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The Friedman Test

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that k ≥ 2 independent sample of size n1, · · · , nk are drawn
from k

identically shaped and scaled pdfs,
except for possibly different medians.

Assume that n1 = · · · = nk .
Samples can be further partitioned into b blocks.
Let µ̃1, · · · , µ̃k be the medians.

Test H0 : µ̃1 = µ̃2 = · · · = µ̃k vs. H1 : not all the µ̃i ’s are equal.

Remark This is the test for median not mean, but if pdfs are symmetric, they
are the same.
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The Friedman Test Statistic:
Reject H0 at the α level if

G =
12

bk(k + 1)

k∑
j=1

R2
·j − 3b(k + 1) ≥ χ2

1−α,k−1.

where R·j is the within-block ranks.
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E.g. Baseball ...
Test if H0 : µ̃Narrow = µ̃Wide at α = 0.01
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Sol. k = 2, b = 22

Compute the rank within each block (see the previous table)

Compute the g statistic:

g =
12

22× 2× (2 + 1)

[
392 + 272

]
− 3× 22× (2 + 1) =

72

11
≈ 6.54.

Critical region is

C =
{

g : g ≥ χ2
0.95,1 = 3.84

}
.

The p-value is

P
(
χ2
1 ≥ 72

11

)
= 0.01051525.

Conclusion: Reject. �
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R Code for this problem:

1 C1 <− c(
2 5.50, 5.70, 5.60, 5.50, 5.85, 5.55, 5.40, 5.50, 5.15, 5.80, 5.20,
3 5.55, 5.35, 5.00, 5.50, 5.55, 5.55, 5.50, 5.45, 5.60, 5.65, 6.30)
4 C2 <− c(
5 5.55, 5.75, 5.50, 5.40, 5.70, 5.60, 5.35, 5.35, 5.00, 5.70, 5.10,
6 5.45, 5.45, 4.95, 5.40, 5.50, 5.35, 5.55, 5.25, 5.40, 5.55, 6.25)
7 angles <− matrix(
8 cbind(C1, C2),
9 nrow = 22,

10 byrow = FALSE,
11 dimnames = list(1:22, c(”Narrow”, ”Wide”))
12 )
13 friedman.test(angles)
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Here is the output:

1 > C1 <− c(
2 + 5.50, 5.70, 5.60, 5.50, 5.85, 5.55, 5.40, 5.50, 5.15, 5.80, 5.20,
3 + 5.55, 5.35, 5.00, 5.50, 5.55, 5.55, 5.50, 5.45, 5.60, 5.65, 6.30)
4 > C2 <− c(
5 + 5.55, 5.75, 5.50, 5.40, 5.70, 5.60, 5.35, 5.35, 5.00, 5.70, 5.10,
6 + 5.45, 5.45, 4.95, 5.40, 5.50, 5.35, 5.55, 5.25, 5.40, 5.55, 6.25)
7 > angles <− matrix(
8 + cbind(C1, C2),
9 + nrow = 22,

10 + byrow = FALSE,
11 + dimnames = list(1:22, c(”Narrow”, ”Wide”))
12 + )
13 > friedman.test(angles)
14

15 Friedman rank sum test
16

17 data: angles
18 Friedman chi−squared = 6.5455, df = 1, p−value = 0.01052
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