Math 362: Mathematical Statistics II

Le Chen le.chen@emory.edu

Emory University Atlanta, GA

Last updated on April 13, 2021

2021 Spring

Chapter 5. Estimation

§ 5.1 Introduction

- $\$ 5.2 Estimating parameters: MLE and MME
- § 5.3 Interval Estimation
- $\$ 5.4 Properties of Estimators
- § 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
- § 5.6 Sufficient Estimators
- § 5.7 Consistency
- $\$ 5.8 Bayesian Estimation

Chapter 5. Estimation

§ 5.1 Introduction

- $\S~5.2$ Estimating parameters: MLE and MME
- § 5.3 Interval Estimation
- § 5.4 Properties of Estimators
- § 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
- § 5.6 Sufficient Estimators
- § 5.7 Consistency
- § 5.8 Bayesian Estimation

Definition. An estimator $\hat{\theta}_n = h(W_1, \dots, W_n)$ is said to be consistent if it converges to θ in probability, i.e., for any $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}\left(\left| \widehat{\theta}_n - \theta \right| < \epsilon \right) = 1$$

Comment: In the ϵ - δ language, the above convergence in probability says

$$\forall \epsilon > 0, \ \forall \delta > 0, \ \exists n(\epsilon, \delta) > 0, \ \mathbf{s.t.} \ \forall n \ge n(\epsilon, \delta),$$

$$\mathbb{P}\left(|\widehat{\theta}_n - \theta| < \epsilon \right) > 1 - \delta.$$

A useful tool to check convergence in probability is

Theorem. (Chebyshev's inequality) Let W be any r.v. with finite mean μ and variance σ^2 . Then for any $\epsilon > 0$

$$\mathbb{P}\left(|\mathbf{W}-\boldsymbol{\mu}|<\epsilon\right) \geq 1 - \frac{\sigma^2}{\epsilon^2},$$

or, equivalently,

$$\mathbb{P}\left(|\boldsymbol{W}-\boldsymbol{\mu}| \geq \epsilon\right) \leq \frac{\sigma^2}{\epsilon^2}.$$

Proof. ...

As a consequence of Chebyshev's inequality, we have

Proposition. The sample mean $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n W_i$ is consistent for $\mathbb{E}(W) = \mu$, provided that the population W has finite mean μ and variance σ^2 .

Proof.

$$\mathbb{E}(\widehat{\mu}_n) = \mu \quad \text{and} \quad \operatorname{Var}(\widehat{\mu}_n) = \frac{\sigma^2}{n}.$$
$$\forall \epsilon > 0, \quad \mathbb{P}\left(|\widehat{\mu}_n - \mu| \le \epsilon\right) \ge 1 - \frac{\sigma^2}{n\epsilon^2} \to 1$$

E.g. 1. Let Y_1, \dots, Y_n be a random sample of size *n* from the uniform pdf $f_Y(y; \theta) = 1/\theta, y \in [0, \theta]$. Let $\hat{\theta}_n = Y_{max}$. We know that Y_{max} is biased. Is it consistent?

Sol. The c.d.f. of Y is equal to $F_Y(y) = y/\theta$ for $y \in [0, \theta]$. Hence,

$$f_{Y_{max}}(y) = nF_Y(y)^{n-1}f_Y(y) = rac{ny^{n-1}}{\theta^n}, \qquad y \in [0, \theta].$$

Therefore,

$$\mathbb{P}(|\widehat{\theta}_n - \theta| < \epsilon) = \mathbb{P}(\theta - \epsilon < \widehat{\theta}_n < \theta + \epsilon)$$
$$= \int_{\theta - \epsilon}^{\theta} \frac{ny^{n-1}}{\theta^n} dy + \int_{\theta}^{\theta + \epsilon} 0 dy$$
$$= 1 - \left(\frac{\theta - \epsilon}{\theta}\right)^n$$
$$\to 0 \quad \text{as } n \to \infty.$$

E.g. 2. Suppose Y_1, Y_2, \dots, Y_n is a random sample from the exponential pdf, $f_Y(y; \lambda) = \lambda e^{-\lambda y}, y > 0$. Show that $\hat{\lambda}_n = Y_1$ is not consistent for λ .

Sol. To prove $\hat{\lambda}_n$ is not consistent for λ , we need only to find out one $\epsilon > 0$ such that the following limit does not hold:

$$\lim_{n \to \infty} \mathbb{P}\left(|\widehat{\lambda}_n - \lambda| < \epsilon \right) = 1.$$
(3)

We can choose $\epsilon = \lambda/m$ for any $m \ge 1$. Then

$$\begin{aligned} |\widehat{\lambda}_n - \lambda| &\leq \frac{\lambda}{m} \quad \Longleftrightarrow \quad \left(1 - \frac{1}{m}\right) \lambda \leq \widehat{\lambda}_n \leq \left(1 + \frac{1}{m}\right) \lambda \\ &\implies \quad \widehat{\lambda}_n \geq \left(1 - \frac{1}{m}\right) \lambda. \end{aligned}$$

Hence,

$$\mathbb{P}\left(|\widehat{\lambda}_n - \lambda| < \frac{\lambda}{m}\right) \le \mathbb{P}\left(\widehat{\lambda}_n \ge \left(1 - \frac{1}{m}\right)\lambda\right)$$
$$= \mathbb{P}\left(Y_1 \ge \left(1 - \frac{1}{m}\right)\lambda\right)$$
$$= \int_{\left(1 - \frac{1}{m}\right)\lambda}^{\infty} \lambda e^{-\lambda y} \mathrm{d}y$$
$$= e^{-\left(1 - \frac{1}{m}\right)\lambda^2} < 1.$$

Therefore, the limit in (3) cannot hold.