28
MM	7.31	ES	7.35
DF	7.24	DD	7.24
LM	7.34	SL	7.36
AW	7.32	RM	7.09
BB	7.34	AL	7.32
TL	7.14	BV	6.95
PM	7.20	WR	7.35
JG	7.41	HT	7.36
DH	7.77	ND	6.60
ER	7.12	SJ	7.29
DP	7.45	BA	7.31
FF	7.28		

Sol 1. We first count how many samples exceeding the median (i.e., obtain the value of X)

Sol 1. We first count how many samples exceeding the median (i.e., obtain the value of X)

Subject	Synovial Fluid pH	Subject	Synovial Fluid pH
HW	7.02	BG	7.34
AD	7.35	GL	7.22
TK	7.32	BP	7.32
EP	7.33	NK	7.40
AF	7.15	LL	6.99
LW	7.26	KC	7.10
LT	7.25	FA	7.30
DR	7.35	ML	7.21
VU	7.38	CK	7.33
SP	7.20	LW	7.28
MM	7.31	ES	7.35
DF	7.24	DD	7.24
LM	7.34	SL	7.36
AW	7.32	RM	7.09
BB	7.34	AL	7.32
TL	7.14	BV	6.95
PM	7.20	WR	7.35
JG	7.41	HT	7.36
DH	7.77	ND	6.60
ER	7.12	SJ	7.29
DP	7.45	BA	7.31
FF	7.28		

Sol 1. We first count how many samples exceeding the median (i.e., obtain the value of X)

Subject	Synovial Fluid pH	Subject	Synovial Fluid pH
HW	7.02	BG	7.34
AD	7.35	GL	7.22
TK	7.32	BP	7.32
EP	7.33	NK	7.40
AF	7.15	LL	6.99
LW	7.26	KC	7.10
LT	7.25	FA	7.30
DR	7.35	ML	7.21
VU	7.38	CK	7.33
SP	7.20	LW	7.28
MM	7.31	ES	7.35
DF	7.24	DD	7.24
LM	7.34	SL	7.36
AW	7.32	RM	7.09
BB	7.34	AL	7.32
TL	7.14	BV	6.95
PM	7.20	WR	7.35
JG	7.41	1	HT
DH	7.77	7.36	
ER	7.12	ND	6.60
DP	7.45	SJ	7.29
FF	7.28	BA	7.31

Sol 1. We first count how many samples exceeding the median (i.e., obtain the value of X)

Subject	Synovial Fluid pH	Subject	Synovial Fluid pH
HW	7.02	BG	7.34
AD	7.35	GL	7.22
TK	7.32	BP	7.32
EP	7.33	NK	7.40
AF	7.15	LL	6.99
LW	7.26	KC	7.10
LT	7.25	FA	7.30
DR	7.35	ML	7.21
VU	7.38	CK	7.33
SP	7.20	LW	7.28
MM	7.31	ES	7.35
DF	7.24	DD	7.24
LM	7.34	SL	7.36
AW	7.32	RM	7.09
BB	7.34	AL	7.32
TL	7.14	BV	6.95
PM	7.20	1	WR

Sol 1. We first count how many samples exceeding the median (i.e., obtain the value of X)

Subject	Synovial Fluid pH	Subject	Synovial Fluid pH
HW	7.02	BG	7.34
AD	7.35	GL	7.22
TK	7.32	BP	7.32
EP	7.33	NK	7.40
AF	7.15	LL	6.99
LW	7.26	KC	7.10
LT	7.25	FA	7.30
DR	7.35	ML	7.21
VU	7.38	CK	7.33
SP	7.20	LW	7.28
MM	7.31	ES	7.35
DF	7.24	DD	7.24
LM	7.34	SL	7.36
AW	7.32	RM	7.09
BB	7.34	AL	7.32
TL	7.14	BV	6.95
PM	7.20	WR	7.35
JG	7.41	M	HT
DH	7.77	ND	7.36
ER	7.12	SJ	7.60
DP	7.45	SA	7.31
FF	7.28		

Hence, we have $k=4, n=43$, and since n is large, we use the z test:

$$
z=\frac{4-43 / 2}{\sqrt{43 / 4}}=-5.34
$$

Since the critical regions (two-sided test here) are

$$
(-\infty,-2.58) \cup(2.58, \infty),
$$

we reject the hypothesis.

Or equivalently, the p-value is

[^0]Hence, we have $k=4, n=43$, and since n is large, we use the z test:

$$
z=\frac{4-43 / 2}{\sqrt{43 / 4}}=-5.34
$$

Since the critical regions (two-sided test here) are

$$
\begin{gathered}
\left(-\infty,-z_{\alpha / 2}\right) \cup\left(z_{\alpha / 2}, \infty\right) \\
\| \\
(-\infty,-2.58) \cup(2.58, \infty),
\end{gathered}
$$

we reject the hypothesis.

Or equivalently, the p-value is
$2 \times \mathbb{D}($ フー $\quad 5.34)=9.294658 \times 10^{-8}$

[^1]Hence, we have $k=4, n=43$, and since n is large, we use the z test:

$$
z=\frac{4-43 / 2}{\sqrt{43 / 4}}=-5.34
$$

Since the critical regions (two-sided test here) are

$$
\begin{gathered}
\left(-\infty,-z_{\alpha / 2}\right) \cup\left(z_{\alpha / 2}, \infty\right) \\
\| \\
(-\infty,-2.58) \cup(2.58, \infty),
\end{gathered}
$$

we reject the hypothesis.

Or equivalently, the p-value is
$2 \times \mathbb{P}(7<-5.34)=9.294658 \times 10^{-}$

[^2]Hence, we have $k=4, n=43$, and since n is large, we use the z test:

$$
z=\frac{4-43 / 2}{\sqrt{43 / 4}}=-5.34
$$

Since the critical regions (two-sided test here) are

$$
\begin{gathered}
\left(-\infty,-z_{\alpha / 2}\right) \cup\left(z_{\alpha / 2}, \infty\right) \\
\| \\
(-\infty,-2.58) \cup(2.58, \infty),
\end{gathered}
$$

we reject the hypothesis.

Or equivalently, the p-value is

$$
2 \times \mathbb{P}(Z<-5.34)=9.294658 \times 10^{-8}
$$

[^3]Sol 2. We can also carry out the exact computation thanks to computer:

[^4]Sol 2. We can also carry out the exact computation thanks to computer: The exact p-value should be

$$
2 \times \mathbb{P}(X \leq 5)=2 \sum_{k=0}^{5}\binom{43}{k}\left(\frac{1}{2}\right)^{43}=2.49951 \times 10^{-7}
$$

which is smaller than $\alpha=0.10$.
Hence, rejection!

$$
\begin{aligned}
& 1>\operatorname{pbinom}(5,43,0.5) * 2 \\
& 2[1] 2.49951 \mathrm{e}-07
\end{aligned}
$$

Sol 2. We can also carry out the exact computation thanks to computer: The exact p-value should be

$$
2 \times \mathbb{P}(X \leq 5)=2 \sum_{k=0}^{5}\binom{43}{k}\left(\frac{1}{2}\right)^{43}=2.49951 \times 10^{-7}
$$

which is smaller than $\alpha=0.10$.
Hence, rejection!

$$
\begin{aligned}
& 1>\operatorname{pbinom}(5,43,0.5) * 2 \\
& 2[1] 2.49951 \mathrm{e}-07
\end{aligned}
$$

Sign test for paired data

E.g. A manufacturer produces two products, A and B . The manufacturer wishes to know if consumers prefer product B over product A . and asked which product they prefer:

Test at $\alpha=0.10$ that
H_{0} : consumers do not prefer B over A

Sign test for paired data

E.g. A manufacturer produces two products, A and B . The manufacturer wishes to know if consumers prefer product B over product A . A sample of 10 consumers are each given product A and product B , and asked which product they prefer:

Preferences	Number
B	8
A	1
No preference	1

Test at $\alpha=0.10$ that
H_{0} : constumers do not prefer B over A

Sign test for paired data

E.g. A manufacturer produces two products, A and B . The manufacturer wishes to know if consumers prefer product B over product A .

A sample of 10 consumers are each given product A and product B , and asked which product they prefer:

Preferences	Number
B	8
A	1
No preference	1

Test at $\alpha=0.10$ that
H_{0} : consumers do not prefer B over A vs.
H_{1} : consumers do prefer B over A .

Sol. We first remove the ties. So that we have a random (paired-data) sample of size $n=9$. Under H_{0}, the consumers have no preference for B over A. Hence,
may believe that consumers will choose A or B with probability $\frac{1}{2}$
Hence, to get more extreme values in this setting would give the
p-value:

$$
P(x \geq 8)=\sum_{k=8}^{9}\binom{9}{k}\left(\frac{1}{2}\right)
$$

Sol. We first remove the ties. So that we have a random (paired-data) sample of size $n=9$.

Under H_{0}, the consumers have no preference for B over A . Hence, we may believe that consumers will choose A or B with probability $\frac{1}{2}$. Hence, to get more extreme values in this setting would give the p-value:

Sol. We first remove the ties. So that we have a random (paired-data) sample of size $n=9$.

Under H_{0}, the consumers have no preference for B over A. Hence, we may believe that consumers will choose A or B with probability $\frac{1}{2}$.

Hence, to get more extreme values in this setting would give the p-value:

$$
\mathbb{P}(X \geq 8)=\sum_{k=8}^{9}\binom{9}{k}\left(\frac{1}{2}\right)^{9}=0.0195 .
$$

Conclusion, Rejection!

Sol. We first remove the ties. So that we have a random (paired-data) sample of size $n=9$.

Under H_{0}, the consumers have no preference for B over A. Hence, we may believe that consumers will choose A or B with probability $\frac{1}{2}$.

Hence, to get more extreme values in this setting would give the p-value:

$$
\mathbb{P}(X \geq 8)=\sum_{k=8}^{9}\binom{9}{k}\left(\frac{1}{2}\right)^{9}=0.0195 .
$$

Conclusion, Rejection!

[^0]: $1>\operatorname{pnorm}(-5.34) * 2$
 2 [1] 9.294658e-08

[^1]: $1>\operatorname{pnorm}(-5.34) * 2$
 2 [1] 9.294658e-08

[^2]: $1>\operatorname{pnorm}(-5.34) * 2$
 2 [1] 9.294658e-08

[^3]: $1>\operatorname{pnorm}(-5.34) * 2$
 2 [1] $9.294658 \mathrm{e}-08$

[^4]: $1>\operatorname{pbinom}(5,43,0.5) * 2$
 2 [1] $2.49951 \mathrm{e}-07$

