Math 362: Mathematical Statistics II

Le Chen
le.chen@emory.edu
Emory University Atlanta, GA

Last updated on April 24, 2021

2021 Spring

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Chapter 14. Nonparametric Statistics

§ 14.1 Introduction
§ 14.2 The Sign Test
§ 14.3 Wilcoxon Tests
§ 14.4 The Kruskal-Wallis Test
§ 14.5 The Friedman Test
§ 14.6 Testing for Randomness

Whether the sample are random at all?
E.g. Whether the number of successful strikes are random? $\alpha=0.05$.

Year	Number of Strikes	\% Successful, y_{i}
1881	451	61
1882	454	53
1883	478	58
1884	443	51
1885	645	52
1886	1432	34
1887	1436	45
1888	906	52
1889	1075	46
1890	1833	52
1891	1717	37
1892	1298	39
1893	1305	50
1894	1349	38
1895	1215	55
1896	1026	59
1897	1078	57
1898	1056	64
1899	1797	73
1900	1779	46
1901	2924	48
1902	3161	47
1903	3494	40
1904	2307	35
1905	2077	40

Sol. Compute the run-up and run-down:

Year	Number of Strikes	\% Successful, y	$\operatorname{sgn}\left(y_{i}-y_{i-1}\right)$	
1881	451	61	$1 \rightarrow-$	
1882	454	53	$2 \rightarrow+$	
1883	478	58	$3 \rightarrow-$	
1884	443	51	$4 \rightarrow+$	
1885	645	52	$5 \rightarrow-$	
1886	1432	34	$6 \rightarrow+$	
1887	1436	45	$\rightarrow+$	
1888	906	52	$7 \rightarrow-$	
1889	1075	46	$8 \rightarrow+$	
1890	1833	52	$9 \rightarrow-$	
1891	1717	37	$10 \rightarrow+$	
1892	1298	39	$\rightarrow+$	
1893	1305	50	$11 \rightarrow-$	$w=18$
1894	1349	38	$12 \rightarrow+$	
1895	1215	55	$\rightarrow+$	
1896	1026	59	$13 \rightarrow-$	
1897	1078	57	$14 \rightarrow+$	
1898	1056	64	+	
1899	1797	73	$15 \rightarrow-$	
1900	1779	46	$16 \rightarrow+$	
1901	2924	48	$17 \rightarrow-$	
1902	3161	47	-	
1903	3494	40	-	
1904	2307	35	$18 \rightarrow+$	
1905	2077	40		

Theorem Let W be the number of runs up and down in a sequence of $n \geq 2$ observations.

If the sequence is random, then

$$
\mathbb{E}(W)=\frac{2 n-1}{3} \quad \text { and } \quad \operatorname{Var}(W)=\frac{16 n-29}{90}
$$

Moreover, when n is large, namely, $n \geq 20$, then

$$
\frac{W-\mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}}=\frac{W-[2 n-1] / 3}{\sqrt{[16 n-29] / 90}} \quad \stackrel{\text { approx }}{\sim} \quad N(0,1) .
$$

Sol. (Continued) $n=25, w=18$

$$
\mathbb{E}(W)=\frac{2 \times 25-1}{3}=16.3
$$

and

$$
\operatorname{Var}(W)=\frac{16 \times 25-29}{90}=4.12
$$

Hence, the z-score is

$$
z=\frac{18-16.3}{\sqrt{4.12}}=0.84
$$

The critical region is

$$
C=\left\{z:|z| \geq z_{\alpha / 2}=z_{0.025}=1.96\right\}
$$

The p-value is

$$
2 \times \mathbb{P}(Z>0.84)=0.4009084
$$

Conclusion: Fail to reject.

```
Output:
```

> runs.test(y, exact = FALSE)

```
> runs.test(y, exact = FALSE)
    Approximate runs rest
    Approximate runs rest
data: y
data: y
Runs = 18, p-value = 0.03256
Runs = 18, p-value = 0.03256
alternative hypothesis: two.sided
alternative hypothesis: two.sided
> runs.test(y, exact = TRUE)
> runs.test(y, exact = TRUE)
    Exact runs test
    Exact runs test
data: y
data: y
Runs = 18, p-value = 0.01624
Runs = 18, p-value = 0.01624
alternative hypothesis: two.sided
```

```
alternative hypothesis: two.sided
```

```

R code:
```

1
y <- c(
0,1,0,1,0,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,1

```
)
runs.test \((y\), exact \(=\) FALSE \()\)
runs.test(y, exact \(=\) TRUE)

Remark The procedure that we learnt is an approximation. There is a big discrepancy for the above two \(p\)-values: one that we obtained through formula and one that is obtained by the r function.

\title{
Thanks for learning statistics with me through the semester!
}```

