Math 362: Mathematical Statistics II

Le Chen le.chen@emory.edu

Emory University Atlanta, GA

Last updated on April 24, 2021

2021 Spring

Chapter 14. Nonparametric Statistics

- § 14.1 Introduction
- § 14.2 The Sign Test
- § 14.3 Wilcoxon Tests
- § 14.4 The Kruskal-Wallis Test
- § 14.5 The Friedman Test
- $\$ 14.6 Testing for Randomness

Plan

- § 14.1 Introduction
- § 14.2 The Sign Test
- § 14.3 Wilcoxon Tests
- § 14.4 The Kruskal-Wallis Test
- § 14.5 The Friedman Test
- § 14.6 Testing for Randomness

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction

§ 14.2 The Sign Test

$\$ 14.3 Wilcoxon Tests

- § 14.4 The Kruskal-Wallis Test
- § 14.5 The Friedman Test
- § 14.6 Testing for Randomness

Frank Wilcoxon

Setup Let Y_1, \dots, Y_n be a set of independent variables with pdfs $f_{Y_1}(y), \dots, f_{Y_n}(y)$, respectively.

Assume that $f_{Y_i}(y)$ are continuous and symmetric. Assume that all mean/median of f_{Y_i} are equal, denoted by μ

Test $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$.

Wilcoxon signed rank static

$$W = \sum_{k=1}^n R_k \, \mathrm{I}_{\{Y_k > \mu_0\}}$$

$$\{|Y_1 - \mu_0|, |Y_2 - \mu_0|, \cdots, |Y_n - \mu_0|\}$$

Setup Let Y_1, \dots, Y_n be a set of independent variables with pdfs $f_{Y_1}(y), \dots, f_{Y_n}(y)$, respectively. Assume that $f_{Y_i}(y)$ are continuous and symmetric. Assume that all mean/median of f_{Y_i} are equal, denoted by

Test $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$.

Wilcoxon signed rank static

$$W = \sum_{k=1}^n R_k \, \operatorname{\mathrm{I}}_{\{Y_k > \mu_0\}}$$

$$\{|Y_1 - \mu_0|, |Y_2 - \mu_0|, \cdots, |Y_n - \mu_0|\}$$

Setup Let Y_1, \dots, Y_n be a set of independent variables with pdfs $f_{Y_1}(y), \dots, f_{Y_n}(y)$, respectively. Assume that $f_{Y_i}(y)$ are continuous and symmetric. Assume that all mean/median of f_{Y_i} are equal, denoted by μ .

Test $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$.

Wilcoxon signed rank static

$$W = \sum_{k=1}^n R_k \ \mathbb{I}_{\{Y_k > \mu_0\}}$$

$$\{|Y_1 - \mu_0|, |Y_2 - \mu_0|, \cdots, |Y_n - \mu_0|\}$$

Setup Let Y_1, \dots, Y_n be a set of independent variables with pdfs $f_{Y_1}(y), \dots, f_{Y_n}(y)$, respectively. Assume that $f_{Y_i}(y)$ are continuous and symmetric. Assume that all mean/median of f_{Y_i} are equal, denoted by μ .

Test $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$.

Wilcoxon signed rank static

$$W = \sum_{k=1}^n R_k \ \mathbb{I}_{\{Y_k > \mu_0\}}$$

$$\{|Y_1 - \mu_0|, |Y_2 - \mu_0|, \cdots, |Y_n - \mu_0|\}$$

Setup Let Y_1, \dots, Y_n be a set of independent variables with pdfs $f_{Y_1}(y), \dots, f_{Y_n}(y)$, respectively. Assume that $f_{Y_i}(y)$ are continuous and symmetric. Assume that all mean/median of f_{Y_i} are equal, denoted by μ .

Test $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$.

Wilcoxon signed rank static

$$W = \sum_{k=1}^{n} R_k \, \mathrm{I}_{\{Y_k > \mu_0\}}$$

$$\{|Y_1 - \mu_0|, |Y_2 - \mu_0|, \cdots, |Y_n - \mu_0|\}$$

n	1	2	3
Уn	4.2	6.1	2.0
$y_n - 3.0$	1.2	3.1	-1.0
$ y_n - 3.0 $	1.2	3.1	1.0
<i>r</i> _n	2	3	1
$1_{\{y_n > 3.0\}}$	1		0
$r_n 1_{\{y_n > 3.0\}}$	$u_2 = 2$	$u_3 = 3$	$u_1 = 0$
	\downarrow		

 $w = 2 \times 1 + 3 \times 1 + 1 \times 0 = 5.$

Let $\{y_1, \dots, y_n\}$ be For a sample of size n.

Some observations:

► r_i takes values in $\{1, 2, \cdots, n\}$.

 $\blacktriangleright W_i \text{ takes values in } \left\{0, 1, 2, \cdots, \frac{n(n+1)}{2}\right\} \text{ with } 1 + 2 + \cdots + n = \frac{n(n+1)}{2}.$

 \blacktriangleright W is a discrete random variable:

Let $\{y_1, \dots, y_n\}$ be For a sample of size n.

Some observations:

► r_i takes values in $\{1, 2, \cdots, n\}$.

•
$$w_i$$
 takes values in $\left\{0, 1, 2, \cdots, \frac{n(n+1)}{2}\right\}$ with $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$

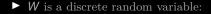
 \blacktriangleright W is a discrete random variable:

Let $\{y_1, \dots, y_n\}$ be For a sample of size n.

Some observations:

► r_i takes values in $\{1, 2, \cdots, n\}$.

►
$$w_i$$
 takes values in $\left\{0, 1, 2, \cdots, \frac{n(n+1)}{2}\right\}$ with $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$



W	0	1	 $\frac{n(n+1)}{2}$
$\mathbb{P}(W = w)$			

Theorem Under the above setup and under H_0 ,

$$\rho_{W}(w) = \mathbb{P}(W = w) = \frac{c(w)}{2^{n}},$$

where c(w) is the coefficient of e^{wt} in the expansion of

$$\prod_{k=1}^n \left(1+\boldsymbol{e}^{kt}\right).$$

Proof Under H_0 , $W = \sum_{k=1}^{n} U_k$ with follow the following distribution

$$U_k = \begin{cases} 0 & \text{with probability } 1/2 \\ k & \text{with probability } 1/2. \end{cases}$$

Then

$$M_W(t) = \prod_{k=1}^n M_{U_k}(t) = \prod_{k=1}^n \mathbb{E}\left(e^{U_k t}\right) = \prod_{k=1}^n \left(\frac{1}{2} + \frac{1}{2}e^{kt}\right)$$

Theorem Under the above setup and under H_0 ,

$$\rho_{W}(w) = \mathbb{P}(W = w) = \frac{c(w)}{2^{n}},$$

where c(w) is the coefficient of e^{wt} in the expansion of

$$\prod_{k=1}^n \left(1+\boldsymbol{e}^{kt}\right).$$

Proof Under H_0 , $W = \sum_{k=1}^{n} U_k$ with follow the following distribution

$$U_{k} = \begin{cases} 0 & \text{with probability } 1/2 \\ k & \text{with probability } 1/2. \end{cases}$$

Then

$$M_{W}(t) = \prod_{k=1}^{n} M_{U_{k}}(t) = \prod_{k=1}^{n} \mathbb{E}\left(e^{U_{k}t}\right) = \prod_{k=1}^{n} \left(\frac{1}{2} + \frac{1}{2}e^{kt}\right)$$

Theorem Under the above setup and under H_0 ,

$$\rho_{W}(w) = \mathbb{P}(W = w) = \frac{c(w)}{2^{n}},$$

where c(w) is the coefficient of e^{wt} in the expansion of

$$\prod_{k=1}^n \left(1+\boldsymbol{e}^{kt}\right).$$

Proof Under H_0 , $W = \sum_{k=1}^{n} U_k$ with follow the following distribution

$$U_{k} = \begin{cases} 0 & \text{with probability } 1/2 \\ k & \text{with probability } 1/2. \end{cases}$$

Then

$$M_{W}(t) = \prod_{k=1}^{n} M_{U_{k}}(t) = \prod_{k=1}^{n} \mathbb{E}\left(\boldsymbol{e}^{U_{k}t}\right) = \prod_{k=1}^{n} \left(\frac{1}{2} + \frac{1}{2}\boldsymbol{e}^{kt}\right)$$

Hence, we have

$$M_W(t) = \frac{1}{2^n} \prod_{k=1}^n \left(1 + e^{kt} \right).$$

On the other hand,

$$M_{W}(t) = \mathbb{E}\left(\boldsymbol{e}^{Wt}\right) = \sum_{w=0}^{\frac{n(n+1)}{2}} \boldsymbol{e}^{wt} \boldsymbol{p}_{W}(w)$$

Equating the above two expressions, namely,

$$\frac{1}{2^{n}}\prod_{k=1}^{n}\left(1+e^{kt}\right)=\sum_{w=0}^{\frac{n(n+1)}{2}}e^{wt}p_{W}(w)$$

proves the theorem.

Hence, we have

$$M_W(t) = \frac{1}{2^n} \prod_{k=1}^n \left(1 + e^{kt} \right).$$

On the other hand,

$$M_{W}(t) = \mathbb{E}\left(\boldsymbol{e}^{Wt}\right) = \sum_{w=0}^{\frac{n(n+1)}{2}} \boldsymbol{e}^{wt} \boldsymbol{p}_{W}(w)$$

Equating the above two expressions, namely,

$$\frac{1}{2^{n}}\prod_{k=1}^{n}\left(1+e^{kt}\right)=\sum_{w=0}^{\frac{n(n+1)}{2}}e^{wt}\rho_{W}(w)$$

proves the theorem.

Hence, we have

$$M_{W}(t) = \frac{1}{2^{n}} \prod_{k=1}^{n} \left(1 + \boldsymbol{e}^{kt} \right).$$

On the other hand,

$$M_{W}(t) = \mathbb{E}\left(\boldsymbol{e}^{Wt}\right) = \sum_{w=0}^{\frac{n(n+1)}{2}} \boldsymbol{e}^{wt} \boldsymbol{p}_{W}(w)$$

Equating the above two expressions, namely,

$$\frac{1}{2^n}\prod_{k=1}^n\left(1+e^{kt}\right)=\sum_{w=0}^{\frac{n(n+1)}{2}}e^{wt}p_W(w)$$

proves the theorem.

E.g. Find the pdf of W when n = 2 and 4.

Sol. When n = 2,

$$egin{aligned} &\mathcal{M}_{\mathcal{W}}(t) = rac{1}{2^2} \left(1 + e^t
ight) \left(1 + e^{2t}
ight) \ &= rac{1}{2^2} (1 + e^t + e^{2t} + e^{3t}). \end{aligned}$$

Hence

E.g. Find the pdf of W when n = 2 and 4.

Sol. When n = 2,

$$egin{aligned} \mathcal{M}_{\mathcal{W}}(t) &= rac{1}{2^2} \left(1+oldsymbol{e}^t
ight) \left(1+oldsymbol{e}^{2t}
ight) \ &= rac{1}{2^2} (1+oldsymbol{e}^t+oldsymbol{e}^{2t}+oldsymbol{e}^{3t}). \end{aligned}$$

Hence,

W	0	1	2	3
$p_W(w)$	1/4	1/4	1/4	1/4

When n = 4,

$$\begin{aligned} \mathcal{M}_{\mathsf{W}}(t) &= \frac{1}{2^4} \left(1 + \mathbf{e}^t \right) \left(1 + \mathbf{e}^{2t} \right) \left(1 + \mathbf{e}^{3t} \right) \left(1 + \mathbf{e}^{4t} \right) \\ &= \frac{1}{16} \left(\mathbf{e}^{10t} + \mathbf{e}^{9t} + \mathbf{e}^{8t} + 2\mathbf{e}^{7t} + 2\mathbf{e}^{6t} + 2\mathbf{e}^{5t} + 2\mathbf{e}^{4t} + 2\mathbf{e}^{3t} + \mathbf{e}^{2t} + \mathbf{e}^{t} + 1 \right) \end{aligned}$$

Hence.

w	0	1	2	3	4	5	6	7	8	9	10
$p_W(w)$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$

 $| \text{sage: } \mathbf{var}(\mathbf{k}, \mathbf{t}')$

$$| \text{sage: product}(1+e^{(k*t),k,1,4)}$$

$$\begin{array}{c} 4 \\ e^{(10*t)} + e^{(9*t)} + e^{(8*t)} + 2*e^{(7*t)} + 2*e^{(6*t)} + 2*e^{(5*t)} + 2*e^{(4*t)} + 2*e^{(4*t$$

Past data show that the true average TL/HDI ratio should be 14.60. Let $Y_i = TL/HDI$.

Does the data support the above claim, namely, test

$$H_0: \mu = 14.60$$
 vs. $H_1: \mu \neq 14.60$

Table 14.3.2 Measurements Made on Ten Sharks Caught Near Santa Catalina					
Total Length (mm)	Height of First Dorsal Fin (mm)	TL/HDI			
906	68	13.32			
875	67	13.06			
771	55	14.02			
700	59	11.86			
869	64	13.58			
895	65	13.77			
662	49	13.51			
750	52	14.42			
794	55	14.44			
787	51	15.43			

Past data show that the true average TL/HDI ratio should be 14.60. Let $Y_i = TL/HDI$.

Does the data support the above claim, namely, test

$$H_0: \mu = 14.60$$
 vs. $H_1: \mu \neq 14.60.$

Table 14.3.2 Measurements Made on Ten Sharks Caught Near Santa Catalina					
Total Length (mm)	TL/HDI				
906	68	13.32			
875	67	13.06			
771	55	14.02			
700	59	11.86			
869	64	13.58			
895	65	13.77			
662	49	13.51			
750	52	14.42			
794	55	14.44			
787	51	15.43			

Past data show that the true average TL/HDI ratio should be 14.60. Let $Y_i = TL/HDI.$

Does the data support the above claim, namely, test

$$H_0: \mu = 14.60$$
 vs. $H_1: \mu \neq 14.60.$

Table 14.3.2 Measurements Made on Ten Sharks Caught Near Santa Catalina					
Total Length (mm)	TL/HDI				
906	68	13.32			
875	67	13.06			
771	55	14.02			
700	59	11.86			
869	64	13.58			
895	65	13.77			
662	49	13.51			
750	52	14.42			
794	55	14.44			
787	51	15.43			

Past data show that the true average TL/HDI ratio should be 14.60. Let $Y_i = TL/HDI$.

Does the data support the above claim, namely, test

$$H_0: \mu = 14.60$$
 vs. $H_1: \mu \neq 14.60$.

Table 14.3.2 Measurements Made on Ten Sharks Caught Near Santa Catalina					
Total Length (mm) Height of First Dorsal Fin (mm)					
906	68	13.32			
875	67	13.06			
771	55	14.02			
700	59	11.86			
869	64	13.58			
895	65	13.77			
662	49	13.51			
750	52	14.42			
794	55	14.44			
787	51	15.43			

Past data show that the true average TL/HDI ratio should be 14.60. Let $Y_i = TL/HDI$.

Does the data support the above claim, namely, test

$$H_0: \mu = 14.60$$
 vs. $H_1: \mu \neq 14.60$

Sol. Computing the Wilcoxon signed rank statistics:

Hence, W = 4.5.

Now check the table to find the critical region:

$$C = \{ w : w \le 8 \text{ or } w \ge 47 \}.$$

Table 14.3.3 Computations for Wilcoxon Signed Rank Test						
$TL/HDI (= y_i)$	$y_i - 14.60$	$ y_i - 14.60 $	r_i	z_i	$r_i z_i$	
13.32	-1.28	1.28	8		0	
13.06	-1.54	1.54			0	
14.02	-0.58	0.58			0	
11.86	-2.74	2.74	10		0	
13.58	-1.02	1.02	6		0	
13.77	-0.83	0.83	4.5		0	
13.51	-1.09	1.09			0	
14.42	-0.18	0.18	2		0	
14.44	-0.16	0.16			0	
15.43	+0.83	0.83	4.5		4.5	

Sol. Computing the Wilcoxon signed rank statistics:

Hence, w = 4.5.

Now check the table to find the critical region:

$$C = \{ w : w \le 8 \text{ or } w \ge 47 \}.$$

Table 14.3.3 Computations for Wilcoxon Signed Rank Test							
$TL/HDI (= y_i)$	$y_i - 14.60$	$ y_i - 14.60 $	r_i	zi	$r_i z_i$		
13.32	-1.28	1.28	8		0		
13.06	-1.54	1.54			0		
14.02	-0.58	0.58			0		
11.86	-2.74	2.74	10		0		
13.58	-1.02	1.02	6		0		
13.77	-0.83	0.83	4.5		0		
13.51	-1.09	1.09			0		
14.42	-0.18	0.18	2		0		
14.44	-0.16	0.16			0		
15.43	+0.83	0.83	4.5		4.5		

Sol. Computing the Wilcoxon signed rank statistics:

Hence, w = 4.5.

Now check the table to find the critical region:

$$C = \{ w : w \le 8 \quad \text{or} \quad w \ge 47 \}.$$

Table 14.3.3 Computations for Wilcoxon Signed Rank Test							
$TL/HDI (= y_i)$	$y_i - 14.60$	$ y_i - 14.60 $	r_i	z_i	$r_i z_i$		
13.32	-1.28	1.28	8		0		
13.06	-1.54	1.54			0		
14.02	-0.58	0.58			0		
11.86	-2.74	2.74	10		0		
13.58	-1.02	1.02	6		0		
13.77	-0.83	0.83	4.5		0		
13.51	-1.09	1.09			0		
14.42	-0.18	0.18	2	0	0		
14.44	-0.16	0.16	1	0	0		
15.43	+0.83	0.83	4.5		4.5		

Sol. Computing the Wilcoxon signed rank statistics:

Hence, w = 4.5.

Now check the table to find the critical region:

$$C = \{ w : w \le 8 \quad \text{or} \quad w \ge 47 \}.$$

Large-sample Wilcoxon Signed Rank Test

Theorem Under the same setup and H_0 , we have

$$\mathbb{E}(W) = \frac{n(n+1)}{4} \quad \text{and} \quad \operatorname{Var}(W) = \frac{n(n+1)(2n+1)}{24}$$

Proof.

$$\mathbb{E}(W) = \mathbb{E}\left(\sum_{k=1}^{n} U_{k}\right) = \sum_{k=1}^{n} \left(0 \cdot \frac{1}{2} + k \cdot \frac{1}{2}\right)$$
$$= \sum_{k=1}^{n} \frac{k}{2} = \frac{n(n+1)}{4}.$$

$$\operatorname{Var}(W) = \operatorname{Var}\left(\sum_{k=1}^{n} U_{k}\right) = \sum_{k=1}^{n} \operatorname{Var}(U_{k}) = \sum_{k=1}^{n} \left[\mathbb{E}(U_{k}^{2}) - \mathbb{E}(U_{k})^{2}\right]$$
$$= \sum_{k=1}^{n} \left[\frac{k^{2}}{2} - \left(\frac{k}{2}\right)^{2}\right] = \sum_{k=1}^{n} \frac{k^{2}}{4} = \frac{1}{4} \frac{n(n+1)(2n+1)}{6}$$

Large-sample Wilcoxon Signed Rank Test

Theorem Under the same setup and H_0 , we have

$$\mathbb{E}(W) = \frac{n(n+1)}{4} \quad \text{and} \quad \operatorname{Var}(W) = \frac{n(n+1)(2n+1)}{24}$$

Proof.

$$\mathbb{E}(W) = \mathbb{E}\left(\sum_{k=1}^{n} U_{k}\right) = \sum_{k=1}^{n} \left(0 \cdot \frac{1}{2} + k \cdot \frac{1}{2}\right)$$
$$= \sum_{k=1}^{n} \frac{k}{2} = \frac{n(n+1)}{4}.$$

$$\operatorname{Var}(W) = \operatorname{Var}\left(\sum_{k=1}^{n} U_{k}\right) = \sum_{k=1}^{n} \operatorname{Var}(U_{k}) = \sum_{k=1}^{n} \left[\mathbb{E}(U_{k}^{2}) - \mathbb{E}(U_{k})^{2}\right]$$
$$= \sum_{k=1}^{n} \left[\frac{k^{2}}{2} - \left(\frac{k}{2}\right)^{2}\right] = \sum_{k=1}^{n} \frac{k^{2}}{4} = \frac{1}{4} \frac{n(n+1)(2n+1)}{6}$$

Hence when n is large (usually $n \ge 12$),

$$\frac{W - \mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}} = \frac{W - [n(n+1)]/4}{\sqrt{[n(n+1)(2n+1)]/24}} \quad \stackrel{\text{approx}}{\sim} \quad N(0,1).$$

 \downarrow

Hence when *n* is large (usually $n \ge 12$),

$$\frac{W - \mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}} = \frac{W - [n(n+1)]/4}{\sqrt{[n(n+1)(2n+1)]/24}} \stackrel{\text{approx}}{\sim} N(0,1).$$

$$\Downarrow$$

Let w be the signed rank statistic based on n independent observations, each drawn from a continuous and symmetric pdf, where n > 12. Let

$$z = \frac{w - [n(n+1)]/4}{\sqrt{[n(n+1)(2n+1)]/24}}$$

- **a.** To test $H_0: \mu = \mu_0$ versus $H_1: \mu > \mu_0$ at the α level of significance, reject H_0 if $z \ge z_{\alpha}$.
- **b.** To test $H_0: \mu = \mu_0$ versus $H_1: \mu < \mu_0$ at the α level of significance, reject H_0 if $z \leq -z_{\alpha}$.
- *c.* To test $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ at the α level of significance, reject H_0 if z is either $(1) \leq -z_{\alpha/2}$ or $(2) \geq z_{\alpha/2}$.

- Nonparametric counterpart of the pooled two-sample t-test

Setup Let x_1, \dots, x_n and y_{n+1}, \dots, y_{n+m} be two independent random samples from $f_X(x)$ and $f_Y(y)$, respectively.

Assume that $f_X(x)$ and $f_Y(y)$ are the same except for a possible shift in location.

Test $H_0: \mu_x = \mu_y$ vs. ...

Test statistic

$$W = \sum_{k=1}^{n+m} R_i Z_i$$

$$Z_{i} = \begin{cases} 1 & \text{the ith entry comes from } f_{X}(x) \\ 0 & \text{the ith entry comes from } f_{Y}(y) \end{cases}$$

- Nonparametric counterpart of the pooled two-sample t-test

Setup Let x_1, \dots, x_n and y_{n+1}, \dots, y_{n+m} be two independent random samples from $f_X(x)$ and $f_Y(y)$, respectively. Assume that $f_X(x)$ and $f_Y(y)$ are the same except for a possible shift in location.

Test $H_0: \mu_x = \mu_y$ vs. ..

Test statistic

$$W = \sum_{k=1}^{n+m} R_i Z_i$$

$$Z_{i} = \begin{cases} 1 & \text{the ith entry comes from } f_{X}(x) \\ 0 & \text{the ith entry comes from } f_{Y}(y) \end{cases}$$

- Nonparametric counterpart of the pooled two-sample t-test

Setup Let x_1, \dots, x_n and y_{n+1}, \dots, y_{n+m} be two independent random samples from $f_X(x)$ and $f_Y(y)$, respectively. Assume that $f_X(x)$ and $f_Y(y)$ are the same except for a possible shift in location.

Test $H_0: \mu_x = \mu_y$ vs. ...

Test statistic

$$W = \sum_{k=1}^{n+m} R_i Z_i$$

$$Z_{i} = \begin{cases} 1 & \text{the ith entry comes from } f_{X}(x) \\ 0 & \text{the ith entry comes from } f_{Y}(y) \end{cases}$$

- Nonparametric counterpart of the pooled two-sample t-test

Setup Let x_1, \dots, x_n and y_{n+1}, \dots, y_{n+m} be two independent random samples from $f_X(x)$ and $f_Y(y)$, respectively. Assume that $f_X(x)$ and $f_Y(y)$ are the same except for a possible shift in location.

Test $H_0: \mu_x = \mu_y$ vs. ...

Test statistic

$$W=\sum_{k=1}^{n+m}R_iZ_i$$

$$Z_i = \begin{cases} 1 & \text{the ith entry comes from } f_X(x) \\ 0 & \text{the ith entry comes from } f_Y(y) \end{cases}$$

Theorem Under the above setup and under H_0 ,

$$\mathbb{E}[W] = \frac{n(n+m+1)}{2}$$
 and $\operatorname{Var}(W) = \frac{nm(n+m+1)}{12}$.

Hence when sample sizes are large, namely, n, m > 10,

$$\frac{W - \mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}} = \frac{W - [n(n+m+1)]/2}{\sqrt{[nm(n+m+1)]/12}} \qquad \approx \qquad N(0,1).$$

Theorem Under the above setup and under H_0 ,

$$\mathbb{E}[W] = rac{n(n+m+1)}{2}$$
 and $\operatorname{Var}(W) = rac{nm(n+m+1)}{12}$.

Hence when sample sizes are large, namely, n, m > 10,

$$\frac{W - \mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}} = \frac{W - [n(n+m+1)]/2}{\sqrt{[nm(n+m+1)]/12}} \quad \stackrel{\text{approx}}{\sim} \quad N(0,1).$$

Obs. #	Team	Time (min)	r_i	z_i	$r_i z_i$	
1	Baltimore	177	21		21	
2	Boston	177	21		21	a
3	California	165	7.5		7.5	Group
4	Chicago (AL)	172	14.5		14.5	
	Cleveland	172	14.5		14.5	
	Detroit	179	24.5		24.5	
	Kansas City	163				
8	Milwaukee	175	18		18	
9	Minnesota	166	9.5		9.5	
10	New York (AL)	182	26		26	
11	Oakland	177	21		21	
12	Seattle	168	12.5		12.5	
13	Texas	179	24.5		24.5	
14	Toronto	177	21		21	
15	Atlanta	166	9.5	0	0	
16	Chicago (NL)	154				
17	Cincinnati	159	2			
18	Houston	168	12.5			
19	Los Angeles	174	16.5			
20	Montreal	174	16.5			
21	New York (NL)	177	21			
22	Philadelphia	167	11			
23	Pittsburgh	165	7.5			
24	San Diego	161	3.5			
25	San Francisco	164	6			
26	St. Louis	161	3.5			Choun
					w' = 240.5	Group

Obs. #	Team	Time (min)	r_i	z_i	$r_i z_i$	
1	Baltimore	177	21	1	21	
2	Boston	177	21		21	
3	California	165	7.5	1	7.5	Group X
4	Chicago (AL)	172	14.5		14.5	
5	Cleveland	172	14.5		14.5	
6	Detroit	179	24.5		24.5	
7	Kansas City	163				
8	Milwaukee	175	18		18	
9	Minnesota	166	9.5		9.5	
10	New York (AL)	182	26		26	
11	Oakland	177	21	1	21	
12	Seattle	168	12.5		12.5	
13	Texas	179	24.5	1	24.5	
14	Toronto	177	21		21	
15	Atlanta	166	9.5	0	0	
16	Chicago (NL)	154				
17	Cincinnati	159	2			
18	Houston	168	12.5			
19	Los Angeles	174	16.5			
20	Montreal	174	16.5			
21	New York (NL)	177	21			
22	Philadelphia	167	11			
23	Pittsburgh	165	7.5			
24	San Diego	161	3.5			
25	San Francisco	164	6			
26	St. Louis	161	3.5			Charles V
					w' = 240.5	Group r

Obs. #	Team	Time (min)	r_i	z_i	$r_i z_i$	
1	Baltimore	177	21	1	21	
2	Boston	177	21		21	
3	California	165	7.5	1	7.5	Group X
4	Chicago (AL)	172	14.5		14.5	
5	Cleveland	172	14.5		14.5	
6	Detroit	179	24.5		24.5	
7	Kansas City	163				
8	Milwaukee	175	18		18	
9	Minnesota	166	9.5		9.5	
10	New York (AL)	182	26		26	
11	Oakland	177	21		21	
12	Seattle	168	12.5		12.5	
13	Texas	179	24.5		24.5	
14	Toronto	177	21		21	
15	Atlanta	166	9.5	0	0	
16	Chicago (NL)	154				
17	Cincinnati	159	2			
18	Houston	168	12.5			
19	Los Angeles	174	16.5			
20	Montreal	174	16.5			
21	New York (NL)	177	21			
22	Philadelphia	167	11			
23	Pittsburgh	165	7.5			
24	San Diego	161	3.5			
25	San Francisco	164	6			
26	St. Louis	161	3.5			Crown V
					w'=240.5	Group Y

In this case, n = 14, m = 12, w = 240.5.

$$\mathbb{E}(W) = \frac{14(14+12+1)}{2} = 189,$$
$$\operatorname{Var}(W) = \frac{14 \times 12 \times (14+12+1)}{12} = 378.$$

Hence, the approximate z-score is

$$Z = \frac{W - \mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}} = \frac{240.5 - 189}{\sqrt{378}} = 2.65.$$

In this case, n = 14, m = 12, w = 240.5.

$$\mathbb{E}(W) = \frac{14(14+12+1)}{2} = 189,$$
$$\operatorname{Var}(W) = \frac{14 \times 12 \times (14+12+1)}{12} = 378.$$

Hence, the approximate z-score is

$$z = \frac{w - \mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}} = \frac{240.5 - 189}{\sqrt{378}} = 2.65.$$

In this case, n = 14, m = 12, w = 240.5.

$$\mathbb{E}(W) = \frac{14(14+12+1)}{2} = 189,$$
$$\operatorname{Var}(W) = \frac{14 \times 12 \times (14+12+1)}{12} = 378.$$

Hence, the approximate z-score is

$$Z = \frac{W - \mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}} = \frac{240.5 - 189}{\sqrt{378}} = 2.65.$$

• • •