Math 362: Mathematical Statistics II

Le Chen le.chen@emory.edu

Emory University Atlanta, GA

Last updated on April 24, 2021

2021 Spring

Chapter 14. Nonparametric Statistics

- § 14.1 Introduction
- § 14.2 The Sign Test
- § 14.3 Wilcoxon Tests
- § 14.4 The Kruskal-Wallis Test
- § 14.5 The Friedman Test
- $\$ 14.6 Testing for Randomness

Plan

- § 14.1 Introduction
- § 14.2 The Sign Test
- § 14.3 Wilcoxon Tests
- § 14.4 The Kruskal-Wallis Test
- $\$ 14.5 The Friedman Test
- § 14.6 Testing for Randomness

Chapter 14. Nonparametric Statistics

- § 14.1 Introduction
- § 14.2 The Sign Test
- § 14.3 Wilcoxon Tests
- § 14.4 The Kruskal-Wallis Test
- § 14.5 The Friedman Test
- § 14.6 Testing for Randomness

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \ge 2$ independent sample of size n_1, \dots, n_k are drawn from k

identically shaped and scaled pdfs, except for possibly different medians.

Assume that $n_1 = \cdots = n_k$.

Samples can be further partitioned into b blocks.

Let $\tilde{\mu}_1, \cdots, \tilde{\mu}_k$ be the medians.

Test $H_0: \widetilde{\mu}_1 = \widetilde{\mu}_2 = \cdots = \widetilde{\mu}_k$ vs. H_1 : not all the $\widetilde{\mu}_i$'s are equal.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_1, \dots, n_k are drawn from k

identically shaped and scaled pdfs, except for possibly different medians.

Assume that $n_1 = \cdots = n_k$.

Samples can be further partitioned into b blocks.

Let $\widetilde{\mu}_1, \cdots, \widetilde{\mu}_k$ be the medians.

Test $H_0: \widetilde{\mu}_1 = \widetilde{\mu}_2 = \cdots = \widetilde{\mu}_k$ vs. H_1 : not all the $\widetilde{\mu}_i$'s are equal.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_1, \dots, n_k are drawn from k

identically shaped and scaled pdfs, except for possibly different medians.

Assume that $n_1 = \cdots = n_k$.

Samples can be further partitioned into b blocks.

Let $\tilde{\mu}_1, \cdots, \tilde{\mu}_k$ be the medians.

Test $H_0: \widetilde{\mu}_1 = \widetilde{\mu}_2 = \cdots = \widetilde{\mu}_k$ vs. H_1 : not all the $\widetilde{\mu}_i$'s are equal.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_1, \dots, n_k are drawn from k

identically shaped and scaled pdfs, except for possibly different medians.

Assume that $n_1 = \cdots = n_k$.

Samples can be further partitioned into b blocks.

Let $\widetilde{\mu}_1, \cdots, \widetilde{\mu}_k$ be the medians.

Test $H_0: \widetilde{\mu}_1 = \widetilde{\mu}_2 = \cdots = \widetilde{\mu}_k$ vs. H_1 : not all the $\widetilde{\mu}_i$'s are equal.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_1, \dots, n_k are drawn from k

identically shaped and scaled pdfs, except for possibly different medians.

Assume that $n_1 = \cdots = n_k$.

Samples can be further partitioned into b blocks.

Let $\widetilde{\mu}_1, \cdots, \widetilde{\mu}_k$ be the medians.

Test $H_0: \widetilde{\mu}_1 = \widetilde{\mu}_2 = \cdots = \widetilde{\mu}_k$ vs. H_1 : not all the $\widetilde{\mu}_i$'s are equal.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_1, \dots, n_k are drawn from k

identically shaped and scaled pdfs, except for possibly different medians.

Assume that $n_1 = \cdots = n_k$.

Samples can be further partitioned into b blocks.

Let $\widetilde{\mu}_1, \cdots, \widetilde{\mu}_k$ be the medians.

Test $H_0: \widetilde{\mu}_1 = \widetilde{\mu}_2 = \cdots = \widetilde{\mu}_k$ vs. $H_1:$ not all the $\widetilde{\mu}_i$'s are equal.

What is the nonparametric counterpart for the two-way ANOVA?

Setup Suppose that $k \geq 2$ independent sample of size n_1, \dots, n_k are drawn from k

identically shaped and scaled pdfs, except for possibly different medians.

Assume that $n_1 = \cdots = n_k$.

Samples can be further partitioned into b blocks.

Let $\widetilde{\mu}_1, \cdots, \widetilde{\mu}_k$ be the medians.

Test $H_0: \widetilde{\mu}_1 = \widetilde{\mu}_2 = \cdots = \widetilde{\mu}_k$ vs. $H_1:$ not all the $\widetilde{\mu}_i$'s are equal.

The Friedman Test Statistic:

Reject H_0 at the α level if

$$G = \frac{12}{bk(k+1)} \sum_{j=1}^{k} R_{j}^{2} - 3b(k+1) \ge \chi_{1-\alpha,k-1}^{2}$$

where $R_{.i}$ is the within-block ranks.

The Friedman Test Statistic:

Reject H_0 at the α level if

$$G = \frac{12}{bk(k+1)} \sum_{j=1}^{k} R_{j}^{2} - 3b(k+1) \ge \chi_{1-\alpha,k-1}^{2}.$$

where R_{i} is the within-block ranks

The Friedman Test Statistic:

Reject H_0 at the α level if

$$G = \frac{12}{bk(k+1)} \sum_{j=1}^{k} R_{j}^{2} - 3b(k+1) \ge \chi_{1-\alpha,k-1}^{2}.$$

where R_{ij} is the within-block ranks.

E.g. Baseball ...

Test if
$$H_0: \widetilde{\mu}_{\text{Narrow}} = \widetilde{\mu}_{\text{Wide}}$$
 at $\alpha = 0.01$

E.g. Baseball ...

Test if $H_0: \widetilde{\mu}_{\text{Narrow}} = \widetilde{\mu}_{\text{Wide}}$ at $\alpha = 0.01$

Table 14.5.1 Times (sec) Required to Round First Base				
Player	Narrow-Angle	Rank	Wide-Angle	Rank
1	5.50		5.55	2
2	5.70		5.75	2
3	5.60		5.50	1
4	5.50	2	5.40	1
5	5.85	2	5.70	1
6	5.55		5.60	2
7	5.40		5.35	1
8	5.50	2	5.35	1
9	5.15	2	5.00	1
10	5.80		5.70	1
11	5.20	2	5.10	1
12	5.55	2	5.45	1
13	5.35		5.45	2
14	5.00		4.95	1
15	5.50	2	5.40	1
16	5.55	2	5.50	1
17	5.55		5.35	1
18	5.50		5.55	2
19	5.45	2	5.25	1
20	5.60		5.40	1
21	5.65		5.55	1
22	6.30		6.25	1
		39		27

Compute the rank within each block (see the previous table)

Compute the g statistic:

$$g = \frac{12}{22 \times 2 \times (2+1)} \left[39^2 + 27^2 \right] - 3 \times 22 \times (2+1) = \frac{72}{11} \approx 6.54$$

Critical region is

$$C = \left\{ g : g \ge \chi^2_{0.95,1} = 3.84 \right\}.$$

The *p*-value is

$$\mathbb{P}\left(\chi_1^2 \ge \frac{72}{11}\right) = 0.01051525.$$

Compute the rank within each block (see the previous table)

Compute the g statistic:

$$g = \frac{12}{22 \times 2 \times (2+1)} \left[39^2 + 27^2 \right] - 3 \times 22 \times (2+1) = \frac{72}{11} \approx 6.54$$

Critical region is

$$C = \left\{ g : g \ge \chi^2_{0.95,1} = 3.84 \right\}.$$

The *p*-value is

$$\mathbb{P}\left(\chi_1^2 \ge \frac{72}{11}\right) = 0.01051525$$

Compute the rank within each block (see the previous table)

Compute the g statistic:

$$g = \frac{12}{22 \times 2 \times (2+1)} \left[39^2 + 27^2 \right] - 3 \times 22 \times (2+1) = \frac{72}{11} \approx 6.54.$$

Critical region is

$$C = \left\{ g : g \ge \chi^2_{0.95,1} = 3.84 \right\}.$$

The *p*-value is

$$\mathbb{P}\left(\chi_1^2 \ge \frac{72}{11}\right) = 0.01051525$$

Compute the rank within each block (see the previous table)

Compute the g statistic:

$$g = \frac{12}{22 \times 2 \times (2+1)} \left[39^2 + 27^2 \right] - 3 \times 22 \times (2+1) = \frac{72}{11} \approx 6.54.$$

Critical region is

$$C = \left\{ g : g \ge \chi^2_{0.95,1} = 3.84 \right\}.$$

The *p*-value is

$$\mathbb{P}\left(\chi_{1}^{2} \ge \frac{72}{11}\right) = 0.01051525$$

Compute the rank within each block (see the previous table)

Compute the g statistic:

$$g = \frac{12}{22 \times 2 \times (2+1)} \left[39^2 + 27^2 \right] - 3 \times 22 \times (2+1) = \frac{72}{11} \approx 6.54.$$

Critical region is

$$C = \left\{ g : g \ge \chi^2_{0.95,1} = 3.84 \right\}.$$

The p-value is

$$\mathbb{P}\left(\chi_1^2 \ge \frac{72}{11}\right) = 0.01051525.$$

Compute the rank within each block (see the previous table)

Compute the g statistic:

$$g = \frac{12}{22 \times 2 \times (2+1)} \left[39^2 + 27^2 \right] - 3 \times 22 \times (2+1) = \frac{72}{11} \approx 6.54.$$

Critical region is

$$C = \left\{ g : g \ge \chi^2_{0.95,1} = 3.84 \right\}.$$

The p-value is

$$\mathbb{P}\left(\chi_1^2 \ge \frac{72}{11}\right) = 0.01051525.$$

R Code for this problem:

```
 \begin{array}{c} 1 & \mathrm{C1} < -\ \mathrm{c}( \\ 2 & 5.50, \ 5.70, \ 5.60, \ 5.50, \ 5.85, \ 5.55, \ 5.40, \ 5.50, \ 5.15, \ 5.80, \ 5.20, \\ 3 & 5.55, \ 5.35, \ 5.00, \ 5.50, \ 5.55, \ 5.55, \ 5.50, \ 5.45, \ 5.60, \ 5.65, \ 6.30) \\ 4 & \mathrm{C2} < -\ \mathrm{c}( \\ 5 & 5.55, \ 5.75, \ 5.50, \ 5.40, \ 5.70, \ 5.60, \ 5.35, \ 5.35, \ 5.00, \ 5.70, \ 5.10, \\ 6 & 5.45, \ 5.45, \ 4.95, \ 5.40, \ 5.50, \ 5.35, \ 5.25, \ 5.25, \ 5.40, \ 5.55, \ 6.25) \\ 7 & \mathrm{angles} < -\ \mathrm{matrix}( \\ 8 & \ \mathrm{cbind}(\mathrm{C1}, \ \mathrm{C2}), \\ 9 & \mathrm{nrow} = 22, \\ 10 & \mathrm{byrow} = \mathrm{FALSE}, \\ 11 & \mathrm{dimnames} = \ \mathrm{list}(1:22, \ \mathrm{c}(\mathrm{``Narrow''}, \ \mathrm{``Wide''})) \\ 12 & ) \end{array}
```

```
13 friedman.test(angles)
```

Here is the output:

2 + 5.50, 5.70, 5.60, 5.50, 5.85, 5.55, 5.40, 5.50, 5.15, 5.80, 5.203 + 5.55, 5.35, 5.00, 5.50, 5.55, 5.55, 5.50, 5.45, 5.60, 5.65, 6.30|4| > C2 < - c(5 + 5.55, 5.75, 5.50, 5.40, 5.70, 5.60, 5.35, 5.35, 5.00, 5.70, 5.106 + 5.45, 5.45, 4.95, 5.40, 5.50, 5.35, 5.55, 5.25, 5.40, 5.55, 6.257 > angles < - matrix(|8| + cbind(C1, C2),9 + nrow = 22. 10 + byrow = FALSE. > friedman.test(angles) Friedman rank sum test 17 data: angles

Friedman chi-squared = 6.5455, df = 1, p-value = 0.01052