Math 362: Mathematical Statistics II

Le Chen le.chen@emory.edu

Emory University Atlanta, GA

Last updated on April 13, 2021

2021 Spring

Chapter 7. Inference Based on The Normal Distribution

7.1 Introduction

§ 7.2 Comparing
$$\frac{\overline{Y} - \mu}{\sigma/\sqrt{n}}$$
 and $\frac{\overline{Y} - \mu}{S/\sqrt{n}}$

§ 7.3 Deriving the Distribution of $\frac{\overline{Y} - \mu}{S/\sqrt{n}}$

- § 7.4 Drawing Inferences About μ
- § 7.5 Drawing Inferences About σ^2

Plan

§ 7.1 Introduction

§ 7.2 Comparing $\frac{\overline{Y} - \mu}{\sigma/\sqrt{n}}$ and $\frac{\overline{Y} - \mu}{S/\sqrt{n}}$

§ 7.3 Deriving the Distribution of $\frac{\overline{Y} - \mu}{S/\sqrt{n}}$

§ 7.4 Drawing Inferences About μ

§ 7.5 Drawing Inferences About σ^2

Chapter 7. Inference Based on The Normal Distribution

§ 7.1 Introduction

§ 7.2 Comparing
$$\frac{\overline{Y}-\mu}{\sigma/\sqrt{n}}$$
 and $\frac{\overline{Y}-\mu}{S/\sqrt{n}}$

§ 7.3 Deriving the Distribution of $\frac{\overline{Y} - \mu}{S/\sqrt{n}}$

§ 7.4 Drawing Inferences About μ

§ 7.5 Drawing Inferences About σ^2

Def. Sampling distributions

E.g. A random sample of size *n* from $N(\mu, \sigma^2)$ with σ^2 known. Sample mean $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \sim N(\mu, \sigma^2/n)$

Aim: Determine distributions for

Def. Sampling distributions

E.g. A random sample of size n from $N(\mu, \sigma^2)$ with σ^2 known. Sample mean $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \sim N(\mu, \sigma^2/n)$

Aim: Determine distributions for

Def. Sampling distributions

Distributions of *functions of random sample* of given size. <u>statistics</u> / estimators

E.g. A random sample of size n from $N(\mu, \sigma^2)$ with σ^2 known. Sample mean $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \sim N(\mu, \sigma^2/n)$

Aim: Determine distributions for

Sample variance
$$S^2 := \frac{1}{n-1} \sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2$$
 Chi square distr.
 $T := \frac{\overline{Y} - \mu}{S/\sqrt{n}}$ Student t distr.
 $\frac{S_1^2}{\sigma_1^2} / \frac{S_2^2}{\sigma_2^2}$ F distr.

Thm 7.3.1. Let $U = \sum_{i=1}^{m} Z_j^2$, where Z_j are independent N(0, 1) normal r.v.s. Then $U \sim \text{Gamma(shape}=m/2, \text{ rate}=1/2).$

namely

$$f_U(u) = \frac{1}{2^{m/2}\Gamma(m/2)} u^{\frac{m}{2}-1} e^{-u/2}, \qquad u \ge 0.$$

Def 7.3.1. *U* in Thm 7.3.1 is called **chi square distribution** with m dgs of freedom.

Thm 7.3.1. Let $U = \sum_{i=1}^{m} Z_j^2$, where Z_j are independent N(0, 1) normal r.v.s. Then $U \sim \text{Gamma}(\text{shape}=m/2, \text{rate}=1/2).$

namely,

$$f_U(u) = \frac{1}{2^{m/2}\Gamma(m/2)} u^{\frac{m}{2}-1} e^{-u/2}, \qquad u \ge 0.$$

Def 7.3.1. U in Thm 7.3.1 is called **chi square distribution** with m dgs of freedom.

$$\begin{aligned} \mathbf{F}_{Z^2}(u) &= \mathbb{P}\left(Z^2 \le u\right) \\ &= \mathbb{P}\left(-\sqrt{u} \le Z \le \sqrt{u}\right) \\ &= 2\mathbb{P}(0 \le Z \le \sqrt{u}) \\ &= \frac{2}{\sqrt{2\pi}} \int_0^{2\pi} e^{-z^2/2} \mathrm{d}z \end{aligned}$$

Differentiating both sides of the above eq. in order to obtain the pdf:

$$f_{Z^2}(u) = \frac{\mathrm{d}}{\mathrm{d}u} F_{Z^2}(u)$$

= $\frac{2}{\sqrt{2\pi}} \frac{1}{2\sqrt{u}} e^{-u/2}$
= $\frac{1}{\sqrt{2}\Gamma(1/2)} u^{(1/2)-1} e^{-u/2}$

which is the pdf of a gamma distribution with $r = \lambda = 1/2$.

$$\begin{aligned} \mathsf{F}_{Z^2}(u) &= \mathbb{P}\left(Z^2 \le u\right) \\ &= \mathbb{P}\left(-\sqrt{u} \le Z \le \sqrt{u}\right) \\ &= 2\mathbb{P}(0 \le Z \le \sqrt{u}) \\ &= \frac{2}{\sqrt{2\pi}} \int_0^{2\pi} e^{-z^2/2} \mathrm{d}z \end{aligned}$$

Differentiating both sides of the above eq. in order to obtain the pdf:

$$f_{Z^2}(u) = \frac{\mathrm{d}}{\mathrm{d}u} F_{Z^2}(u) = \frac{2}{\sqrt{2\pi}} \frac{1}{2\sqrt{u}} e^{-u/2} = \frac{1}{\sqrt{2\Gamma(1/2)}} u^{(1/2)-1} e^{-u/2},$$

which is the pdf of a gamma distribution with $r = \lambda = 1/2$.

$$\begin{aligned} F_{Z^2}(u) &= \mathbb{P}\left(Z^2 \le u\right) \\ &= \mathbb{P}\left(-\sqrt{u} \le Z \le \sqrt{u}\right) \\ &= 2\mathbb{P}(0 \le Z \le \sqrt{u}) \\ &= \frac{2}{\sqrt{2\pi}} \int_0^{2\pi} e^{-z^2/2} \mathrm{d}z \end{aligned}$$

Differentiating both sides of the above eq. in order to obtain the pdf:

$$f_{Z^2}(u) = \frac{\mathrm{d}}{\mathrm{d}u} F_{Z^2}(u) = \frac{2}{\sqrt{2\pi}} \frac{1}{2\sqrt{u}} e^{-u/2} = \frac{1}{\sqrt{2\Gamma(1/2)}} u^{(1/2)-1} e^{-u/2},$$

which is the pdf of a gamma distribution with $r = \lambda = 1/2$.

$$\begin{aligned} \mathsf{F}_{Z^2}(u) &= \mathbb{P}\left(Z^2 \le u\right) \\ &= \mathbb{P}\left(-\sqrt{u} \le Z \le \sqrt{u}\right) \\ &= 2\mathbb{P}(0 \le Z \le \sqrt{u}) \\ &= \frac{2}{\sqrt{2\pi}} \int_0^{2\pi} e^{-z^2/2} \mathrm{d}z \end{aligned}$$

Differentiating both sides of the above eq. in order to obtain the pdf:

$$f_{Z^2}(u) = \frac{\mathrm{d}}{\mathrm{d}u} F_{Z^2}(u)$$

= $\frac{2}{\sqrt{2\pi}} \frac{1}{2\sqrt{u}} e^{-u/2}$
= $\frac{1}{\sqrt{2\Gamma(1/2)}} u^{(1/2)-1} e^{-u/2}$

which is the pdf of a gamma distribution with $r = \lambda = 1/2$.

Chi Square Table

df	.01	.025	.05	.10	.90	.95	.975	.99
	0.000157	0.000982	0.00393	0.0158	2.706	3.841	5.024	6.635
	0.0201	0.0506	0.103		4.605	5.991	7.378	9.210
			0.352	0.584	6.251		9.348	11.345
	0.297	0.484		1.064		9.488	11.143	13.277
	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.086
	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812
	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475
	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090
	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666
	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209
	3.053	3.816		5.578	17.275	19.675	21.920	24.725
		4.404	5.226	6.304	18.549	21.026		26.217

- |3| > pchisq(15.086, df = 5)
- 4 [1] 0.9899989

4 [1] 15.08627

Chi Square Table

df	.01	.025	.05	.10	.90	.95	.975	.99	
	0.000157	0.000982	0.00393	0.0158	2.706	3.841	5.024	6.635	
	0.0201	0.0506	0.103		4.605	5.991	7.378	9.210	
			0.352	0.584	6.251		9.348	11.345	
	0.297	0.484		1.064		9.488	11.143	13.277	
	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.086	
	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	
	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	
	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	
	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	
	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	
	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	
		4.404	5.226	6.304	18.549	21.026		26.217	

- 1 > scipy.stats.chi2.cdf(1.145, 5)
 2 [1]: 0.04995622155207728
 3 > scipy.stats.chi2.cdf(15.086, 5)
 4 [1]: 0.9899988752378142
- scipy.stats.chi2.ppf(0.05, 5)
 [1]: 1.1454762260617692
 scipy.stats.chi2.ppf(0.99, 5)
 [1]: 15.08627246938899

(b)
$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2 \sim \text{Chi Square}(n-1).$$

Proof. We will prove the case n = 2.

$$\overline{Y} = rac{Y_1 + Y_2}{2}, \qquad Y_1 - \overline{Y} = rac{Y_1 - Y_2}{2}, \qquad Y_2 - \overline{Y} = rac{Y_2 - Y_1}{2}$$
 $S^2 = \dots = rac{1}{2} (Y_1 - Y_2)^2$

$$\mathbb{E}[(Y_1 + Y_2)(Y_1 - Y_2)] = \mathbb{E}[Y_1 + Y_2]\mathbb{E}[Y_1 - Y_2]$$

(b)
$$\frac{(n-1)S^2}{\sigma^2} = \left(\frac{Y_1 - Y_2}{\sqrt{2\sigma}}\right)^2$$
 and $\frac{Y_1 - Y_2}{\sqrt{2\sigma}} \sim N(0, 1)$.

(b)
$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2 \sim \text{Chi Square}(n-1).$$

Proof. We will prove the case n = 2.

$$\overline{Y} = rac{Y_1 + Y_2}{2}, \qquad Y_1 - \overline{Y} = rac{Y_1 - Y_2}{2}, \qquad Y_2 - \overline{Y} = rac{Y_2 - Y_1}{2}$$
 $S^2 = \dots = rac{1}{2} (Y_1 - Y_2)^2$

$$\mathbb{E}[(Y_1 + Y_2)(Y_1 - Y_2)] = \mathbb{E}[Y_1 + Y_2]\mathbb{E}[Y_1 - Y_2]$$

(b)
$$\frac{(n-1)S^2}{\sigma^2} = \left(\frac{Y_1 - Y_2}{\sqrt{2\sigma}}\right)^2$$
 and $\frac{Y_1 - Y_2}{\sqrt{2\sigma}} \sim N(0, 1)$.

(b)
$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2 \sim \text{Chi Square}(n-1).$$

Proof. We will prove the case n = 2.

$$\overline{Y} = rac{Y_1 + Y_2}{2}, \qquad Y_1 - \overline{Y} = rac{Y_1 - Y_2}{2}, \qquad Y_2 - \overline{Y} = rac{Y_2 - Y_1}{2}$$
 $S^2 = \dots = rac{1}{2} (Y_1 - Y_2)^2$

$$\mathbb{E}[(Y_1 + Y_2)(Y_1 - Y_2)] = \mathbb{E}[Y_1 + Y_2]\mathbb{E}[Y_1 - Y_2]$$

(b)
$$\frac{(n-1)S^2}{\sigma^2} = \left(\frac{Y_1 - Y_2}{\sqrt{2\sigma}}\right)^2$$
 and $\frac{Y_1 - Y_2}{\sqrt{2\sigma}} \sim N(0, 1)$...

(b)
$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2 \sim \text{Chi Square}(n-1).$$

Proof. We will prove the case n = 2.

$$\overline{Y} = \frac{Y_1 + Y_2}{2}, \qquad Y_1 - \overline{Y} = \frac{Y_1 - Y_2}{2}, \qquad Y_2 - \overline{Y} = \frac{Y_2 - Y_1}{2}$$
$$S^2 = \dots = \frac{1}{2} (Y_1 - Y_2)^2$$

$$\mathbb{E}[(Y_1 + Y_2)(Y_1 - Y_2)] = \mathbb{E}[Y_1 + Y_2]\mathbb{E}[Y_1 - Y_2]$$

(b)
$$\frac{(n-1)S^2}{\sigma^2} = \left(\frac{Y_1 - Y_2}{\sqrt{2\sigma}}\right)^2$$
 and $\frac{Y_1 - Y_2}{\sqrt{2\sigma}} \sim N(0, 1)$.

(b)
$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2 \sim \text{Chi Square}(n-1).$$

Proof. We will prove the case n = 2.

$$\overline{Y} = \frac{Y_1 + Y_2}{2}, \qquad Y_1 - \overline{Y} = \frac{Y_1 - Y_2}{2}, \qquad Y_2 - \overline{Y} = \frac{Y_2 - Y_1}{2}$$
$$S^2 = \dots = \frac{1}{2} (Y_1 - Y_2)^2$$

(a) It is equivalanet to show $Y_1 + Y_2 \perp Y_1 - Y_2$. Since they are normal, it suffices to show that

$$\mathbb{E}[(\mathbf{Y}_1 + \mathbf{Y}_2)(\mathbf{Y}_1 - \mathbf{Y}_2)] = \mathbb{E}[\mathbf{Y}_1 + \mathbf{Y}_2]\mathbb{E}[\mathbf{Y}_1 - \mathbf{Y}_2]$$

(b) $\frac{(n-1)S^2}{\sigma^2} = \left(\frac{Y_1 - Y_2}{\sqrt{2\sigma}}\right)^2$ and $\frac{Y_1 - Y_2}{\sqrt{2\sigma}} \sim N(0, 1)$

(b)
$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2 \sim \text{Chi Square}(n-1).$$

Proof. We will prove the case n = 2.

$$\overline{Y} = \frac{Y_1 + Y_2}{2}, \qquad Y_1 - \overline{Y} = \frac{Y_1 - Y_2}{2}, \qquad Y_2 - \overline{Y} = \frac{Y_2 - Y_1}{2}$$
$$S^2 = \dots = \frac{1}{2} (Y_1 - Y_2)^2$$

(a) It is equivalanet to show $Y_1 + Y_2 \perp Y_1 - Y_2$. Since they are normal, it suffices to show that

$$\mathbb{E}[(\mathsf{Y}_1 + \mathsf{Y}_2)(\mathsf{Y}_1 - \mathsf{Y}_2)] = \mathbb{E}[\mathsf{Y}_1 + \mathsf{Y}_2]\mathbb{E}[\mathsf{Y}_1 - \mathsf{Y}_2]$$

(b)
$$\frac{(n-1)S^2}{\sigma^2} = \left(\frac{Y_1 - Y_2}{\sqrt{2}\sigma}\right)^2$$
 and $\frac{Y_1 - Y_2}{\sqrt{2}\sigma} \sim N(0, 1) \dots$

$$F := \frac{V/m}{U/n}$$

follows the **(Snedecor's) F distribution** with m and n degrees of freedom.

Thm 7.3.3. Let $F_{m,n} = \frac{V/m}{U/n}$ be an F r.v. with m and n degrees of freedom. Then

$$f_{F_{m,n}}(w) = \frac{\Gamma\left(\frac{m+n}{2}\right) m^{m/2} n^{n/2}}{\Gamma(m/2)\Gamma(n/2)} \times \frac{w^{m/2-1}}{(n+mw)^{(m+n)/2}}, \quad w \ge 0$$

Equivalently,

$$f_{F_{m,n}}(w) = B(m/2, n/2)^{-1} \left(\frac{m}{n}\right)^{\frac{m}{2}} w^{\frac{m}{2}-1} \left(1 + \frac{m}{n}w\right)^{-\frac{m+n}{2}}$$
$$B(a, b) = \Gamma(a)\Gamma(b)/\Gamma(a+b).$$

$$F := \frac{V/m}{U/n}$$

follows the **(Snedecor's) F distribution** with m and n degrees of freedom.

Thm 7.3.3. Let $F_{m,n} = \frac{V/m}{U/n}$ be an F r.v. with m and n degrees of freedom. Then

$$f_{F_{m,n}}(w) = \frac{\Gamma\left(\frac{m+n}{2}\right) m^{m/2} n^{n/2}}{\Gamma(m/2) \Gamma(n/2)} \times \frac{w^{m/2-1}}{(n+mw)^{(m+n)/2}}, \quad w \ge 0$$

Equivalently,

$$f_{F_{m,n}}(w) = B(m/2, n/2)^{-1} \left(\frac{m}{n}\right)^{\frac{m}{2}} w^{\frac{m}{2}-1} \left(1 + \frac{m}{n}w\right)^{-\frac{m+n}{2}}$$
$$B(a, b) = \Gamma(a)\Gamma(b)/\Gamma(a+b).$$

$$F := \frac{V/m}{U/n}$$

follows the **(Snedecor's) F distribution** with m and n degrees of freedom.

Thm 7.3.3. Let $F_{m,n} = \frac{V/m}{U/n}$ be an F r.v. with m and n degrees of freedom. Then

$$f_{F_{m,n}}(w) = \frac{\Gamma\left(\frac{m+n}{2}\right) m^{m/2} n^{n/2}}{\Gamma(m/2) \Gamma(n/2)} \times \frac{w^{m/2-1}}{(n+mw)^{(m+n)/2}}, \quad w \ge 0$$

Equivalently,

$$f_{F_{m,n}}(w) = B(m/2, n/2)^{-1} \left(\frac{m}{n}\right)^{\frac{m}{2}} w^{\frac{m}{2}-1} \left(1 + \frac{m}{n}w\right)^{-\frac{m+n}{2}}$$

where $B(a, b) = \Gamma(a)\Gamma(b)/\Gamma(a + b)$

$$F := \frac{V/m}{U/n}$$

follows the **(Snedecor's) F distribution** with m and n degrees of freedom.

Thm 7.3.3. Let $F_{m,n} = \frac{V/m}{U/n}$ be an F r.v. with m and n degrees of freedom. Then

$$f_{F_{m,n}}(w) = \frac{\Gamma\left(\frac{m+n}{2}\right)m^{m/2}n^{n/2}}{\Gamma(m/2)\Gamma(n/2)} \times \frac{w^{m/2-1}}{(n+mw)^{(m+n)/2}}, \quad w \ge 0$$

Equivalently,

where

$$f_{F_{m,n}}(w) = B(m/2, n/2)^{-1} \left(\frac{m}{n}\right)^{\frac{m}{2}} w^{\frac{m}{2}-1} \left(1 + \frac{m}{n}w\right)^{-\frac{m+n}{2}} B(a, b) = \Gamma(a)\Gamma(b)/\Gamma(a+b).$$

Thm 3.8.4 Let X and Y be independent continuous random variables, with pdf $f_X(x)$ and $f_Y(y)$, respectively.

Assume that X is zero for at most a set of isolated points Then W = V/X follows a distribution with pdf:

$$f_W(w) = \int_{-\infty}^{\infty} |x| f_X(x) f_Y(wx) \mathrm{d}x.$$

$$f_Y(y) = rac{1}{|a|} f_X\left(rac{y-b}{a}
ight).$$

Thm 3.8.4 Let X and Y be independent continuous random variables, with pdf $f_X(x)$ and $f_Y(y)$, respectively.

Assume that X is zero for at most a set of isolated points. Then W = Y/X follows a distribution with pdf:

$$f_W(w) = \int_{-\infty}^{\infty} |x| f_X(x) f_Y(wx) \mathrm{d}x.$$

$$f_Y(y) = rac{1}{|a|} f_X\left(rac{y-b}{a}
ight).$$

Thm 3.8.4 Let X and Y be independent continuous random variables, with pdf $f_X(x)$ and $f_Y(y)$, respectively.

Assume that X is zero for at most a set of isolated points.

Then W = Y/X follows a distribution with pdf:

$$f_W(w) = \int_{-\infty}^{\infty} |x| f_X(x) f_Y(wx) \mathrm{d}x.$$

$$f_Y(y) = rac{1}{|a|} f_X\left(rac{y-b}{a}
ight).$$

Thm 3.8.4 Let X and Y be independent continuous random variables, with pdf $f_X(x)$ and $f_Y(y)$, respectively.

Assume that X is zero for at most a set of isolated points.

Then W = Y/X follows a distribution with pdf:

$$f_W(w) = \int_{-\infty}^{\infty} |x| f_X(x) f_Y(wx) \mathrm{d}x.$$

$$f_{Y}(y) = rac{1}{|a|} f_{X}\left(rac{y-b}{a}
ight).$$

Thm 3.8.4 Let X and Y be independent continuous random variables, with pdf $f_X(x)$ and $f_Y(y)$, respectively.

Assume that X is zero for at most a set of isolated points.

Then W = Y/X follows a distribution with pdf:

$$f_W(w) = \int_{-\infty}^{\infty} |x| f_X(x) f_Y(wx) \mathrm{d}x.$$

Thm 3.8.2 Suppose X is a continuous random variable and $a \neq 0$.

Then Y = aX + b follows a distribution with pdf:

$$f_Y(y) = rac{1}{|a|} f_X\left(rac{y-b}{a}
ight).$$

Thm 3.8.4 Let X and Y be independent continuous random variables, with pdf $f_X(x)$ and $f_Y(y)$, respectively.

Assume that X is zero for at most a set of isolated points.

Then W = Y/X follows a distribution with pdf:

$$f_W(w) = \int_{-\infty}^{\infty} |x| f_X(x) f_Y(wx) \mathrm{d}x.$$

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right).$$

Proof. Let us first find the pdf for W := V/U. By Theorem 7.3.1,

$$f_V(\mathbf{v}) = \frac{1}{2^{m/2}\Gamma(m/2)} \mathbf{v}^{(m/2)-1} \mathbf{e}^{-\mathbf{v}/2},$$

$$f_U(u) = \frac{1}{2^{n/2}\Gamma(n/2)} \mathbf{u}^{(n/2)-1} \mathbf{e}^{-\mathbf{u}/2}.$$

Then by Theorem 3.8.4, we see that the pdf of W is

$$\begin{split} f_{W}(w) &= \int_{-\infty}^{\infty} |u| f_{U}(u) f_{V}(uw) \mathrm{d}u \\ &= \int_{0}^{\infty} u \frac{1}{2^{n/2} \Gamma(n/2)} u^{(n/2)-1} e^{-u/2} \frac{1}{2^{m/2} \Gamma(m/2)} (uw)^{(m/2)-1} e^{-uw/2} \mathrm{d}u \\ &= \frac{1}{2^{(n+m)/2} \Gamma(n/2) \Gamma(m/2)} w^{(m/2)-1} \int_{0}^{\infty} u^{\frac{n+m}{2}-1} e^{-\frac{1+w}{2}u} \mathrm{d}u \end{split}$$

Proof. Let us first find the pdf for W := V/U. By Theorem 7.3.1,

$$f_{V}(\mathbf{v}) = \frac{1}{2^{m/2}\Gamma(m/2)} \mathbf{v}^{(m/2)-1} \mathbf{e}^{-\mathbf{v}/2},$$

$$f_{U}(u) = \frac{1}{2^{n/2}\Gamma(n/2)} \mathbf{u}^{(n/2)-1} \mathbf{e}^{-\mathbf{u}/2}.$$

Then by Theorem 3.8.4, we see that the pdf of W is

$$\begin{split} f_{\mathcal{W}}(\boldsymbol{w}) &= \int_{-\infty}^{\infty} |\boldsymbol{u}| f_{\mathcal{U}}(\boldsymbol{u}) f_{\mathcal{V}}(\boldsymbol{u}\boldsymbol{w}) \mathrm{d}\boldsymbol{u} \\ &= \int_{0}^{\infty} \boldsymbol{u} \frac{1}{2^{n/2} \Gamma(n/2)} \boldsymbol{u}^{(n/2)-1} \boldsymbol{e}^{-\boldsymbol{u}/2} \frac{1}{2^{m/2} \Gamma(m/2)} (\boldsymbol{u}\boldsymbol{w})^{(m/2)-1} \boldsymbol{e}^{-\boldsymbol{u}\boldsymbol{w}/2} \mathrm{d}\boldsymbol{u} \\ &= \frac{1}{2^{(n+m)/2} \Gamma(n/2) \Gamma(m/2)} \boldsymbol{w}^{(m/2)-1} \int_{0}^{\infty} \boldsymbol{u}^{\frac{n+m}{2}-1} \boldsymbol{e}^{-\frac{1+w}{2}\boldsymbol{u}} \mathrm{d}\boldsymbol{u} \end{split}$$

Then by the change of variables, $y = \frac{1+w}{2}u$, we see that

$$f_{W}(w) = \frac{1}{2^{(n+m)/2}\Gamma(n/2)\Gamma(m/2)} w^{(m/2)-1} \left(\frac{2}{1+w}\right)^{\frac{n+m}{2}} \int_{0}^{\infty} y^{\frac{n+m}{2}-1} e^{-y} dy$$
$$= \frac{1}{2^{(n+m)/2}\Gamma(n/2)\Gamma(m/2)} w^{(m/2)-1} \left(\frac{2}{1+w}\right)^{\frac{n+m}{2}} \Gamma\left(\frac{n+m}{2}\right)$$

where the last equality is due to the definition of the Gamma function.

Finally, by Theorem 3.8.2, we see that $F = \frac{V/m}{U/n} = \frac{n}{m}W$ follows a distribution with pdf

$$f_{F}(y) = \frac{m}{n} f_{W}\left(\frac{m}{n}y\right)$$
$$= \frac{m}{n} \frac{1}{2^{(n+m)/2}\Gamma(n/2)\Gamma(m/2)} \left(\frac{m}{n}y\right)^{(m/2)-1} \left(\frac{2}{1+\frac{m}{n}y}\right)^{\frac{n+m}{2}} \Gamma\left(\frac{n+m}{2}\right)$$
$$= \cdots \qquad y \ge 0.$$

Then by the change of variables, $y = \frac{1+w}{2}u$, we see that

$$f_{W}(w) = \frac{1}{2^{(n+m)/2}\Gamma(n/2)\Gamma(m/2)} w^{(m/2)-1} \left(\frac{2}{1+w}\right)^{\frac{n+m}{2}} \int_{0}^{\infty} y^{\frac{n+m}{2}-1} e^{-y} dy$$
$$= \frac{1}{2^{(n+m)/2}\Gamma(n/2)\Gamma(m/2)} w^{(m/2)-1} \left(\frac{2}{1+w}\right)^{\frac{n+m}{2}} \Gamma\left(\frac{n+m}{2}\right)$$

where the last equality is due to the definition of the Gamma function.

Finally, by Theorem 3.8.2, we see that $F=\frac{V/m}{U/n}=\frac{n}{m}W$ follows a distribution with pdf

$$f_{F}(y) = \frac{m}{n} f_{W}\left(\frac{m}{n}y\right)$$
$$= \frac{m}{n} \frac{1}{2^{(n+m)/2} \Gamma(n/2) \Gamma(m/2)} \left(\frac{m}{n}y\right)^{(m/2)-1} \left(\frac{2}{1+\frac{m}{n}y}\right)^{\frac{n+m}{2}} \Gamma\left(\frac{n+m}{2}\right)$$
$$= \cdots \qquad y \ge 0.$$

- 1 # Draw F density
- 2 x = seq(0,5,0.01)
- 3 pdf = cbind(df(x, df1 = 1, df2 = 1)),
- 4 df(x, df1 = 2, df2 = 1),
- 5 df(x, df1 = 5, df2 = 2),
- df(x, df1 = 10, df2 = 1),
- 7 df(x, df1 = 100, df2 = 100))
- 8 matplot(x,pdf, type = "l")
- 9 title("F with various dgrs of freedom")

F- Table

$$\mathbb{P}(F_{3,5} \le 5.41) = 0.95 \iff F_{0.95,3,5} = 5.41$$

 Def 7.3.3. Suppose $Z \sim N(0, 1)$, $U \sim \text{Chi Square}(n)$, and $Z \perp U$. Then

$$T_n = \frac{Z}{\sqrt{U/n}}$$

follows the **Student's t-distribution** of *n* degrees of freedom.

Remark $T_n^2 \sim F$ -distribution with 1 and *n* degrees of freedom.

Thm 7.3.4. The pdf of the Student t of degree n is

$$f_{T_n}(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \times \left(1 + \frac{t^2}{n}\right)^{-\frac{n+2}{2}}, \quad t \in \mathbb{R}$$

Def 7.3.3. Suppose $Z \sim N(0,1)$, $U \sim \text{Chi Square}(n)$, and $Z \perp U$. Then

$$T_n = \frac{Z}{\sqrt{U/n}}$$

follows the **Student's t-distribution** of n degrees of freedom.

Remark $T_n^2 \sim F$ -distribution with 1 and *n* degrees of freedom.

Thm 7.3.4. The pdf of the Student t of degree n is

$$f_{T_n}(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \times \left(1 + \frac{t^2}{n}\right)^{-\frac{n+2}{2}}, \quad t \in \mathbb{R}$$

Def 7.3.3. Suppose $Z \sim N(0,1)$, $U \sim \text{Chi Square}(n)$, and $Z \perp U$. Then

$$T_n = \frac{Z}{\sqrt{U/n}}$$

follows the **Student's t-distribution** of *n* degrees of freedom.

Remark $T_n^2 \sim F$ -distribution with 1 and *n* degrees of freedom.

Thm 7.3.4. The pdf of the Student t of degree n is

$$f_{\mathcal{T}_n}(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \times \left(1 + \frac{t^2}{n}\right)^{-\frac{n+2}{2}}, \quad t \in \mathbb{R}$$

$$f_{T_n^2}(t) = \frac{n^{\frac{n}{2}}\Gamma(\frac{n+1}{2})}{\Gamma(\frac{1}{2})\Gamma(\frac{n}{2})}t^{-\frac{1}{2}}\frac{1}{(n+t)^{\frac{n+1}{2}}}, \quad t > 0.$$

Therefore,

$$F_{T_n}(t) = \mathbb{P}(T_n \le t) = \mathbb{P}(-\infty < T_n \le 0) + \mathbb{P}(0 \le T_n \le t).$$

The term $\mathbb{P}(-\infty < T_n \leq 0)$ is a constant which will disappear upon differentiation.

$$\{T_n^2 \le t^2\} = \{-t \le T_n \le t\} = \{-t \le T_n \le 0\} \cup \{0 \le T_n \le t\}$$
$$= \{-t\sqrt{U/n} \le Z \le 0\} \cup \{0 \le Z \le t\sqrt{U/n}\}$$

$$f_{T_n^2}(t) = \frac{n^{\frac{n}{2}}\Gamma(\frac{n+1}{2})}{\Gamma(\frac{1}{2})\Gamma(\frac{n}{2})}t^{-\frac{1}{2}}\frac{1}{(n+t)^{\frac{n+1}{2}}}, \quad t > 0.$$

Therefore,

$$F_{T_n}(t) = \mathbb{P}(T_n \le t) = \mathbb{P}(-\infty < T_n \le 0) + \mathbb{P}(0 \le T_n \le t).$$

The term $\mathbb{P}(-\infty < T_n \leq 0)$ is a constant which will disappear upon differentiation.

$$\{T_n^2 \le t^2\} = \{-t \le T_n \le t\} = \{-t \le T_n \le 0\} \cup \{0 \le T_n \le t\}$$
$$= \{-t\sqrt{U/n} \le Z \le 0\} \cup \{0 \le Z \le t\sqrt{U/n}\}$$

$$f_{T_n^2}(t) = \frac{n^{\frac{n}{2}}\Gamma(\frac{n+1}{2})}{\Gamma(\frac{1}{2})\Gamma(\frac{n}{2})}t^{-\frac{1}{2}}\frac{1}{(n+t)^{\frac{n+1}{2}}}, \quad t > 0.$$

Therefore,

$$F_{T_n}(t) = \mathbb{P}(T_n \le t) = \mathbb{P}(-\infty < T_n \le 0) + \mathbb{P}(0 \le T_n \le t).$$

The term $\mathbb{P}(-\infty < T_n \leq 0)$ is a constant which will disappear upon differentiation.

$$\{T_n^2 \le t^2\} = \{-t \le T_n \le t\} = \{-t \le T_n \le 0\} \cup \{0 \le T_n \le t\}$$
$$= \{-t\sqrt{U/n} \le Z \le 0\} \cup \{0 \le Z \le t\sqrt{U/n}\}$$

$$f_{T_n^2}(t) = \frac{n^{\frac{n}{2}}\Gamma(\frac{n+1}{2})}{\Gamma(\frac{1}{2})\Gamma(\frac{n}{2})}t^{-\frac{1}{2}}\frac{1}{(n+t)^{\frac{n+1}{2}}}, \quad t > 0.$$

Therefore,

$$F_{T_n}(t) = \mathbb{P}(T_n \le t) = \mathbb{P}(-\infty < T_n \le 0) + \mathbb{P}(0 \le T_n \le t).$$

The term $\mathbb{P}(-\infty < T_n \leq 0)$ is a constant which will disappear upon differentiation.

$$\{T_n^2 \le t^2\} = \{-t \le T_n \le t\} = \{-t \le T_n \le 0\} \cup \{0 \le T_n \le t\}$$
$$= \{-t\sqrt{U/n} \le Z \le 0\} \cup \{0 \le Z \le t\sqrt{U/n}\}$$

$$\mathbb{P}\left(-t\sqrt{U/n} \le Z \le 0\right) = \mathbb{P}\left(0 \le Z \le t\sqrt{U/n}\right)$$

Therefore

$$\mathbb{P}\left(T_n^2 \le t^2\right) = \mathbb{P}\left(-t\sqrt{U/n} \le Z \le 0\right) + \mathbb{P}\left(0 \le Z \le t\sqrt{U/n}\right)$$
$$= 2\mathbb{P}\left(0 \le Z \le t\sqrt{U/n}\right)$$
$$= 2\mathbb{P}(0 \le T_n \le t).$$

Hence.

$$F_{T_n}(t) = const. + \frac{1}{2}\mathbb{P}\left(T_n^2 \le t^2\right)$$

Finally, differentiation gives the density:

$$f_{T_n}(t) = \frac{d}{dt}F_{T_n}(t) = \frac{d}{dt}\frac{1}{2}F_{T_n^2}(t^2) = t \cdot f_{T_n^2}(t^2) = \cdots$$

$$\mathbb{P}\left(-t\sqrt{U/n} \le Z \le 0\right) = \mathbb{P}\left(0 \le Z \le t\sqrt{U/n}\right)$$

Therefore,

$$\mathbb{P}\left(T_n^2 \le t^2\right) = \mathbb{P}\left(-t\sqrt{U/n} \le Z \le 0\right) + \mathbb{P}\left(0 \le Z \le t\sqrt{U/n}\right)$$
$$= 2\mathbb{P}\left(0 \le Z \le t\sqrt{U/n}\right)$$
$$= 2\mathbb{P}(0 \le T_n \le t).$$

Hence.

$$F_{T_n}(t) = const. + \frac{1}{2}\mathbb{P}\left(T_n^2 \le t^2\right)$$

Finally, differentiation gives the density:

$$f_{T_n}(t) = \frac{d}{dt}F_{T_n}(t) = \frac{d}{dt}\frac{1}{2}F_{T_n^2}(t^2) = t \cdot f_{T_n^2}(t^2) = \cdots$$

$$\mathbb{P}\left(-t\sqrt{U/n} \le Z \le 0\right) = \mathbb{P}\left(0 \le Z \le t\sqrt{U/n}\right)$$

Therefore,

$$\mathbb{P}\left(T_n^2 \le t^2\right) = \mathbb{P}\left(-t\sqrt{U/n} \le Z \le 0\right) + \mathbb{P}\left(0 \le Z \le t\sqrt{U/n}\right)$$
$$= 2\mathbb{P}\left(0 \le Z \le t\sqrt{U/n}\right)$$
$$= 2\mathbb{P}(0 \le T_n \le t).$$

Hence,

$$F_{T_n}(t) = const. + \frac{1}{2}\mathbb{P}\left(T_n^2 \leq t^2\right)$$

Finally, differentiation gives the density:

$$f_{T_n}(t) = \frac{d}{dt} F_{T_n}(t) = \frac{d}{dt} \frac{1}{2} F_{T_n^2}(t^2) = t \cdot f_{T_n^2}(t^2) = \cdots .$$

$$\mathbb{P}\left(-t\sqrt{U/n} \le Z \le 0\right) = \mathbb{P}\left(0 \le Z \le t\sqrt{U/n}\right)$$

Therefore,

$$\mathbb{P}\left(T_n^2 \le t^2\right) = \mathbb{P}\left(-t\sqrt{U/n} \le Z \le 0\right) + \mathbb{P}\left(0 \le Z \le t\sqrt{U/n}\right)$$
$$= 2\mathbb{P}\left(0 \le Z \le t\sqrt{U/n}\right)$$
$$= 2\mathbb{P}(0 \le T_n \le t).$$

Hence,

$$F_{T_n}(t) = const. + \frac{1}{2}\mathbb{P}\left(T_n^2 \le t^2\right)$$

Finally, differentiation gives the density:

$$f_{\mathcal{T}_n}(t) = \frac{d}{dt} \mathcal{F}_{\mathcal{T}_n}(t) = \frac{d}{dt} \frac{1}{2} \mathcal{F}_{\mathcal{T}_n^2}(t^2) = t \cdot f_{\mathcal{T}_n^2}(t^2) = \cdots$$

37

1 # Draw Student t-density
2
$$x=seq(-5,5,0.01)$$

3 pdf= cbind(dt(x, df = 1),
4 dt(x, df = 2),
5 dt(x, df = 5),
6 dt(x, df = 100))
7 matplot(x,pdf, type = "1")
8 title("Student's t-distributions")

t Table

	.20		.10	.05	.025	.01	.005
	1.376	1.963	3.078	6.3138	12.706	31.821	63.657
	1.061	1.386	1.886	2.9200	4.3027	6.965	9.9248
	0.978	1.250	1.638	2.3534	3.1825	4.541	5.8409
	0.941	1.190	1.533	2.1318	2.7764	3.747	4.6041
	0.920	1.156	1.476	2.0150	2.5706	3.365	4.0321
	0.906	1.134	1.440	1.9432	2.4469	3.143	3.7074
	0.854		1.310	1.6973	2.0423	2.457	2.7500
~	0.84	1.04	1.28	1.64	1.96	2.33	2.58

 $\mathbb{P}(T_3 > 4.541) = 0.01 \quad \Longleftrightarrow \quad t_{0.01,3} = 4.541$

- | > 1-pt(4.541, df = 3)
- 2 [1] 0.009998238

- $\begin{array}{ll} 1 &> alpha = 0.01 \\ 2 &> qt(1-alpha, df = 3) \\ 3 & [1] \ 4.540703 \end{array}$
- | > 1 scipy.stats.t.cdf(4.541, 3)2 [1] 0.00999823806449407
- > scipy.stats.t.ppf(1-0.01, 3) [1] 4.540702858698419

$$T_{n-1} = rac{\overline{Y} - \mu}{S/\sqrt{n}} \sim ext{Student's t of degree } n-1.$$

Proof.

By Def. 7.3.3 ...

$$T_{n-1} = rac{\overline{Y} - \mu}{S/\sqrt{n}} \sim ext{Student's t of degree } n-1.$$

Proof.

$$\frac{\overline{Y} - \mu}{S/\sqrt{n}} = \frac{\frac{\overline{Y} - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}}}$$

$$\frac{Y-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$$
 \perp $\frac{(n-1)S^2}{\sigma^2} \sim \text{Chi Square}(n-1)$

By Def. 7.3.3 ...

$$T_{n-1} = rac{\overline{Y} - \mu}{S/\sqrt{n}} \sim ext{Student's t of degree } n-1.$$

Proof.

$$\frac{\overline{Y} - \mu}{S/\sqrt{n}} = \frac{\frac{\overline{Y} - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}}}$$

$$\frac{Y-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$$
 \perp $\frac{(n-1)S^2}{\sigma^2} \sim \text{Chi Square}(n-1)$

By Def. 7.3.3 ...

$$T_{n-1} = rac{\overline{Y} - \mu}{S/\sqrt{n}} \sim ext{Student's t of degree } n-1.$$

Proof.

$$\frac{\overline{Y} - \mu}{S/\sqrt{n}} = \frac{\frac{\overline{Y} - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}}}$$

$$\frac{\mathbf{Y} - \mu}{\sigma / \sqrt{n}} \sim \mathbf{N}(0, 1) \qquad \bot \qquad \frac{(n-1)\mathbf{S}^2}{\sigma^2} \sim \text{Chi Square}(n-1)$$

By Def. 7.3.3 ...

 \square

Thm 7.3.6.
$$f_{T_n}(x) \to f_Z(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
 as $n \to \infty$, where $Z \sim N(0, 1)$.

Proof By Stirling's formula:

$$\Gamma(z) = \sqrt{\frac{2\pi}{z}} \left(\frac{z}{e}\right)^z (1 + O(1/z))$$
 as $z \to \infty$

$$\implies \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} = \frac{1}{\sqrt{2\pi}}$$

.

Proof By Stirling's formula:

$$\Gamma(z) = \sqrt{\frac{2\pi}{z}} \left(\frac{z}{e}\right)^z (1 + O(1/z))$$
 as $z \to \infty$

$$\implies \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \,\Gamma\left(\frac{n}{2}\right)} = \frac{1}{\sqrt{2\pi}}$$

.

Proof By Stirling's formula:

$$\Gamma(z) = \sqrt{\frac{2\pi}{z}} \left(\frac{z}{e}\right)^z (1 + O(1/z))$$
 as $z \to \infty$

$$\implies \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} = \frac{1}{\sqrt{2\pi}}$$

Proof By Stirling's formula:

$$\Gamma(z) = \sqrt{\frac{2\pi}{z}} \left(\frac{z}{e}\right)^z (1 + O(1/z))$$
 as $z \to \infty$

$$\implies \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} = \frac{1}{\sqrt{2\pi}}$$

....