Math 362: Mathematical Statistics II

Le Chen
le.chen@emory.edu
Emory University Atlanta, GA

Last updated on April 24, 2021

2021 Spring

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Plan

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.
Assume that $n_{1}=\cdots=n_{k}$.
Samples can be further partitioned into b blocks.
Let $\widetilde{\mu}_{1}, \ldots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=\cdots=\widetilde{\mu}_{k}$ vs. $H_{1}:$ not all the $\widetilde{\mu}_{i}$'s are equal.

Remark This is the test for median not mean, but if pdfs are symmetric, they are the same.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.
Assume that $n_{1}=$ Samples can be further partitioned into b blocks. Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=$ $=\widetilde{\mu}_{k}$ vs. H_{1} not all the $\widetilde{\mu}_{i}$'s are equal. are the same.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.
Assume that $n_{1}=\cdots=n_{k}$.
Samples can be further partitioned into b blocks.
Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=$

$$
=\widetilde{\mu}_{k} \text { vs. } H_{1}
$$

not all the $\widetilde{\mu}_{i}{ }^{\prime}$ s are equal. are the same.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.
Assume that $n_{1}=\cdots=n_{k}$.
Samples can be further partitioned into b blocks.
Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=$ $=\widetilde{\mu}_{k}$ vs. $H_{1}:$ not all the $\tilde{\mu}_{i}$'s are equal. are the same

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.
Assume that $n_{1}=\cdots=n_{k}$.
Samples can be further partitioned into b blocks.
Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.
are the same.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.
Assume that $n_{1}=\cdots=n_{k}$.
Samples can be further partitioned into b blocks.
Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=\cdots=\widetilde{\mu}_{k}$ vs. $H_{1}:$ not all the $\widetilde{\mu}_{i}$'s are equal.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_{1}, \cdots, n_{k} are drawn from k
identically shaped and scaled pdfs, except for possibly different medians.
Assume that $n_{1}=\cdots=n_{k}$.
Samples can be further partitioned into b blocks.
Let $\widetilde{\mu}_{1}, \cdots, \widetilde{\mu}_{k}$ be the medians.

Test $H_{0}: \widetilde{\mu}_{1}=\widetilde{\mu}_{2}=\cdots=\widetilde{\mu}_{k}$ vs. H_{1} : not all the $\widetilde{\mu}_{i}$'s are equal.

Remark This is the test for median not mean, but if pdfs are symmetric, they are the same.

The Friedman Test Statistic:

where $R_{. j}$ is the within-block ranks.

The Friedman Test Statistic:
Reject H_{0} at the α level if

$$
G=\frac{12}{b k(k+1)} \sum_{j=1}^{k} R_{\cdot j}^{2}-3 b(k+1) \geq \chi_{1-\alpha, k-1}^{2}
$$

The Friedman Test Statistic:
Reject H_{0} at the α level if

$$
G=\frac{12}{b k(k+1)} \sum_{j=1}^{k} R_{\cdot j}^{2}-3 b(k+1) \geq \chi_{1-\alpha, k-1}^{2}
$$

where $R_{. j}$ is the within-block ranks.
E.g. Baseball ...

$$
\text { Test if } H_{0}: \widetilde{\mu}_{\text {Narrow }}=\widetilde{\mu}_{\text {Wide }} \text { at } \alpha=0.01
$$

E.g. Baseball ...

Test if $H_{0}: \widetilde{\mu}_{\text {Narrow }}=\widetilde{\mu}_{\text {Wide }}$ at $\alpha=0.01$

Table	14.5.I	Times (sec)	Required to Round First Base	
Player	Narrow-Angle	Rank	Wide-Angle	Rank
1	5.50	1	5.55	2
2	5.70	1	5.75	2
3	5.60	2	5.50	1
4	5.50	2	5.40	1
5	5.85	2	5.70	1
6	5.55	1	5.60	2
7	5.40	2	5.35	1
8	5.50	2	5.35	1
9	5.15	2	5.00	1
10	5.80	2	5.70	1
11	5.20	2	5.10	1
12	5.55	2	5.45	1
13	5.35	1	5.45	2
14	5.00	2	4.95	1
15	5.50	2	5.40	1
16	5.55	2	5.50	1
17	5.55	2	5.35	1
18	5.50	1	5.55	2
19	5.45	2	5.25	1
20	5.60	2	5.40	1
21	5.65	2	5.55	1
22	6.30	2	6.25	1
		39		27

Sol. $k=2, b=22$

Compute the rank within each block (see the previous table)

$$
C=\left\{g: g \geq \chi_{0.95,1}^{2}=3.84\right\}
$$

[^0]Sol. $k=2, b=22$

Compute the rank within each block (see the previous table) Compute the g statistic: Critical region is

The p-value is $P\left(\chi_{1}^{2} \geq \frac{72}{11}\right)=0.01051525$ Conclusion: Reject.

Sol. $k=2, b=22$

Compute the rank within each block (see the previous table)

Compute the g statistic:

$$
g=\frac{12}{22 \times 2 \times(2+1)}\left[39^{2}+27^{2}\right]-3 \times 22 \times(2+1)=\frac{72}{11} \approx 6.54
$$

Conclusion: Reject.

Sol. $k=2, b=22$

Compute the rank within each block (see the previous table)

Compute the g statistic:

$$
g=\frac{12}{22 \times 2 \times(2+1)}\left[39^{2}+27^{2}\right]-3 \times 22 \times(2+1)=\frac{72}{11} \approx 6.54
$$

Critical region is

$$
C=\left\{g: g \geq \chi_{0.95,1}^{2}=3.84\right\} .
$$

The p-value is

Conclusion: Reject.

Sol. $k=2, b=22$

Compute the rank within each block (see the previous table)

Compute the g statistic:

$$
g=\frac{12}{22 \times 2 \times(2+1)}\left[39^{2}+27^{2}\right]-3 \times 22 \times(2+1)=\frac{72}{11} \approx 6.54
$$

Critical region is

$$
C=\left\{g: g \geq \chi_{0.95,1}^{2}=3.84\right\}
$$

The p-value is

$$
\mathbb{P}\left(\chi_{1}^{2} \geq \frac{72}{11}\right)=0.01051525
$$

Conclusion: Reject.

Sol. $k=2, b=22$

Compute the rank within each block (see the previous table)

Compute the g statistic:

$$
g=\frac{12}{22 \times 2 \times(2+1)}\left[39^{2}+27^{2}\right]-3 \times 22 \times(2+1)=\frac{72}{11} \approx 6.54
$$

Critical region is

$$
C=\left\{g: g \geq \chi_{0.95,1}^{2}=3.84\right\}
$$

The p-value is

$$
\mathbb{P}\left(\chi_{1}^{2} \geq \frac{72}{11}\right)=0.01051525
$$

Conclusion: Reject.

R Code for this problem:

```
C1<- c(
5.50, 5.70, 5.60, 5.50, 5.85, 5.55, 5.40, 5.50, 5.15, 5.80, 5.20,
5.55, 5.35, 5.00, 5.50, 5.55, 5.55, 5.50, 5.45, 5.60, 5.65, 6.30)
C2<-c(
5.55, 5.75, 5.50, 5.40, 5.70, 5.60, 5.35, 5.35, 5.00, 5.70, 5.10,
5.45, 5.45, 4.95, 5.40, 5.50, 5.35, 5.55, 5.25, 5.40, 5.55, 6.25)
angles <- matrix(
    cbind(C1, C2),
    nrow = 22,
    byrow = FALSE,
    dimnames = list(1:22, c("Narrow", "Wide"))
)
friedman.test(angles)
```

Here is the output:

```
\(>\mathrm{C} 1<-\mathrm{c}(\)
\(+5.50,5.70,5.60,5.50,5.85,5.55,5.40,5.50,5.15,5.80,5.20\)
\(+5.55,5.35,5.00,5.50,5.55,5.55,5.50,5.45,5.60,5.65,6.30)\)
\(>\mathrm{C} 2<-\mathrm{c}(\)
\(+5.55,5.75,5.50,5.40,5.70,5.60,5.35,5.35,5.00,5.70,5.10\),
\(+5.45,5.45,4.95,5.40,5.50,5.35,5.55,5.25,5.40,5.55,6.25)\)
\(>\) angles <- matrix \((\)
+ cbind(C1, C2),
+ nrow \(=22\)
+ byrow \(=\) FALSE,
+ dimnames \(=\) list(1:22, c("Narrow", "Wide"))
+ )
\(>\) friedman.test(angles)
Friedman rank sum test
data: angles
Friedman chi-squared \(=6.5455\), df \(=1, \mathrm{p}-\) value \(=0.01052\)
```


[^0]: The p-value is
 $\left(\chi_{1}^{2} \geq \frac{72}{11}\right)=0.01051525$

