Math 362: Mathematical Statistics II

Le Chen
le.chen@emory.edu
Emory University Atlanta, GA

Last updated on April 13, 2021

2021 Spring

Chapter 5. Estimation

§ 5.1 Introduction
§ 5.2 Estimating parameters: MLE and MME
§ 5.3 Interval Estimation
§ 5.4 Properties of Estimators
§ 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
§ 5.6 Sufficient Estimators
§ 5.7 Consistency
§ 5.8 Bayesian Estimation

Chapter 5. Estimation

§ 5.1 Introduction
§ 5.2 Estimating parameters: MLE and MME
§ 5.3 Interval Estimation
§ 5.4 Properties of Estimators
§ 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
§ 5.6 Sufficient Estimators
§ 5.7 Consistency
§ 5.8 Bayesian Estimation

§ 5.3 Interval Estimation

Rationale. Point estimate doesn't provide precision information.
By using the variance of the estimator, one can construct an interval such that with a high probability that interval will contain the unknown parameter.

- The interval is called confidence interval.
- The high probability is confidence level.
E.g. 1. A random sample of size $4,\left(Y_{1}=6.5, Y_{2}=9.2, Y_{3}=9.9, Y_{4}=12.4\right)$, from a normal population:

$$
f_{Y}(y ; \mu)=\frac{1}{\sqrt{2 \pi} 0.8} e^{-\frac{1}{2}\left(\frac{y-\mu}{0.8}\right)^{2}} .
$$

Both MLE and MME give $\mu_{e}=\bar{y}=\frac{1}{4}(6.5+9.2+9.9+12.4)=9.5$. The estimator $\widehat{\mu}=\bar{Y}$ follows normal distribution.

Construct 95\%-confidence interval for μ...
"The parameter is an unknown constant and no probability statement concerning its value may be made."
-Jerzy Neyman, original developer of confidence intervals.

In general, for a normal population with σ known, the $100(1-\alpha) \%$ confidence interval for μ is

$$
\left(\bar{y}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{y}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
$$

Comment: There are many variations

1. One-sided interval such as

$$
\left(\bar{y}-z_{\alpha} \frac{\sigma}{\sqrt{n}}, \bar{y}\right) \quad \text { or } \quad\left(\bar{y}, \bar{y}+z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)
$$

2. σ is unknown and sample size is small: z-score $\rightarrow t$-score z-score by CLT
3. σ is unknown and sample size is large:
4. Non-Gaussian population but sample size is large: z-score by CLT

Theorem. Let k be the number of successes in n independent trials, where n is large and $p=\mathbb{P}$ (success) is unknown. An approximate $100(1-\alpha) \%$ confidence interval for p is the set of numbers

$$
\left(\frac{k}{n}-z_{\alpha / 2} \sqrt{\frac{(k / n)(1-k / n)}{n}}, \frac{k}{n}+z_{\alpha / 2} \sqrt{\frac{(k / n)(1-k / n)}{n}}\right) .
$$

Proof: It follows the following facts:

- $X \sim \operatorname{binomial}(n, p)$ iff $X=Y_{1}+\cdots+Y_{n}$, while Y_{i} are i.i.d. $\operatorname{Bernoulli}(p)$:

$$
\mathbb{E}\left[Y_{i}\right]=p \quad \text { and } \quad \operatorname{Var}\left(Y_{i}\right)=p(1-p)
$$

- Central Limit Theorem: Let $W_{1}, W_{2}, \cdots, W_{n}$ be an sequence of i.i.d. random variables, whose distribution has mean μ and variance σ^{2}, then

$$
\frac{\sum_{i=1}^{n} W_{i}-n \mu}{\sqrt{n \sigma^{2}}}
$$ approximately follows $N(0,1)$, when n is large.

- When the sample size n is large, by the central limit theorem,

$$
\frac{\sum_{i=1}^{n} Y_{i}-n p}{\sqrt{n p(1-p)}} \stackrel{\text { ap. }}{\sim} \quad N(0,1)
$$

$$
\frac{x-n p}{\sqrt{n p(1-p)}}=\frac{\frac{x}{n}-p}{\sqrt{\frac{p(1-p)}{n}}} \approx \frac{\frac{x}{n}-p}{\sqrt{\frac{p_{e}\left(1-p_{e}\right)}{n}}}
$$

- Since $p_{e}=\frac{k}{n}$, we see that

$$
\mathbb{P}\left(-z_{\alpha / 2} \leq \frac{\frac{x}{n}-p}{\sqrt{\frac{\frac{k}{n}\left(1-\frac{k}{n}\right)}{n}}} \leq z_{\alpha / 2}\right) \approx 1-\alpha
$$

i.e., the $100(1-\alpha) \%$ confidence interval for p is

$$
\left(\frac{k}{n}-z_{\alpha / 2} \sqrt{\frac{(k / n)(1-k / n)}{n}}, \frac{k}{n}+z_{\alpha / 2} \sqrt{\frac{(k / n)(1-k / n)}{n}}\right)
$$

E.g. 1. Use median test to check the randomness of a random generator.

Suppose y_{1}, \cdots, y_{n} denote measurements presumed to have come from a continuous pdf $f_{Y}(y)$. Let k denote the number of y_{i} 's that are less than the median of $f_{Y}(y)$. If the sample is random, we would expect the difference between $\frac{k}{n}$ and $\frac{1}{2}$ to be small. More specifically, a 95% confidence interval based on k should contain the value 0.5 .

Let $f_{Y}(y)=e^{-y}$. The median is $m=0.69315$.

```
#!/usr/bin/Rscript
main <- function() {
    args <- commandArgs(trailingOnly = TRUE)
    n <- 100 # Number of random samples.
    r}<-\mathrm{ as.numeric(args[1]) # Rate of the exponential
    # Check if the rate argument is given.
    if (is.na(r)) return("Please provide the rate and try again.")
    # Now start computing ...
    f <- function (y) pexp(y, rate = r)-0.5
    m}<-\mathrm{ uniroot(f, lower = 0, upper = 100, tol = 1e-9)$root
    print(paste("For rate ", r, "exponential distribution,",
            "the median is equal to ", round(m,3)))
    data <- rexp(n,r) # Generate n random samples
    data <- round(data,3) # Round to 3 digits after decimal
    data <- matrix(data, nrow = 10,ncol = 10) # Turn the data to a matrix
    prmatrix(data) # Show data on terminal
    k<- sum(data > m) # Count how many entries is bigger than m
    lowerbd = k/n - 1.96* sqrt((k/n)*(1-k/n)/n);
    upperbd = k/n + 1.96 *sqrt((k/n)*(1-k/n)/n);
    print(paste("The 95% confidence interval is (",
    round(lowerbd,3), ",",
    round(upperbd,3), ")"))
}
main()
```

Try commandline ...

```
Math362:./Example-5-3-2.R 1
[1] "For rate 1 exponential distribution, the median is equal to
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
    [1,] 1.324 1.211 0.561 0.640 2.816 2.348 0.788 2.243 1.759 0.103
    [2,] 0.476 2.288 0.106 0.079 0.636 1.941 0.801 3.838 0.612 0.030
    [3,] 1.085 0.305 0.354 1.013 0.687 1.656 1.043 0.389 1.476 2.158
    [4,] 1.267 1.031 0.917 0.681 0.912 0.236 0.054 0.862 0.065 0.402
    [5,] 0.957 1.003 1.665 1.137 0.378 1.182 0.659 1.923 1.127 0.364
    [6,] 0.307 0.127 0.203 0.394 1.392 2.378 4.192 0.365 3.227 0.337
    [7,] 0.707 0.049 0.391 1.967 1.220 2.605 0.887 1.749 1.479 1.526
    [8,] 0.662 0.141 0.318 0.523 0.646 1.202 0.442 0.174 1.178 0.177
    [9,] 0.397 0.493 0.214 0.522 2.024 4.109 1.268 1.041 0.948 0.382
[10,] 2.260 0.292 0.437 0.962 0.224 4.221 0.594 0.218 0.601 0.941
[1] "The 95% confidence interval is ( 0.422 , 0.618)"
Math362:./Example-5-3-2.R 10
[1] "For rate 10 exponential distribution, the median is equal to 0.069"
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
    [1,] 0.199 0.069 0.013 0.025 0.000 0.107 0.068 0.116 0.066 0.146
    [2,] 0.027 0.076 0.044 0.458 0.052 0.127 0.100 0.100 0.014 0.061
    [3,] 0.014 0.078 0.044 0.072 0.028 0.141 0.038 0.022 0.037 0.093
    [4,] 0.042 0.015 0.250 0.132 0.292 0.072 0.105 0.244 0.046 0.054
    [5,] 0.134 0.074 0.182 0.057 0.021 0.038 0.095 0.196 0.004 0.048
    [6,] 0.016 0.021 0.163 0.030 0.139 0.063 0.054 0.006 0.023 0.051
    [7,] 0.227 0.055 0.091 0.121 0.066 0.114 0.004 0.021 0.035 0.211
    [8,] 0.113 0.083 0.129 0.338 0.160 0.008 0.014 0.167 0.050 0.127
    [9,] 0.053 0.073 0.054 0.098 0.004 0.036 0.274 0.276 0.004 0.159
[10,] 0.045 0.469 0.152 0.003 0.129 0.017 0.084 0.072 0.162 0.007
[1] "The 95% confidence interval is ( 0.392 , 0.588)"
Math362:
```

Instead of the C.I. $\left(\frac{k}{n}-z_{\alpha / 2} \sqrt{\frac{(k / n)(1-k / n)}{n}}, \frac{k}{n}+z_{\alpha / 2} \sqrt{\frac{(k / n)(1-k / n)}{n}}\right)$.
One can simply specify the mean $\frac{k}{n}$ and the margin of error: $\quad d:=z_{\alpha / 2} \sqrt{\frac{(k / n)(1-k / n)}{n}}$.

$$
\max _{p \in(0,1)} p(1-p)=\left.p(1-p)\right|_{p=1 / 2}=1 / 4 \quad \Longrightarrow \quad d \leq \frac{z_{\alpha / 2}}{2 \sqrt{n}}=: d_{m}
$$

Comment:

1. When p is close to $1 / 2, d \approx \frac{z_{\alpha / 2}}{2 \sqrt{n}}$, which is equivalent to $\sigma_{p} \approx \frac{1}{2 \sqrt{n}}$. E.g., $n=1000, k / n=0.48$, and $\alpha=5 \%$, then

$$
\begin{aligned}
d & =1.96 \sqrt{\frac{0.48 \times 0.52}{1000}}=0.0309 \underline{7} \quad \text { and } \quad d_{m}=\frac{1.96}{2 \sqrt{1000}}=0.0309 \underline{9} \\
\sigma_{p} & =\sqrt{\frac{0.48 \times 0.52}{1000}}=0.015 \underline{7} 973 \text { and } \sigma_{p} \approx \frac{1}{2 \sqrt{1000}}=0.015 \underline{81139} .
\end{aligned}
$$

2. When p is away from $1 / 2$, the discrepancy between d and d_{m} becomes big....
E.g. Running for presidency. Max and Sirius obtained 480 and 520 votes, respectively. What is probability that Max will win?

What if the sample size is $n=5000$, and Max obtained 2400 votes.

Choosing sample sizes

$$
\begin{aligned}
d \leq z_{\alpha / 2} \sqrt{p(1-p) / n} & \Longleftrightarrow n \geq \frac{z_{\alpha / 2}^{2} p(1-p)}{d^{2}} \quad \text { (When } p \text { is known) } \\
d \leq \frac{z_{\alpha / 2}}{2 \sqrt{n}} & \Longleftrightarrow n \geq \frac{z_{\alpha / 2}^{2}}{4 d^{2}} \quad \text { (When } p \text { is unknown) }
\end{aligned}
$$

E.g. Anti-smoking campaign. Need to find an 95% C.I. with a margin of error equal to 1%. Determine the sample size?

Answer: $n \geq \frac{1.96^{2}}{4 \times 0.01^{2}}=9640$.
E.g.' In order to reduce the sample size, a small sample is used to determine p. One finds that $p \approx 0.22$. Determine the sample size again.

Answer: $n \geq \frac{1.96^{2} \times 0.22 \times 0.78}{\times 0.01^{2}}=6592.2$.

