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§ 5.3 Interval Estimation

Rationale. Point estimate doesn’t provide precision information.

By using the variance of the estimator, one can construct an interval such
that with a high probability that interval will contain the unknown
parameter.

I The interval is called confidence interval.

I The high probability is confidence level.
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E.g. 1. A random sample of size 4, (Y1 = 6.5, Y2 = 9.2, Y3 = 9.9, Y4 = 12.4),
from a normal population:

fY (y ;µ) =
1√

2π 0.8
e− 1

2

(
y−µ
0.8

)2

.

Both MLE and MME give µe = ȳ = 1
4
(6.5 + 9.2 + 9.9 + 12.4) = 9.5.

The estimator µ̂ = Y follows normal distribution.

Construct 95%-confidence interval for µ ...
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“The parameter is an unknown constant and no probability
statement concerning its value may be made.”

–Jerzy Neyman, original developer of confidence intervals.
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In general, for a normal population with σ known, the 100(1− α)%
confidence interval for µ is(

ȳ − zα/2
σ√
n
, ȳ + zα/2

σ√
n

)

Comment: There are many variations
1. One-sided interval such as(

ȳ − zα
σ√
n
, ȳ
)

or
(

ȳ , ȳ + zα
σ√
n

)
2. σ is unknown and sample size is small: z-score → t-score
3. σ is unknown and sample size is large: z-score by CLT

4. Non-Gaussian population but sample size is large: z-score by CLT
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)

or
(
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Theorem. Let k be the number of successes in n independent trials, where
n is large and p = P(success) is unknown. An approximate 100(1− α)%
confidence interval for p is the set of numbers(

k
n
− zα/2

√
(k/n)(1− k/n)

n
,

k
n
+ zα/2

√
(k/n)(1− k/n)

n

)
.

Proof: It follows the following facts:
I X ∼binomial(n, p) iff X = Y1 + · · ·+ Yn, while Yi are i.i.d. Bernoulli(p):

E[Yi ] = p and Var(Yi) = p(1− p).

I Central Limit Theorem: Let W1,W2, · · · ,Wn be an sequence of i.i.d.
random variables, whose distribution has mean µ and variance σ2, then∑n

i=1 Wi − nµ
√

nσ2
approximately follows N(0, 1), when n is large.
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I When the sample size n is large, by the central limit theorem,∑n
i=1 Yi − np√
np(1− p)

ap.∼ N(0, 1)

||

X − np√
np(1− p)

=
X
n − p√

p(1−p)
n

≈
X
n − p√
pe(1−pe)

n

I Since pe = k
n , we see that

P

−zα/2 ≤
X
n − p√
k
n

(
1− k

n

)
n

≤ zα/2

 ≈ 1− α

i.e., the 100(1− α)% confidence interval for p is(
k
n
− zα/2

√
(k/n)(1− k/n)

n
,

k
n
+ zα/2

√
(k/n)(1− k/n)

n

)
.

�
38



I When the sample size n is large, by the central limit theorem,∑n
i=1 Yi − np√
np(1− p)

ap.∼ N(0, 1)

||

X − np√
np(1− p)

=
X
n − p√

p(1−p)
n

≈
X
n − p√
pe(1−pe)

n

I Since pe = k
n , we see that

P

−zα/2 ≤
X
n − p√
k
n

(
1− k

n

)
n

≤ zα/2

 ≈ 1− α

i.e., the 100(1− α)% confidence interval for p is(
k
n
− zα/2

√
(k/n)(1− k/n)

n
,

k
n
+ zα/2

√
(k/n)(1− k/n)

n

)
.

�
38



I When the sample size n is large, by the central limit theorem,∑n
i=1 Yi − np√
np(1− p)

ap.∼ N(0, 1)

||

X − np√
np(1− p)

=
X
n − p√

p(1−p)
n

≈
X
n − p√
pe(1−pe)

n

I Since pe = k
n , we see that

P

−zα/2 ≤
X
n − p√
k
n

(
1− k

n

)
n

≤ zα/2

 ≈ 1− α

i.e., the 100(1− α)% confidence interval for p is(
k
n
− zα/2

√
(k/n)(1− k/n)

n
,

k
n
+ zα/2

√
(k/n)(1− k/n)

n

)
.

�
38



I When the sample size n is large, by the central limit theorem,∑n
i=1 Yi − np√
np(1− p)

ap.∼ N(0, 1)

||

X − np√
np(1− p)

=
X
n − p√

p(1−p)
n

≈
X
n − p√
pe(1−pe)

n

I Since pe = k
n , we see that

P

−zα/2 ≤
X
n − p√
k
n

(
1− k

n

)
n

≤ zα/2

 ≈ 1− α

i.e., the 100(1− α)% confidence interval for p is(
k
n
− zα/2

√
(k/n)(1− k/n)

n
,

k
n
+ zα/2

√
(k/n)(1− k/n)

n

)
.

�
38



I When the sample size n is large, by the central limit theorem,∑n
i=1 Yi − np√
np(1− p)

ap.∼ N(0, 1)

||

X − np√
np(1− p)

=
X
n − p√

p(1−p)
n

≈
X
n − p√
pe(1−pe)

n

I Since pe = k
n , we see that

P

−zα/2 ≤
X
n − p√
k
n

(
1− k

n

)
n

≤ zα/2

 ≈ 1− α

i.e., the 100(1− α)% confidence interval for p is(
k
n
− zα/2

√
(k/n)(1− k/n)

n
,

k
n
+ zα/2

√
(k/n)(1− k/n)

n

)
.

�
38



E.g. 1. Use median test to check the randomness of a random generator.

Suppose y1, · · · , yn denote measurements presumed to have come
from a continuous pdf fY (y). Let k denote the number of yi ’s that
are less than the median of fY (y). If the sample is random, we would
expect the difference between k

n and 1
2

to be small. More specifically,
a 95% confidence interval based on k should contain the value 0.5.

Let fY (y) = e−y . The median is m = 0.69315.
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1 #! /usr/bin/Rscript
2 main <− function() {
3 args <− commandArgs(trailingOnly = TRUE)
4 n <− 100 # Number of random samples.
5 r <− as.numeric(args[1]) # Rate of the exponential
6 # Check if the rate argument is given.
7 if (is .na(r)) return(”Please provide the rate and try again.”)
8

9 # Now start computing ...
10 f <− function (y) pexp(y, rate = r)−0.5
11 m <− uniroot(f, lower = 0, upper = 100, tol = 1e−9)$root
12 print(paste(”For rate ”, r, ”exponential distribution,”,
13 ”the median is equal to ”, round(m,3)))
14 data <− rexp(n,r) # Generate n random samples
15 data <− round(data,3) # Round to 3 digits after decimal
16 data <− matrix(data, nrow = 10,ncol = 10) # Turn the data to a matrix
17 prmatrix(data) # Show data on terminal
18 k <− sum(data > m) # Count how many entries is bigger than m
19 lowerbd = k/n − 1.96 ∗ sqrt((k/n)∗(1−k/n)/n);
20 upperbd = k/n + 1.96 ∗sqrt((k/n)∗(1−k/n)/n);
21 print(paste(”The 95% confidence interval is (”,
22 round(lowerbd,3), ”,”,
23 round(upperbd,3), ”)”))
24 }
25 main()

Try commandline ...
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Instead of the C.I.
(

k
n − zα/2

√
(k/n)(1−k/n)

n , k
n + zα/2

√
(k/n)(1−k/n)

n

)
.

One can simply specify the mean k
n

and

the margin of error: d := zα/2

√
(k/n)(1− k/n)

n
.

max
p∈(0,1)

p(1− p) = p(1− p)
∣∣∣∣
p=1/2

= 1/4 =⇒ d ≤
zα/2

2
√

n
=: dm.
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Comment:
1. When p is close to 1/2, d ≈ zα/2

2
√

n , which is equivalent to σp ≈ 1
2
√

n .

E.g., n = 1000, k/n = 0.48, and α = 5%, then

d = 1.96

√
0.48× 0.52

1000
= 0.03097 and dm =

1.96

2
√
1000

= 0.03099

σp =

√
0.48× 0.52

1000
= 0.01579873 and σp ≈ 1

2
√
1000

= 0.01581139.

2. When p is away from 1/2, the discrepancy between d and dm becomes
big....
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E.g. Running for presidency. Max and Sirius obtained 480 and 520 votes,
respectively. What is probability that Max will win?

What if the sample size is n = 5000, and Max obtained 2400 votes.
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Choosing sample sizes

d ≤ zα/2

√
p(1− p)/n ⇐⇒ n ≥

z2
α/2p(1− p)

d2
(When p is known)

d ≤
zα/2

2
√

n
⇐⇒ n ≥

z2
α/2

4d2
(When p is unknown)

E.g. Anti-smoking campaign. Need to find an 95% C.I. with a margin of
error equal to 1%. Determine the sample size?

Answer: n ≥ 1.962

4×0.012
= 9640.

E.g.’ In order to reduce the sample size, a small sample is used to determine
p. One finds that p ≈ 0.22. Determine the sample size again.

Answer: n ≥ 1.962×0.22×0.78
×0.012

= 6592.2.
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