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Rationale: Let W be an estimator dependent on a parameter 6.

1.

Frequentists view 6 as a parameter whose exact value is to be
estimated.

. Bayesians view 6 is the value of a random variable ©.

One can incorporate our knowledge on © — the prior distribution
Ppo(0) if © is discrete and fo () if © is continuous — and use Bayes’
formula to update our knowledge on © upon new observation W = w:

pw(w|© = 0)pe (0)

i W is dis
B(W = w) i is discrete

go(O|W = w) =
fw(w|© = 0)fo(0)
fw(w)

where ge (0|W = w) is called posterior distribution of ©.

if W is continuous
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Four cases for computing posterior distribution

pw(w|© = 0)pe(8) fw(w|© = 0)pe (0)
> pw(wW|© = 0;)pe (6)) > fw(w|© = 0;)pe (0i)

pw(w|© = 0)fo(0) fw(w|© = 0)fo(0)
Jo Pw(W|© = 0")fe(0/)d0" | [, fw(w|© = 0")fe(6")d0"
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Gamma distributions

NG ::/ y~leVdy, r>o.
0

Two parametrizations for Gamma distributions:

1. With a shape parameter r and a scale parameter 6:

r—1,—y/6

y'~le

fY(Y§f79)=W7

y>0,r,60>0.
2. With a shape parameter r and a rate parameter A = 1/6,

)\ryrfle—/\y

fY(Y%C)\):W7

EY] = § —rf and Var(Y)= 7’2 = rp?

y>0,r,A>0.
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# Plot gamma distributions

x = seq(0,20,0.01)

k= 3 # Shape parameter

theta = 0.5 # Scale parameter
plot(x,dgamma(x, k, scale = theta

tyf)e:
col= )
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Beta distributions

B(a, B) : /y T1-y)f Ty, a8 >0.

“Tatp) (see Appendix)
Beta distribution
fe(yia, B) = % y€0,1],0,8> 0.
E[Y] = ai,@ and Var(Y) = (a+5)2?§+5+1)
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# Plot Beta distributions
x = seq(0,1,0.01)
a =13
b=2
plot(x,dbeta(x,a,b),
type="1",
col= )
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E.g. 1. Let Xi,---, X, be a random sample from Bernoulli(6):
px; (k;0) = 0(1 — 0)* ¥ for k =0, 1.

Let X =37 Xi. Then X follows binomial(n, 6).

Prior distribution: © ~beta(r, s), i.e., fo(0) = Fr((rg;(sg)wfl(l —0)*! for
0 € [0,1].

0 ~ Binomial(n,6)

n
X, Xn |9 ~  Bernoulli(9) X= Z Xi
© ~ Beta(r,s) =

© ~ Beta(r,s)
r & s are known

r & s are known
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Example

5.8.2

Max, a video game pirate (and Bayesian), is trying to decide how many illegal copies
of Zombie Beach Party to have on hand for the upcoming holiday season. To get a
rough idea of what the demand might be, he talks with n potential customers and
finds that X = k would buy a copy for a present (or for themselves). The obvious
choice for a probability model for X, of course, would be the binomial pdf. Given n
potential customers, the probability that & would actually buy one of Max’s illegal
copies is the familiar

px(k|9)=(:)9k(l—9)”’k, k=0,1,....n

where the maximum likelihood estimate for 6 is given by 6, = %

It may very well be the case, though, that Max has some additional insight about
the value of # on the basis of similar video games that he illegally marketed in
previous years. Suppose he suspects, for example, that the percentage of potential
customers who will buy Zombie Beach Party is likely to be between 3% and 4% and
probably will not exceed 7%. A reasonable prior distribution for ®, then, would be
a pdf mostly concentrated over the interval 0 to 0.07 with a mean or median in the

0.035 range.
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One such probability model whose shape would comply with the restraints that
Max is imposing is the beta pdf. Written with © as the random variable, the (two-
parameter) beta pdf is given by

T'(r+s)

— o1 —0)y!, 0<o<1
TrTes)

fa0)=
The beta distribution with » =2 and s = 4 is pictured in Figure 5.8.1. By choosing
different values for r and s, fo() can be skewed more sharply to the right or
to the left, and the bulk of the distribution can be concentrated close to zero or
close to one. The question is, if an appropriate beta pdf is used as a prior dis-
tribution for @, and if a random sample of & potential customers (out of n) said
they would buy the video game, what would be a reasonable posterior distribution
for ©?7

24 |
o L6}
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z —1o(®)
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Figure 5.8.1



X is discrete and © is continuous.

px(k|© = 0)fo (0)

go (61X = k) = [ px(k|© = 0")fo(6")d0’
L(r+s) 1 s—1
x(K|© = 6)fo (6 ( >0k1—9 (r)r(s)e (1-10)
( > g1 — )R g e o).

)L'(s )
+s) +nNT(n—k+s)
Fs) k+r) (n—k+s))



<Z> g((:)‘rf"(‘?) > 0k+r71(1 . €)n7k+s—1

(n) I(r+s) T(k+nT(n—k+s)

9o (61X = k) =

k) T(NT(s) “ T((k+r) +(n—k+s))

F(n +r+ S) k+r—1 n—k+s—1
= 1 —
F(k+r)1“(n—k+s)g (1-9)

)

Conclusion: the posterior ~ beta distribution(k + r,n— k + ).

Recall that the prior ~ beta distribution(r, s).

0 €10,1]
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It remains to determine the values of r and § to incorporate the prior
knowledge:

PK 1. Mean is about 0.035.

r r
E(©) =0. —— =0. It
(©)=0035 = =003 = -=1o

PK 2. The pdf mostly concentrated over [0,0.07]. ... trial ...
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x <— seq(0, 1, length = 1025)
plot(x,dbeta(x,4,102),

type=
plot(x,dbeta(x,7,193),
type="1")
dev.off()
pdf=cbind(dbeta(x,4,102),dbeta(x
7,193))
matplot(x,pdf,
type="1",
Ity = 1:2,
xlab = , ylab =

lwd = 2 # Line width

)
legend(O.Q, 25, # Position of legend

o

col = 1:2, Ity = 1:2,

ncol = 1, # Number of columns

cex = 1.5, # Fontsize

» 71

lwd=2 # Line width

)
abline(v=0.07, col=
)
text(0.07, —0.5,
abline(v=0.035, col=
lwd=2)
text(0.035, 1, )

, Ity=1,lwd

) Iby=3,
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If we choose r =7 and s = 193:

R I'(n+ 200) K461 pyn—k+192
90X =h) =t rimn—k+193)” 7 » fel0

Moreover, if n =10 and k = 2,

I'(210)

9o =19 =g r 201

0*(1—0)*°,  6el0,1]
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1 x <— seq(0, 0.1, length = 1025)
2 pdf=cbind(dbeta(x,7,193),dbeta(x

,9,201))
3 matplot(x,pdf,
4 type="17,
5 Ity = 1:2,
6 xlab = , ylab = s
7 lwd = 2 # Line width
8 )
9 legend(0.05, 25, # Position of legend
10 c( s
)
11 col = 1:2, Ity = 1:2,
12 ncol = 1, # Number of columns
13 cex = 1.5, # Fontsize
14 lwd=2 # Line width
15
16 abline(v=0.07,col= , lty=1,lwd
=1.5)
17 text(0.07, —0.5, )
18 abline(v=0.035,col= , Ity=3,lwd
=2)
19 text(0.035, 1, )
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Definition. If the posterior distributions p(©|X) are in the same
probability distribution family as the prior probability distribution p(©),
the prior and posterior are then called conjugate distributions, and the
prior is called a conjugate prior for the likelihood function.

1. Beta distributions are conjugate priors for Bernoulli, binomial, nega.
binomial, geometric likelihood.

2. Gamma distributions are conjugate priors for Poisson and exponential
likelihood.
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E.g. 2. Let Xi, -+, Xn be a random sample from Poisson(6): px(k;0) = e—sek

for k=0,1,---.

Let W =37, Xi. Then W follows Poisson(nf).

Prior distribution: © ~ Gamma(s, p), i.e., fo(8) = %03_16’_“0 for
0> 0.

n
X, Xn ‘9 ~  Poisson(6) W= ZX/ ’9 ~  Poisson(no)
i=1

© ~ Gamma(s,pu)
© ~ Gamma(s,p)
s & p are known
s & p are known
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pw(w|© = 0)fo (0)

9o OIW =w) = 1 W6 = 0)fo(0') 40"

_ . e " (ng) wso1 e
pw(w|© = 0)fs(0) = Wl X P(s)e e

T wlT(s)

pu(w) = / Pu(W|© = 0')fo (6)d0’

nw NS = 9/W+s—1e—(u+n)6'd0/
Twil(s )
" F(W +5)

(s) * Gt nywts

T wl

W guiaignGein? g,
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’LW ne « rts—1lg=(utme
(01X = K) = w! T'(s)
Jo - T MS F(W-I— S)

wiT(s) " (u+ nwts

— (M + n)W+S 0W+s—1ef(pd+n)97 0> 0.

D(w+s)

Conclusion: the posterior of © ~ gamma distribution(w + s, n+ p).

Recall that the prior of © ~ gamma distribution(s, u).
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Case Study 5.8.1

1 x <— seq(0, 4, length = 1025)
2 pdf=cbind(dgamma(x, shape=88, rate

=50),
3 dgamma(x, shape=88+92,
100),
4 dgamma(x, 88+92+72, 150))
5 matplot(x,pdf,
6 type="17,
7 Ity = 1:3,
8 xlab = , ylab = s
9 lwd = 2 # Line width
10

11 legend(2, 3.5, # Position of legend
c

)

13 s

14 ),
15 col = 1:3, Ity = 1:3,

16 ncol = 1, # Number of columns
17 cex = 1.5, # Fontsize

18 lwd=2 # Line width

PDF

Table 5.8.1

Years Number of Hurricanes

1851-1900
1901-1950
1951-2000

88
92
72

— Prior Gamma(88,50)
— - Posterior! Beta(180,100)
-~ Posterior2 Beta(252,150)
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Bayesian Point Estimation

Question. Can one calculate an appropriate point estimate 0 given the
posterior ge (0|W = w)?

Definitions. Let 0 be an estimate for 6 based on a statistic W. The loss
function associated with fe is denoted L(fe,6), where L(fe,6) > 0 and
L(0,0) =0.

Let ge (0]|W = w) be the posterior distribution of the random variable ©.
Then the risk associated with ¢ is the expected value of the loss function
with respect to the posterior distribution of ©:

/ L(é\7 0)ge (0|W = w)dl if © is continuous
R

risk = N
Z L(0,0i)9e(0i|W = w) if © is discrete
i
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Theorem. Let ge (0|W = w) be the posterior distribution of the random
variable ©.

1. If L(0e,0) = |0e — 0], then the Bayes point estimate for 0 is the median
of go (0|W = w).

2. If L(0e,0) = (fe — 0)?, then the Bayes point estimate for 0 is the mean
of go(O|W = w).

Remarks
1. Median usually does not have a closed form formula.

2. Mean usually has a closed formula.
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Proof. (of Part 1. )

Let m be the median of the random variable W. We first claim that
E(|W — m|) <E(|W)). (*)

For any constant b € R, because

%:]P’(ng):P(W—bgm—b)

we see that m — b is the median of W — b. Hence, by (x),
E(W-m)=E(|(W-b)—(m—-D>b)|) <E(|W-1>b]), forallbeR,

which proves the statement.
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Proof. ( of Part 1. continued )

It remains to prove (x). Without loss of generality, we may assume m > 0.
Then

]E(\me\):/R|me|fW(w)dw

:/m (m— w)fW(W)dW—i—/oo(w—m)fw(w)dw

m

:_/m wfw(w)dw+/°°wfw(w)dw+%(m—m)

m

__ /io why (w)dw — /Om wa(W)dW-i-/oo w fy (w)dw

m

>0

<_/0 Wi (w )dw+/ooowfw(w)dw

/|W|fw

= E(|W]).
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Proof. ( of Part 2. )
Let v be the mean of W. Then for any b € R, we see that
E[(W—b)*] =E[([W — ] + [ — b])’]

= E[(W— )*] + 20— b)E(W — ) +u — b}’
T
=E[(W—w)?] + [ b

that is,

E[(W—pu)? <E[(W-b)?], forallbeR.
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n
X1, Xn |9 ~  Bernoulli(0) X = in ¢ ~ Binomial(n,0)
© ~ Beta(r,s) =

r & s are known

E.g. 1.
© ~ Beta(r,s)

r & s are known

Prior Beta(r, s) — posterior Beta(k 4+ r,n— k + s)
upon observing X = k for a random sample of size n.

Consider the L? loss function.

0e = mean of Beta(k +r,n— Kk +s)
k+r
n+r+s

n <k> r+s ( r )
= ——=x(7])+ x
n+r+s n n+r+s r+s
~——

—_——
MLE Mean of Prior
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n
— X
n+r+s

MLE vs. Prior

(5)-

MLE

r+s

X
n+r+s

(=)

Mean of Prior
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E.g. 2.

n
)(17 e 7)(n |9 ~ Pojsson(e) W = Z )(/ ’6 ~ Poisson(nH)
© ~ Gammal(s,pu) = o
s & p are known

~  Gammal(s, )
s & p are known

Prior Gamma(s, 1) — Posterior Gamma(w + s, + n)
upon observing W = w for a random sample of size n.

Consider the L? loss function.

fe = mean of Gamma(w + S, u + n)
_w+s
w+n

n w 1 s

- (et (8

pt+n"\n) Tptn I
——

MLE Mean of Prior
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MLE vs. Prior

~——
MLE Mean of Prior
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Appendix: Beta integral

Proof. Notice that
F(a):/ x*"'e¥dx and T(f) :/ y? e dy.
0 0

Hence,

D(a)T(B) = / / x> tyP e ) gy .
0] 0
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The key in the proof is the following change of variables:

x = r?cos®(6)
y = r*sin?()

ax,y) 2r cos?(6) 2r sin®(0)
- n (—2!’2 cos(0) sin(0)  2r? cos(0) sin(6)

det (8(’; ’ g’ )) ‘ — 47% sin(6) cos(6).

)
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Therefore,

T(a)T(B) :/i d@/ dr PPletf)—dg=r? cos”*2(0) sin®?2(0) x 4r® sin(0) cos(0)
0 0 —_—

Jacobian

—4 ( / ® cos21(f) sinwl(e)dé?) ( / r2<a+3)*1e*’2dr) .
0 0

Now let us compute the following two integrals separately:

I / ? cos2271(6) sin2*~1(6)d8
0

I ::/ rAeth—lg=r gy
(0]



For Iy, by change of variable r? = u (so that 2rdr = du),

I N rAleth—1 _’er

Il
M\»—\\

pAotB) =21 oy
<~

=du

/ ueth e gy

I+ B).

t\)\»—l N |
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For I1, by the change of variables \/x = cos() (so that
—sin(0)do = ﬁdx),

cos”* 71 (0) sin*? 2 (0) x sin(0)do
—_——

=—_L_dx

TR
0 | 1
= [ x*z(1-x)""" —dx
/1 VX

X711 = x)P " dx

[y
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Therefore,
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