Math 362: Mathematical Statistics II

Le Chen le.chen@emory.edu

Emory University Atlanta, GA

Last updated on April 13, 2021

2021 Spring

Chapter 5. Estimation

- § 5.1 Introduction
- § 5.2 Estimating parameters: MLE and MME
- § 5.3 Interval Estimation
- § 5.4 Properties of Estimators
- § 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
- § 5.6 Sufficient Estimators
- § 5.7 Consistency
- § 5.8 Bayesian Estimation

1

Plan

- § 5.1 Introduction
- § 5.2 Estimating parameters: MLE and MMF
- § 5.3 Interval Estimation
- § 5.4 Properties of Estimators
- § 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
- § 5.6 Sufficient Estimators
- § 5.7 Consistency
- § 5.8 Bayesian Estimation

Chapter 5. Estimation

- § 5.1 Introduction
- § 5.2 Estimating parameters: MLE and MME
- § 5.3 Interval Estimation
- § 5.4 Properties of Estimators
- § 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
- § 5.6 Sufficient Estimators
- § 5.7 Consistency
- § 5.8 Bayesian Estimation

§ 5.3 Interval Estimation

Rationale. Point estimate doesn't provide precision information.

By using the variance of the estimator, one can construct <u>an interval</u> such that with a <u>high probability</u> that interval will contain the unknown parameter.

- ► The interval is called **confidence interval**.
- ► The high probability is confidence level.

§ 5.3 Interval Estimation

Rationale. Point estimate doesn't provide precision information.

By using the variance of the estimator, one can construct <u>an interval</u> such that with a <u>high probability</u> that interval will contain the unknown parameter.

- ► The interval is called **confidence interval**.
- ► The high probability is **confidence level**.

E.g. 1. A random sample of size 4, $(Y_1 = 6.5, Y_2 = 9.2, Y_3 = 9.9, Y_4 = 12.4)$, from a normal population:

$$f_{Y}(y;\mu) = \frac{1}{\sqrt{2\pi} 0.8} e^{-\frac{1}{2} (\frac{y-\mu}{0.8})^{2}}.$$

Both MLE and MME give $\mu_e = \bar{y} = \frac{1}{4}(6.5 + 9.2 + 9.9 + 12.4) = 9.5$. The estimator $\hat{\mu} = \overline{Y}$ follows normal distribution.

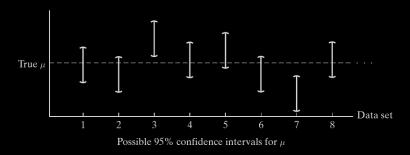
Construct 95%-confidence interval for μ ...

"The parameter is an unknown constant and no probability statement concerning its value may be made."

-Jerzy Neyman, original developer of confidence intervals.

"The parameter is an unknown constant and no probability statement concerning its value may be made."

-Jerzy Neyman, original developer of confidence intervals.



$$\left(\bar{y}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{y}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

Comment: There are many variations

26

$$\left(\bar{y}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{y}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

Comment: There are many variations

1. One-sided interval such as

$$\left(\bar{y}-z_{\alpha}\frac{\sigma}{\sqrt{n}},\bar{y}\right) \quad ext{or} \quad \left(\bar{y},\bar{y}+z_{\alpha}\frac{\sigma}{\sqrt{n}}\right)$$

2. σ is unknown and sample size is small

z-score $\rightarrow t$ -score

3. σ is unknown and sample size is large:

- z-score by CLT
- 4. Non-Gaussian population but sample size is large:
- z-score by CLT

$$\left(\bar{y}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{y}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

Comment: There are many variations

1. One-sided interval such as

$$\left(\bar{y}-z_{\alpha}\frac{\sigma}{\sqrt{n}},\bar{y}\right) \quad ext{or} \quad \left(\bar{y},\bar{y}+z_{\alpha}\frac{\sigma}{\sqrt{n}}\right)$$

2. σ is unknown and sample size is small:

z-score $\rightarrow t$ -score

3. σ is unknown and sample size is large:

z-score by CLT

4. Non-Gaussian population but sample size is large:

z-score by CLT

$$\left(\bar{y}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{y}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

Comment: There are many variations

1. One-sided interval such as

$$\left(\bar{y}-z_{\alpha}\frac{\sigma}{\sqrt{n}},\bar{y}\right) \quad ext{or} \quad \left(\bar{y},\bar{y}+z_{\alpha}\frac{\sigma}{\sqrt{n}}\right)$$

2. σ is unknown and sample size is small:

z-score $\rightarrow t$ -score

3. σ is unknown and sample size is large:

 $\boldsymbol{z}\text{-score}$ by CLT

4. Non-Gaussian population but sample size is large: Z-score

z-score by CLT

$$\left(\bar{y}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{y}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

Comment: There are many variations

1. One-sided interval such as

$$\left(\bar{y}-z_{\alpha}\frac{\sigma}{\sqrt{n}},\bar{y}\right) \quad \text{or} \quad \left(\bar{y},\bar{y}+z_{\alpha}\frac{\sigma}{\sqrt{n}}\right)$$

2. σ is unknown and sample size is small:

z-score $\rightarrow t$ -score

3. σ is unknown and sample size is large:

 $\boldsymbol{z}\text{-score}$ by CLT

4. Non-Gaussian population but sample size is large: z-score by CLT

Theorem. Let k be the number of successes in n independent trials, where n is large and $p = \mathbb{P}(success)$ is unknown. An approximate $100(1-\alpha)\%$ confidence interval for p is the set of numbers

$$\left(\frac{k}{n}-z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}},\;\frac{k}{n}+z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}}\right).$$

Proof: It follows the following facts:

Theorem. Let k be the number of successes in n independent trials, where n is large and $p = \mathbb{P}(success)$ is unknown. An approximate $100(1-\alpha)\%$ confidence interval for p is the set of numbers

$$\left(\frac{k}{n}-z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}},\;\frac{k}{n}+z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}}\right).$$

Proof: It follows the following facts:

 $ightharpoonup X \sim \text{binomial}(n, p) \text{ iff } X = Y_1 + \cdots + Y_n, \text{ while } Y_i \text{ are i.i.d. Bernoulli}(p)$:

$$\mathbb{E}[Y_i] = p$$
 and $\operatorname{Var}(Y_i) = p(1-p)$.

▶ Central Limit Theorem: Let W_1, W_2, \dots, W_n be an sequence of i.i.d. random variables, whose distribution has mean μ and variance σ^2 , then

$$\frac{\sum_{i=1}^{n} W_i - n\mu}{\sqrt{n\sigma^2}}$$
 approximately follows $N(0,1)$, when n is large

Theorem. Let k be the number of successes in n independent trials, where n is large and $p = \mathbb{P}(success)$ is unknown. An approximate $100(1-\alpha)\%$ confidence interval for p is the set of numbers

$$\left(\frac{k}{n}-z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}},\;\frac{k}{n}+z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}}\right).$$

Proof: It follows the following facts:

 $ightharpoonup X \sim \mathrm{binomial}(n,p) \text{ iff } X = Y_1 + \cdots + Y_n, \text{ while } Y_i \text{ are i.i.d. Bernoulli}(p)$:

$$\mathbb{E}[Y_i] = p$$
 and $\operatorname{Var}(Y_i) = p(1-p)$.

▶ Central Limit Theorem: Let W_1, W_2, \dots, W_n be an sequence of i.i.d. random variables, whose distribution has mean μ and variance σ^2 , then

$$\frac{\sum_{i=1}^{n} W_{i} - n\mu}{\sqrt{n\sigma^{2}}}$$
 approximately follows $N(0,1)$, when n is large.

 \blacktriangleright When the sample size n is large, by the central limit theorem,

$$\frac{\sum_{i=1}^{n} Y_{i} - np}{\sqrt{np(1-p)}} \stackrel{\text{ap.}}{\approx} N(0,1)$$

$$\frac{X - np}{\sqrt{np(1-p)}} = \frac{\frac{X}{n} - p}{\sqrt{\frac{p(1-p)}{n}}} \approx \frac{\frac{X}{n} - p}{\sqrt{\frac{p_{0}(1-p)}{n}}}$$

 \blacktriangleright When the sample size n is large, by the central limit theorem,

$$\frac{\sum_{i=1}^{n} Y_{i} - np}{\sqrt{np(1-p)}} \stackrel{\text{ap.}}{\approx} N(0,1)$$

$$\frac{X - np}{\sqrt{np(1-p)}} = \frac{\frac{X}{n} - p}{\sqrt{\frac{p(1-p)}{n}}} \approx \frac{\frac{X}{n} - p}{\sqrt{\frac{p_{0}(1-p)}{n}}}$$

 \blacktriangleright When the sample size n is large, by the central limit theorem,

$$\begin{split} \frac{\sum_{i=1}^{n} Y_i - np}{\sqrt{np(1-p)}} & \stackrel{\text{ap.}}{\sim} & N(0,1) \\ & || \\ \frac{X - np}{\sqrt{np(1-p)}} &= \frac{\frac{X}{n} - p}{\sqrt{\frac{p(1-p)}{n}}} \approx \frac{\frac{X}{n} - p}{\sqrt{\frac{p_{\theta}(1-p_{\theta})}{n}}} \end{split}$$

 \triangleright When the sample size n is large, by the central limit theorem,

$$\frac{\sum_{i=1}^{n} Y_{i} - np}{\sqrt{np(1-p)}} \stackrel{\text{ap.}}{\sim} N(0,1)$$

$$||$$

$$\frac{X - np}{\sqrt{np(1-p)}} = \frac{\frac{X}{n} - p}{\sqrt{\frac{p(1-p)}{n}}} \approx \frac{\frac{X}{n} - p}{\sqrt{\frac{p_{\theta}(1-p_{\theta})}{n}}}$$

ightharpoonup Since $p_e = \frac{k}{p}$, we see that

$$\mathbb{P}\left(-z_{\alpha/2} \leq \frac{\frac{X}{n} - \rho}{\sqrt{\frac{\frac{k}{n}(1 - \frac{k}{n})}{n}}} \leq z_{\alpha/2}\right) \approx 1 - \alpha$$

i.e., the $100(1-\alpha)\%$ confidence interval for p is

$$\left(\frac{k}{n} - Z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}}, \frac{k}{n} + Z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}}\right)$$

 \triangleright When the sample size n is large, by the central limit theorem,

$$\frac{\sum_{i=1}^{n} Y_i - np}{\sqrt{np(1-p)}} \stackrel{\text{ap.}}{\sim} N(0,1)$$

$$\parallel$$

$$\frac{X - np}{\sqrt{np(1-p)}} = \frac{\frac{X}{n} - p}{\sqrt{\frac{p(1-p)}{np(1-p)}}} \approx \frac{\frac{X}{n} - p}{\sqrt{\frac{p_e(1-p_e)}{np(1-p_e)}}}$$

ightharpoonup Since $p_e = \frac{k}{n}$, we see that

$$\mathbb{P}\left(-\mathsf{z}_{\alpha/2} \leq \frac{\frac{\mathsf{X}}{n} - \mathsf{p}}{\sqrt{\frac{\frac{\mathsf{k}}{n}(1 - \frac{\mathsf{k}}{n})}{n}}} \leq \mathsf{z}_{\alpha/2}\right) \approx 1 - \alpha$$

i.e., the $100(1-\alpha)\%$ confidence interval for \boldsymbol{p} is

$$\left(\frac{k}{n}-z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}},\ \frac{k}{n}+z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}}\right).$$

Suppose y_1, \dots, y_n denote measurements presumed to have come from a continuous pdf $f_Y(y)$. Let k denote the number of y_i 's that are less than the median of $f_Y(y)$. If the sample is random, we would expect the difference between $\frac{k}{n}$ and $\frac{1}{2}$ to be small. More specifically, a 95% confidence interval based on k should contain the value 0.5.

Suppose y_1, \dots, y_n denote measurements presumed to have come from a continuous pdf $f_Y(y)$. Let k denote the number of y_i 's that are less than the median of $f_Y(y)$. If the sample is random, we would expect the difference between $\frac{k}{n}$ and $\frac{1}{2}$ to be small. More specifically, a 95% confidence interval based on k should contain the value 0.5.

Suppose y_1, \dots, y_n denote measurements presumed to have come from a continuous pdf $f_Y(y)$. Let k denote the number of y_i 's that are less than the median of $f_Y(y)$. If the sample is random, we would expect the difference between $\frac{k}{n}$ and $\frac{1}{2}$ to be small. More specifically, a 95% confidence interval based on k should contain the value 0.5.

Suppose y_1, \dots, y_n denote measurements presumed to have come from a continuous pdf $f_Y(y)$. Let k denote the number of y_i 's that are less than the median of $f_Y(y)$. If the sample is random, we would expect the difference between $\frac{k}{n}$ and $\frac{1}{2}$ to be small. More specifically, a 95% confidence interval based on k should contain the value 0.5.

```
2 main <- function() {
    args <- commandArgs(trailingOnly = TRUE)
    n < -100 \# Number of random samples.
    f < -function(y) pexp(y, rate = r) - 0.5
    m \leftarrow uniroot(f, lower = 0, upper = 100, tol = 1e-9)$root
                the median is equal to ", round(m,3))
    data <- round(data,3) # Round to 3 digits after decimal
    data <- matrix(data, nrow = 10,ncol = 10) # Turn the data to a matrix
    k < -sum(data > m) # Count how many entries is bigger than m
    upperbd = k/n + 1.96 * sqrt((k/n)*(1-k/n)/n);
              round(lowerbd,3), ",",
              round(upperbd,3), ")"))
25 main()
```

Try commandline ...

```
Math362:./Example-5-3-2.R 1
[1] "For rate 1 exponential distribution, the median is equal to 0.693"
       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1.] 1.324 1.211 0.561 0.640 2.816 2.348 0.788 2.243 1.759 0.103
 [2.] 0.476 2.288 0.106 0.079 0.636 1.941 0.801 3.838 0.612 0.030
 [3,] 1.085 0.305 0.354 1.013 0.687 1.656 1.043 0.389 1.476 2.158
 [4.] 1.267 1.031 0.917 0.681 0.912 0.236 0.054 0.862 0.065 0.402
 [5,] 0.957 1.003 1.665 1.137 0.378 1.182 0.659 1.923 1.127 0.364
 [6.] 0.307 0.127 0.203 0.394 1.392 2.378 4.192 0.365 3.227 0.337
[7.] 0.707 0.049 0.391 1.967 1.220 2.605 0.887 1.749 1.479 1.526
[8,] 0.662 0.141 0.318 0.523 0.646 1.202 0.442 0.174 1.178 0.177
[9.] 0.397 0.493 0.214 0.522 2.024 4.109 1.268 1.041 0.948 0.382
[10.] 2.260 0.292 0.437 0.962 0.224 4.221 0.594 0.218 0.601 0.941
[1] "The 95% confidence interval is ( 0.422 , 0.618 )"
Math362:./Example-5-3-2.R 10
[1] "For rate 10 exponential distribution, the median is equal to 0.069"
       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1.] 0.199 0.069 0.013 0.025 0.000 0.107 0.068 0.116 0.066 0.146
[2,] 0.027 0.076 0.044 0.458 0.052 0.127 0.100 0.100 0.014 0.061
 [3.] 0.014 0.078 0.044 0.072 0.028 0.141 0.038 0.022 0.037 0.093
 [4.] 0.042 0.015 0.250 0.132 0.292 0.072 0.105 0.244 0.046 0.054
[5.] 0.134 0.074 0.182 0.057 0.021 0.038 0.095 0.196 0.004 0.048
[6.] 0.016 0.021 0.163 0.030 0.139 0.063 0.054 0.006 0.023 0.051
[7,] 0.227 0.055 0.091 0.121 0.066 0.114 0.004 0.021 0.035 0.211
[8.] 0.113 0.083 0.129 0.338 0.160 0.008 0.014 0.167 0.050 0.127
[9.] 0.053 0.073 0.054 0.098 0.004 0.036 0.274 0.276 0.004 0.159
[10,] 0.045 0.469 0.152 0.003 0.129 0.017 0.084 0.072 0.162 0.007
[1] "The 95% confidence interval is ( 0.392 , 0.588 )"
Math362:
```

Instead of the C.I.
$$\left(\frac{k}{n} - Z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}}, \frac{k}{n} + Z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}}\right)$$
.

the margin of error:
$$d := Z_{\alpha/2} \sqrt{\frac{(k/n)(1-k/n)}{n}}$$
.

$$\max_{\boldsymbol{p} \in (0,1)} \boldsymbol{p}(1-\boldsymbol{p}) = \boldsymbol{p}(1-\boldsymbol{p}) \bigg|_{\boldsymbol{p} = 1/2} = 1/4 \quad \Longrightarrow \quad \boldsymbol{d} \leq \frac{\boldsymbol{z}_{\alpha/2}}{2\sqrt{\boldsymbol{n}}} =: \boldsymbol{d}_{\boldsymbol{m}}.$$

Comment:

1. When p is close to 1/2, $d \approx \frac{z_{\alpha/2}}{2\sqrt{n}}$, which is equivalent to $\sigma_p \approx \frac{1}{2\sqrt{n}}$.

E.g.,
$$n = 1000$$
, $k/n = 0.48$, and $\alpha = 5\%$, then

$$d = 1.96\sqrt{\frac{0.48 \times 0.52}{1000}} = 0.0309\underline{7}$$
 and $d_m = \frac{1.96}{2\sqrt{1000}} = 0.0309\underline{9}$

$$\sigma_p = \sqrt{\frac{0.48 \times 0.52}{1000}} = 0.015\underline{7}9873$$
 and $\sigma_p \approx \frac{1}{2\sqrt{1000}} = 0.015\underline{8}1139$.

2. When p is away from 1/2, the discrepancy between d and d_m becomes big....

Comment:

1. When p is close to 1/2, $d \approx \frac{z_{\alpha/2}}{2\sqrt{n}}$, which is equivalent to $\sigma_p \approx \frac{1}{2\sqrt{n}}$.

E.g.,
$$n = 1000$$
, $k/n = 0.48$, and $\alpha = 5\%$, then

$$d = 1.96\sqrt{\frac{0.48 \times 0.52}{1000}} = 0.0309\underline{7}$$
 and $d_m = \frac{1.96}{2\sqrt{1000}} = 0.0309\underline{9}$

$$\sigma_p = \sqrt{\frac{0.48 \times 0.52}{1000}} = 0.015\underline{7}9873$$
 and $\sigma_p \approx \frac{1}{2\sqrt{1000}} = 0.015\underline{8}1139$.

2. When p is away from 1/2, the discrepancy between d and d_m becomes big....

E.g. Running for presidency. Max and Sirius obtained 480 and 520 votes, respectively. What is probability that Max will win?

What if the sample size is n = 5000, and Max obtained 2400 votes.

Choosing sample sizes

$$d \leq z_{\alpha/2} \sqrt{p(1-p)/n} \iff n \geq \frac{z_{\alpha/2}^2 p(1-p)}{d^2}$$
 (When p is known)
$$d \leq \frac{z_{\alpha/2}}{2\sqrt{p}} \iff n \geq \frac{z_{\alpha/2}^2}{4d^2}$$
 (When p is unknown)

E.g. Anti-smoking campaign. Need to find an 95% C.I. with a margin of error equal to 1%. Determine the sample size?

Answer:
$$n \ge \frac{1.96^2}{4 \times 0.01^2} = 9640$$
.

E.g.' In order to reduce the sample size, a small sample is used to determine p. One finds that $p \approx 0.22$. Determine the sample size again.

Answer:
$$n \ge \frac{1.96^2 \times 0.22 \times 0.78}{\times 0.01^2} = 6592.2$$

Choosing sample sizes

$$d \leq z_{\alpha/2} \sqrt{p(1-p)/n} \iff n \geq \frac{z_{\alpha/2}^2 p(1-p)}{d^2}$$
 (When p is known)
$$d \leq \frac{z_{\alpha/2}}{2\sqrt{p}} \iff n \geq \frac{z_{\alpha/2}^2}{4d^2}$$
 (When p is unknown)

E.g. Anti-smoking campaign. Need to find an 95% C.I. with a margin of error equal to 1%. Determine the sample size?

Answer: $n \ge \frac{1.96^2}{4 \times 0.01^2} = 9640$.

E.g.' In order to reduce the sample size, a small sample is used to determine p. One finds that $p \approx 0.22$. Determine the sample size again.

Answer:
$$n \ge \frac{1.96^2 \times 0.22 \times 0.78}{\times 0.01^2} = 6592.2.$$