Math 362: Mathematical Statistics II

Le Chen
le.chen@emory.edu
Emory University Atlanta, GA

Last updated on April 13, 2021

2021 Spring

Chapter 5. Estimation

§ 5.1 Introduction
§ 5.2 Estimating parameters: MLE and MME
§ 5.3 Interval Estimation
§ 5.4 Properties of Estimators
§ 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
§ 5.6 Sufficient Estimators
§ 5.7 Consistency
§ 5.8 Bayesian Estimation

Plan

§ 5.1 Introduction

§ 5.2 Estimating parameters: MLE and MME
§ 5.3 Interval Estimation
§ 5.4 Properties of Estimators
§ 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
§ 5.6 Sufficient Estimators
§ 5.7 Consistency
§ 5.8 Bayesian Estimation

Chapter 5. Estimation

§ 5.1 Introduction
§ 5.2 Estimating parameters: MLE and MME
§ 5.3 Interval Estimation
§ 5.4 Properties of Estimators
§ 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
§ 5.6 Sufficient Estimators
§ 5.7 Consistency
§ 5.8 Bayesian Estimation

Motivating example: Given an unfair coin, or p-coin, such that

$$
X= \begin{cases}1 & \text { head with probability } p \\ 0 & \text { tail with probability } 1-p\end{cases}
$$

how would you determine the value p ?

Solutions:

1. You need to try the coin several times, say, three times. What you obtain is "HHT".
2. Draw a conclusion from the experiment you just made

Motivating example: Given an unfair coin, or p-coin, such that

$$
X= \begin{cases}1 & \text { head with probability } p \\ 0 & \text { tail with probability } 1-p\end{cases}
$$

how would you determine the value p ?

Solutions:

1. You need to try the coin several times, say, three times. What you obtain is "HHT".
2. Draw a conclusion from the experiment you just made.

Rationale: The choice of the parameter p should be the value that maximizes the probability of the sample.

$$
\begin{aligned}
\mathbb{P}\left(X_{1}=1, X_{2}=1, X_{3}=0\right) & =P\left(X_{1}=1\right) P\left(X_{2}=1\right) P\left(X_{3}=0\right) \\
& =p^{2}(1-p) .
\end{aligned}
$$

Rationale: The choice of the parameter p should be the value that maximizes the probability of the sample.

$$
\begin{aligned}
\mathbb{P}\left(X_{1}=1, X_{2}=1, X_{3}=0\right) & =P\left(X_{1}=1\right) P\left(X_{2}=1\right) P\left(X_{3}=0\right) \\
& =p^{2}(1-p)
\end{aligned}
$$

```
\# Hello, R.
```

$\mathrm{p}<-\operatorname{seq}(0,1,0.01)$
$\operatorname{plot}\left(\mathrm{p}, \mathrm{p}^{\wedge} 2 *(1-\mathrm{p})\right.$,
type $=" 1 "$,
col="red")
title("Likelihood")
\# add a vertical dotted (4) blue
line
abline($\mathrm{v}=0.67$, col="blue", lty=4)
\# add some text
$\operatorname{text}(0.67,0.01$, " $2 / 3 ")$

Likelihood

Maximize $f(p)=p^{2}(1-p) \ldots$

A random sample of size n from the population - $\operatorname{Bernoulli}(p)$:

$-X_{1}, \cdots, X_{n}$ are i.i.d. ${ }^{1}$ random variables, each following $\operatorname{Bernoulli}(p)$.
$>$ What is your choice of p based on the above random sample?

A random sample of size n from the population - $\operatorname{Bernoulli}(p)$:

$-X_{1}, \cdots, X_{n}$ are i.i.d. ${ }^{1}$ random variables, each following $\operatorname{Bernoulli}(p)$.

- Suppose the outcomes of the random sample are: $X_{1}=k_{1}, \cdots, X_{n}=k_{n}$.

[^0]
A random sample of size n from the population - $\operatorname{Bernoulli}(p)$:

$-X_{1}, \cdots, X_{n}$ are i.i.d. ${ }^{1}$ random variables, each following $\operatorname{Bernoulli}(p)$.

- Suppose the outcomes of the random sample are: $X_{1}=k_{1}, \cdots, X_{n}=k_{n}$.
- What is your choice of p based on the above random sample?

[^1]
A random sample of size n from the population - Bernoulli (p) :

- X_{1}, \cdots, X_{n} are i.i.d. ${ }^{1}$ random variables, each following $\operatorname{Bernoulli}(p)$.
- Suppose the outcomes of the random sample are: $X_{1}=k_{1}, \cdots, X_{n}=k_{n}$.
- What is your choice of p based on the above random sample?

$$
p=\frac{1}{n} \sum_{i=1}^{n} k_{i}=: \bar{k} .
$$

[^2]A random sample of size n from the population with given pdf:

- X_{1}, \cdots, X_{n} are i.i.d. random variables, each following the same given pdf.
- a statistic or an estimator is a function of the random sample Statistic/Estimator is a random variable!
$>$ Ihe outcome of a statistic/estimator is called an estimate.

A random sample of size n from the population with given pdf:

- X_{1}, \cdots, X_{n} are i.i.d. random variables, each following the same given pdf.
- a statistic or an estimator is a function of the random sample. Statistic/Estimator is a random variable! e.g.,

$$
\widehat{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i} .
$$

$>$ The outcome of a statistic/estimator is called an estimate.

A random sample of size n from the population with given pdf:

- X_{1}, \cdots, X_{n} are i.i.d. random variables, each following the same given pdf.
- a statistic or an estimator is a function of the random sample. Statistic/Estimator is a random variable! e.g.,

$$
\widehat{p}=\frac{1}{n} \sum_{i=1}^{n} X_{i} .
$$

- The outcome of a statistic/estimator is called an estimate. e.g.,

$$
p_{e}=\frac{1}{n} \sum_{i=1}^{n} k_{i}
$$

[^0]: ${ }^{1}$ independent and identically distributed

[^1]: ${ }^{1}$ independent and identically distributed

[^2]: ${ }^{1}$ independent and identically distributed

