Math 362: Mathematical Statistics II

Le Chen
le.chen@emory.edu
Emory University Atlanta, GA

Last updated on April 24, 2021

2021 Spring

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Plan

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

The Kruskal-Wallis Test

What is the nonparametric counterpart for the one-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=\cdots=\widetilde{\mu}_{k}$ vs. H_{1} : not all the $\widetilde{\mu}_{i}$'s are equal.

Remark This is the test for median not mean, but if pdfs are symmetric, they are the same.

What is the nonparametric counterpart for the one-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=\cdots=\widetilde{\mu}_{k}$ vs. $H_{1}:$ not all the $\widetilde{\mu}_{i}$'s are equal.

What is the nonparametric counterpart for the one-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.

Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=$
$=\tilde{\mu}_{k}$ vs. $H_{1}:$ not all the $\tilde{\mu}_{i}$'s are equal.

Remark
are the same

What is the nonparametric counterpart for the one-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.

Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=\cdots=\widetilde{\mu}_{k}$ vs. $H_{1}:$ not all the $\widetilde{\mu}_{i}$'s are equal.

What is the nonparametric counterpart for the one-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.

Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=\cdots=\widetilde{\mu}_{k}$ vs. H_{1} : not all the $\widetilde{\mu}_{i}$'s are equal.

Remark This is the test for median not mean, but if pdfs are symmetric, they are the same.

Kruskal-Wallis statistic B

$$
B=\frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_{\cdot j}^{2}}{n_{j}}-3(n+1)
$$

where

Kruskal-Wallis statistic B

$$
B=\frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_{\cdot j}^{2}}{n_{j}}-3(n+1)
$$

where

Table 14.4.1	Notation for Kruskal-Wallis Procedure			
Treatment Level				
	1	2	\ldots	k
	$Y_{11}\left(R_{11}\right)$	$Y_{12}\left(R_{12}\right)$		$Y_{1 k}\left(R_{1 k}\right)$
	$Y_{21}\left(R_{21}\right)$			\vdots
	\vdots	\vdots	\cdots	\vdots
Totals	$Y_{n_{11}(}\left(R_{n_{1} 1}\right)$	$Y_{n_{2} 2}\left(R_{\left.n_{22}\right)}\right)$	$Y_{n_{k} k}\left(R_{n_{k} k}\right)$	
$R_{.1}$	R_{2}		$R_{. k}$	

Theorem Under the above setup and under H_{0}, then

$$
B=\frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_{j}^{2}}{n_{j}}-3(n+1) \stackrel{\text { apporx }}{\sim} \chi_{k-1}^{2} .
$$

Theorem Under the above setup and under H_{0}, then

$$
B=\frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_{j}^{2}}{n_{j}}-3(n+1) \stackrel{\text { approx }}{\sim} \chi_{k-1}^{2} .
$$

H_{0} should be rejected at the α level of significance if $b>\chi_{1-\alpha, k-1}^{2}$.
E.g. Lottery over the year 1969; Whether lottery is random?

$$
\text { Test if } H_{0}: \widetilde{\mu}_{\mathrm{Jan}}=\widetilde{\mu}_{\mathrm{Feb}}=\cdots=\widetilde{\mu}_{\mathrm{Dec}} \text { at } \alpha=0.01
$$

E.g. Lottery over the year 1969; Whether lottery is random?

Test if $H_{0}: \widetilde{\mu}_{\text {Jan }}=\widetilde{\mu}_{\text {Feb }}=\cdots=\widetilde{\mu}_{\text {Dec }}$ at $\alpha=0.01$

| Table | $\mathbf{1 4 . 4 . 2}$ | 1969 | Draft | Lottery, Highest Priority (001) | to Lowest Priority (366) | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | Jan. | Feb. | Mar. | Apr. May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | |
| 1 | 305 | 086 | 108 | 032 | 330 | 249 | 093 | 111 | 225 | 359 | 019 | 129 |
| 2 | 159 | 144 | 029 | 271 | 298 | 228 | 350 | 045 | 161 | 125 | 034 | 328 |
| 3 | 251 | 297 | 267 | 083 | 040 | 301 | 115 | 261 | 049 | 244 | 348 | 157 |
| 4 | 215 | 210 | 275 | 081 | 276 | 020 | 279 | 145 | 232 | 202 | 266 | 165 |
| 5 | 101 | 214 | 293 | 269 | 364 | 028 | 188 | 054 | 082 | 024 | 310 | 056 |
| 6 | 224 | 347 | 139 | 253 | 155 | 110 | 327 | 114 | 006 | 087 | 076 | 010 |
| 7 | 306 | 091 | 122 | 147 | 035 | 085 | 050 | 168 | 008 | 234 | 051 | 012 |
| 8 | 199 | 181 | 213 | 312 | 321 | 366 | 013 | 048 | 184 | 283 | 097 | 105 |
| 9 | 194 | 338 | 317 | 219 | 197 | 335 | 277 | 106 | 263 | 342 | 080 | 043 |
| 10 | 325 | 216 | 323 | 218 | 065 | 206 | 284 | 021 | 071 | 220 | 282 | 041 |
| 11 | 329 | 150 | 136 | 014 | 037 | 134 | 248 | 324 | 158 | 237 | 046 | 039 |
| 12 | 221 | 068 | 300 | 346 | 133 | 272 | 015 | 142 | 242 | 072 | 066 | 314 |
| 13 | 318 | 152 | 259 | 124 | 295 | 069 | 042 | 307 | 175 | 138 | 126 | 163 |
| 14 | 238 | 004 | 354 | 231 | 178 | 356 | 331 | 198 | 001 | 294 | 127 | 026 |
| 15 | 017 | 089 | 169 | 273 | 130 | 180 | 322 | 102 | 113 | 171 | 131 | 320 |
| 16 | 121 | 212 | 166 | 148 | 055 | 274 | 120 | 044 | 207 | 254 | 107 | 096 |
| 17 | 235 | 189 | 033 | 260 | 112 | 073 | 098 | 154 | 255 | 288 | 143 | 304 |
| 18 | 140 | 292 | 332 | 090 | 278 | 341 | 190 | 141 | 246 | 005 | 146 | 128 |
| 19 | 058 | 025 | 200 | 336 | 075 | 104 | 227 | 311 | 177 | 241 | 203 | 240 |
| 20 | 280 | 302 | 239 | 345 | 183 | 360 | 187 | 344 | 063 | 192 | 185 | 135 |
| 21 | 186 | 363 | 334 | 062 | 250 | 060 | 027 | 291 | 204 | 243 | 156 | 070 |
| 22 | 337 | 290 | 265 | 316 | 326 | 247 | 153 | 339 | 160 | 117 | 009 | 053 |
| 23 | 118 | 057 | 256 | 252 | 319 | 109 | 172 | 116 | 119 | 201 | 182 | 162 |
| 24 | 059 | 236 | 258 | 002 | 031 | 358 | 023 | 036 | 195 | 196 | 230 | 095 |
| 25 | 052 | 179 | 343 | 351 | 361 | 137 | 067 | 286 | 149 | 176 | 132 | 084 |
| 26 | 092 | 365 | 170 | 340 | 357 | 022 | 303 | 245 | 018 | 007 | 309 | 173 |
| 27 | 355 | 205 | 268 | 074 | 296 | 064 | 289 | 352 | 233 | 264 | 047 | 078 |
| 28 | 077 | 299 | 223 | 262 | 308 | 222 | 088 | 167 | 257 | 094 | 281 | 123 |
| 29 | 349 | 285 | 362 | 191 | 226 | 353 | 270 | 061 | 151 | 229 | 099 | 016 |
| 30 | 164 | | 217 | 208 | 103 | 209 | 287 | 333 | 315 | 038 | 174 | 003 |
| 31 | 211 | | 030 | | 313 | | 193 | 011 | | 079 | | 100 |
| Totals: | 6236 | 5886 | 7000 | 6110 | 6447 | 5872 | 5628 | 5377 | 4719 | 5656 | 4462 | 3768 |
| | | | | | | | | | | | | |

Sol. Rank the lottery for the year (see the previous table).

Sol. Rank the lottery for the year (see the previous table).

Compute b using the formula:

$$
\begin{aligned}
b & =\frac{12}{366 \times 367}\left[\frac{6236^{2}}{31}+\frac{5886^{2}}{29}+\cdots+\frac{3768^{2}}{31}\right]-3 \times 367 \\
& =25.95
\end{aligned}
$$

Critical region is $C=\left\{b: b \geq \chi_{0.99,11}^{2}=24.725\right\}$

Conclusion: Reject (Lottery is NOT random)

Sol. Rank the lottery for the year (see the previous table).

Compute b using the formula:

$$
\begin{aligned}
b & =\frac{12}{366 \times 367}\left[\frac{6236^{2}}{31}+\frac{5886^{2}}{29}+\cdots+\frac{3768^{2}}{31}\right]-3 \times 367 \\
& =25.95
\end{aligned}
$$

Critical region is $C=\left\{b: b \geq \chi_{0.99,11}^{2}=24.725\right\}$.

Conclusion: Reject (Lottery is NOT random).

Sol. Rank the lottery for the year (see the previous table).

Compute b using the formula:

$$
\begin{aligned}
b & =\frac{12}{366 \times 367}\left[\frac{6236^{2}}{31}+\frac{5886^{2}}{29}+\cdots+\frac{3768^{2}}{31}\right]-3 \times 367 \\
& =25.95
\end{aligned}
$$

Critical region is $C=\left\{b: b \geq \chi_{0.99,11}^{2}=24.725\right\}$.

Conclusion: Reject (Lottery is NOT random).

