Math 362: Mathematical Statistics II

Le Chen le.chen@emory.edu

Emory University Atlanta, GA

Last updated on April 13, 2021

2021 Spring

Chapter 6. Hypothesis Testing

- § 6.1 Introduction
- § 6.2 The Decision Rule
- § 6.3 Testing Binomial Data $H_0: p = p_0$
- \S 6.4 Type I and Type II Errors
- § 6.5 A Notion of Optimality: The Generalized Likelihood Ratio

1

Plan

§ 6.1 Introduction

§ 6.2 The Decision Rule

§ 6.3 Testing Binomial Data – $H_0: p = p_0$

§ 6.4 Type I and Type II Errors

§ 6.5 A Notion of Optimality: The Generalized Likelihood Ratio

Chapter 6. Hypothesis Testing

§ 6.1 Introduction

§ 6.2 The Decision Rule

§ 6.3 Testing Binomial Data – $H_0: p = p_0$

§ 6.4 Type I and Type II Errors

§ 6.5 A Notion of Optimality: The Generalized Likelihood Ratic

Go over the example first....

Suppose our friend Jory claims that he has some magic power to predict the side of a randomly tossed fair-coin.

Jory claims that he could do more than 1/2 of the time on average.

Let's test Jory to see if we believe his claim.

We made Jory guess a repeatedly tossed coin for 100 times.

He guesses correctly 54 times.

Question:

Does this provide strong evidence that Jory has the proclaimed magic power?

If Jory is guessing randomly, the number of correct guesses would follow a binomial distribution with parameters n=100 and p=1/2.

What is probability that Jory gets 54 or more correct when guessing randomly?

$$\mathbb{P}(X \ge 54) = \sum_{n=54}^{100} {100 \choose n} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^{100-n} = 0.2421$$

What is probability that Jory gets 54 or more correct when guessing randomly?

$$\mathbb{P}(X \ge 54) = \sum_{n=54}^{100} \binom{100}{n} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^{100-n} = 0.2421.$$

11

It is not unlikely to get this many correct guesses due to chance.

Conclusion:

There is No strong evidence that Jory has better than a 1/2 chance of correctly guessing the coin.

What is probability that Jory gets 60 or more correct when guessing randomly?

$$\mathbb{P}(X \ge 60) = \sum_{n=60}^{100} {100 \choose n} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^{100-n} = 0.0284$$

What is probability that Jory gets 60 or more correct when guessing randomly?

$$\mathbb{P}(X \ge 60) = \sum_{n=60}^{100} {100 \choose n} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^{100-n} = 0.0284.$$

13

Either

Jory is purely guessing with probability of success of $\frac{1}{2}$, and we witnessed a very unusual event due to chance.

 \bigcirc

Jory is truly having the magic power to guess the coin.

Conclusion:

We have strong evidence against Red Hypothesis

Or the test is in favor of Green Hypothesis

Either

Jory is purely guessing with probability of success of $\frac{1}{2}$, and we witnessed a very unusual event due to chance.

Or

Jory is truly having the magic power to guess the coin.

Conclusion:

We have strong evidence against Red Hypothesis

Or the test is in favor of Green Hypothesis

Either

Jory is purely guessing with probability of success of $\frac{1}{2}$, and we witnessed a very unusual event due to chance.

Or

Jory is truly having the magic power to guess the coin.

Conclusion:

We have strong evidence against Red Hypothesis

Or the test is in favor of Green Hypothesis

Before testing Jory, could you set up a threshold above which we will believe Jory's super power?

Find smallest m such that

$$\mathbb{P}(X \ge m) = \sum_{n=m}^{100} \binom{100}{n} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^{100-n} \le 0.05$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$\boxed{m = 59}$$

b.c.
$$\mathbb{P}(X \ge 58) = 0.067 \& \mathbb{P}(X \ge 59) = 0.044$$

Before testing Jory, could you set up a threshold above which we will believe Jory's super power?

Find smallest m such that

$$\mathbb{P}(X \ge m) = \sum_{n=m}^{100} {100 \choose n} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^{100-n} \le 0.05$$

$$m = 59$$

b.c.
$$\mathbb{P}(X \ge 58) = 0.067 \& \mathbb{P}(X \ge 59) = 0.044$$

Before testing Jory, could you set up a threshold above which we will believe Jory's super power?

Find smallest *m* such that

$$\mathbb{P}\left(X \ge \mathbf{m}\right) = \sum_{n=m}^{100} \binom{100}{n} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^{100-n} \le 0.05$$

$$\downarrow \downarrow$$

$$\boxed{m = 59}$$

b.c. $\mathbb{P}(X \ge 58) = 0.067 \& \mathbb{P}(X \ge 59) = 0.044$

15

We have just informally conducted a hypothesis test with the null hypothesis

$$H_0: p=\frac{1}{2}$$

against the alternative hypothesis

$$H_1: p > rac{1}{2}$$

% under the significance level $\alpha=0.05$ which is equivalent to either

producing the critical region or m > 59 comparing with the p-value.

► Test statistic: Any function of the observed data whose numerical value dictates whether H_0 is accepted or rejected.

- ▶ Critical region C: The set of values for the test statistic that result in the null hypothesis being rejected.
 - Critical value: The particular point in C that separates the rejection region from the acceptance region.

▶ Level of significance α : The probability that the test statistic lies in the critical region C under H_0 .

► Test statistic: Any function of the observed data whose numerical value dictates whether H_0 is accepted or rejected.

- ightharpoonup Critical region C: The set of values for the test statistic that result in the null hypothesis being rejected.
 - Critical value: The particular point in $\mathcal C$ that separates the rejection region from the acceptance region.

▶ Level of significance α : The probability that the test statistic lies in the critical region C under H_0 .

► Test statistic: Any function of the observed data whose numerical value dictates whether H₀ is accepted or rejected.

- ▶ Critical region C: The set of values for the test statistic that result in the null hypothesis being rejected.
 - Critical value: The particular point in $\cal C$ that separates the rejection region from the acceptance region.

Level of significance α : The probability that the test statistic lies in the critical region C under H_0 .

► Test statistic: Any function of the observed data whose numerical value dictates whether H₀ is accepted or rejected.

- ▶ Critical region C: The set of values for the test statistic that result in the null hypothesis being rejected.
 - Critical value: The particular point in $\mathcal C$ that separates the rejection region from the acceptance region.

▶ Level of significance α : The probability that the test statistic lies in the critical region C under H_0 .

Setup:

- 1. Let $Y_1 = y_1, \dots, Y_n = y_n$ be a random sample of size n from $N(\mu, \sigma^2)$ with σ known.
- 2. Set $\bar{y} = \frac{1}{n}(y_1 + \dots + y_n)$ and $z = \frac{\bar{y} \mu_0}{\sigma / \sqrt{n}}$
- **3.** The level of significance is α .

Test:

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

Setup:

- 1. Let $Y_1 = y_1, \dots, Y_n = y_n$ be a random sample of size n from $N(\mu, \sigma^2)$ with σ known.
- **2.** Set $\bar{y} = \frac{1}{n}(y_1 + \cdots + y_n)$ and $z = \frac{\bar{y} \mu_0}{\sigma/\sqrt{n}}$.
- **3.** The level of significance is α .

Test:

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

Setup:

- 1. Let $Y_1 = y_1, \dots, Y_n = y_n$ be a random sample of size n from $N(\mu, \sigma^2)$ with σ known.
- **2.** Set $\bar{y} = \frac{1}{n}(y_1 + \dots + y_n)$ and $z = \frac{\bar{y} \mu_0}{\sigma/\sqrt{n}}$.
- **3.** The level of significance is α .

Test:

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

Setup:

- 1. Let $Y_1 = y_1, \dots, Y_n = y_n$ be a random sample of size n from $N(\mu, \sigma^2)$ with σ known.
- **2.** Set $\bar{y} = \frac{1}{n}(y_1 + \dots + y_n)$ and $z = \frac{\bar{y} \mu_0}{\sigma/\sqrt{n}}$.
- **3.** The level of significance is α .

Test:

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

Test Normal mean $H_0: \mu = \mu_0$ (σ known)

Setup:

- 1. Let $Y_1 = y_1, \dots, Y_n = y_n$ be a random sample of size n from $N(\mu, \sigma^2)$ with σ known.
- **2.** Set $\bar{y} = \frac{1}{n}(y_1 + \dots + y_n)$ and $z = \frac{\bar{y} \mu_0}{\sigma/\sqrt{n}}$.
- **3.** The level of significance is α .

Test:

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

reject H_0 if $z < -z_{\alpha}$. reject H_0 if $|z| \ge z_{\alpha/2}$. reject H_0 if $z > z_{\alpha}$.

- ► Simple hypothesis: Any hypothesis which specifies the population distribution completely.
- ▶ Composite hypothesis: Any hypothesis which does not specify the population distribution completely.

Conv. We always assume H_0 is simple and H_1 is composite

- ► Simple hypothesis: Any hypothesis which specifies the population distribution completely.
- ► Composite hypothesis: Any hypothesis which does not specify the population distribution completely.

Conv. We always assume H_0 is simple and H_1 is composite

- ➤ Simple hypothesis: Any hypothesis which specifies the population distribution completely.
- ► Composite hypothesis: Any hypothesis which does not specify the population distribution completely.

Conv. We always assume H_0 is simple and H_1 is composite.

Note: Test statistics that yield small P-values should be interpreted as evidence against H_0 .

E.g. Suppose that test statistic z=0.60. Find P-val

 $\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases}$ $\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases}$

 $=2 \times 0.274$

 $\mathbb{P}(Z \ge 0.60) = 0.2743.$ $\mathbb{P}(Z \le 0.60) = 0.7257.$ = 0.5486.

Note: Test statistics that yield small P-values should be interpreted as evidence against H_0 .

Note: Test statistics that yield small P-values should be interpreted as evidence against H_0 .

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

$$\mathbb{P}(|Z| \ge 0.60)$$

$$= 2 \times 0.2743$$

$$(Z \ge 0.60) = 0.2743. \quad \mathbb{P}(Z \le 0.60) = 0.7257. \quad = 0.5486.$$

Note: Test statistics that yield small P-values should be interpreted as evidence against H_0 .

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

$$\mathbb{P}(|Z| \ge 0.60)$$

$$= 2 \times 0.2743$$

$$(Z \ge 0.60) = 0.2743. \quad \mathbb{P}(Z \le 0.60) = 0.7257. \quad = 0.5486.$$

Note: Test statistics that yield small P-values should be interpreted as evidence against H_0 .

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

$$\mathbb{P}(|\mathcal{Z}| \ge 0.60)$$
 = 2×0.2743 . $\mathbb{P}(Z \ge 0.60) = 0.7257$. $= 0.5486$.

Note: Test statistics that yield small P-values should be interpreted as evidence against H_0 .

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

$$\mathbb{P}(|Z| \ge 0.60)$$
= 2 × 0.2743
$$\mathbb{P}(Z \ge 0.60) = 0.2743. \quad \mathbb{P}(Z \le 0.60) = 0.7257. \quad = 0.5486.$$

Note: Test statistics that yield small P-values should be interpreted as evidence against H_0 .

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

$$\mathbb{P}(|Z| \ge 0.60) = 2 \times 0.2743.$$

$$\mathbb{P}(Z \ge 0.60) = 0.2743.$$

$$\mathbb{P}(Z \le 0.60) = 0.7257.$$

$$\mathbb{P}(Z \le 0.60) = 0.7257.$$

Note: Test statistics that yield small P-values should be interpreted as evidence against H_0 .

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

$$\mathbb{P}(|Z| \ge 0.60) = 2 \times 0.274$$

$$\mathbb{P}(Z \ge 0.60) = 0.2743. \quad \mathbb{P}(Z \le 0.60) = 0.7257. \quad = 0.5486.$$

Note: Test statistics that yield small P-values should be interpreted as evidence against H_0 .

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

$$\mathbb{P}(|Z| \ge 0.60)$$
 = 2 × 0.2743
$$\mathbb{P}(Z \ge 0.60) = 0.2743. \qquad \mathbb{P}(Z \le 0.60) = 0.7257. \qquad = 0.5486.$$