Math 362: Mathematical Statistics II

Le Chen
le.chen@emory.edu
Emory University Atlanta, GA

Last updated on April 13, 2021

2021 Spring

Chapter 7. Inference Based on The Normal Distribution

§ 7.1 Introduction
§ 7.2 Comparing $\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}}$ and $\frac{\bar{Y}-\mu}{S / \sqrt{n}}$
§ 7.3 Deriving the Distribution of $\frac{\bar{Y}-\mu}{S / \sqrt{n}}$
§ 7.4 Drawing Inferences About μ
§ 7.5 Drawing Inferences About σ^{2}

Plan

§ 7.1 Introduction
§ 7.2 Comparing $\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}}$ and $\frac{\bar{Y}-\mu}{S / \sqrt{n}}$
\S 7.3 Deriving the Distribution of $\frac{\bar{Y}-\mu}{S / \sqrt{n}}$
\S 7.4 Drawing Inferences About μ
\S 7.5 Drawing Inferences About σ^{2}

Chapter 7. Inference Based on The Normal Distribution

§ 7.1 Introduction
§ 7.2 Comparing $\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}}$ and $\frac{\bar{Y}-\mu}{S / \sqrt{n}}$
\S 7.3 Deriving the Distribution of $\frac{\bar{Y}-\mu}{S / \sqrt{n}}$
\S 7.4 Drawing Inferences About μ
§ 7.5 Drawing Inferences About σ^{2}

Def. Sampling distributions

Distributions of functions of random sample of given size. statistics / estimatorsA random sample of size n from $N\left(\mu, \sigma^{2}\right)$ with σ^{2} known.

Aim: Determine distributions for

Chi square distr. Student t distr. F distr.

Def. Sampling distributions

Distributions of functions of random sample of given size.
statistics / estimators
E.g. A random sample of size n from $N\left(\mu, \sigma^{2}\right)$ with σ^{2} known.

Sample mean $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \sim N\left(\mu, \sigma^{2} / n\right)$

Aim: Determine distributions for

Def. Sampling distributions

Distributions of functions of random sample of given size.
statistics / estimators
E.g. A random sample of size n from $N\left(\mu, \sigma^{2}\right)$ with σ^{2} known. Sample mean $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \sim N\left(\mu, \sigma^{2} / n\right)$

Aim: Determine distributions for

$$
\begin{array}{l|c}
\text { Sample variance } S^{2}:=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} & \text { Chi square distr. } \\
\qquad T:=\frac{\bar{Y}-\mu}{S / \sqrt{n}} & \text { Student t distr. } \\
\frac{S_{1}^{2}}{\sigma_{1}^{2}} / \frac{S_{2}^{2}}{\sigma_{2}^{2}} & \text { F distr. }
\end{array}
$$

Thm 7.3.1. Let $U=\sum_{i=1}^{m} Z_{j}^{2}$, where Z_{j} are independent $N(0,1)$ normal r.v.s. Then

$$
U \sim \text { Gamma }(\text { shape }=m / 2, \text { rate }=1 / 2) .
$$

namely,

$$
f_{U}(u)=\frac{1}{2^{m / 2} \Gamma(m / 2)} u^{\frac{m}{2}-1} e^{-u / 2}, \quad u \geq 0
$$

Thm 7.3.1. Let $U=\sum_{i=1}^{m} Z_{j}^{2}$, where Z_{j} are independent $N(0,1)$ normal r.v.s. Then

$$
U \sim \text { Gamma }(\text { shape }=m / 2, \text { rate }=1 / 2)
$$

namely,

$$
f_{U}(u)=\frac{1}{2^{m / 2} \Gamma(m / 2)} u^{\frac{m}{2}-1} e^{-u / 2}, \quad u \geq 0 .
$$

Def 7.3.1. U in Thm 7.3.1 is called chi square distribution with m dgs of freedom.

Proof. We first consider the case when $m=1$. In this case,

$$
\begin{aligned}
F_{Z^{2}}(u) & =\mathbb{P}\left(Z^{2} \leq u\right) \\
& =\mathbb{P}(-\sqrt{u} \leq Z \leq \sqrt{u}) \\
& =2 \mathbb{P}(0 \leq Z \leq \sqrt{u}) \\
& =\frac{2}{\sqrt{2 \pi}} \int_{0}^{2 \pi} e^{-z^{2} / 2} \mathrm{~d} z
\end{aligned}
$$

Proof. We first consider the case when $m=1$. In this case,

$$
\begin{aligned}
F_{Z^{2}}(u) & =\mathbb{P}\left(Z^{2} \leq u\right) \\
& =\mathbb{P}(-\sqrt{u} \leq Z \leq \sqrt{u}) \\
& =2 \mathbb{P}(0 \leq Z \leq \sqrt{u}) \\
& =\frac{2}{\sqrt{2 \pi}} \int_{0}^{2 \pi} e^{-z^{2} / 2} \mathrm{~d} z
\end{aligned}
$$

Differentiating both sides of the above eq. in order to obtain the pdf:

$$
\begin{aligned}
f_{Z^{2}}(u) & =\frac{\mathrm{d}}{\mathrm{~d} u} F_{Z^{2}}(u) \\
& =\frac{2}{\sqrt{2 \pi}} \frac{1}{2 \sqrt{u}} e^{-u / 2} \\
& =\frac{1}{\sqrt{2} \Gamma(1 / 2)} u^{(1 / 2)-1} e^{-u / 2},
\end{aligned}
$$

which is the pdf of a gamma distribution with $r=\lambda=1 / 2$,
Then adding m independent copies of gamma distributions gives anther gamma distribution with $r=m / 2$ and $\lambda=1 / 2$ (See Theorem 4.6.4). \square

Proof. We first consider the case when $m=1$. In this case,

$$
\begin{aligned}
F_{Z^{2}}(u) & =\mathbb{P}\left(Z^{2} \leq u\right) \\
& =\mathbb{P}(-\sqrt{u} \leq Z \leq \sqrt{u}) \\
& =2 \mathbb{P}(0 \leq Z \leq \sqrt{u}) \\
& =\frac{2}{\sqrt{2 \pi}} \int_{0}^{2 \pi} e^{-z^{2} / 2} \mathrm{~d} z
\end{aligned}
$$

Differentiating both sides of the above eq. in order to obtain the pdf:

$$
\begin{aligned}
f_{Z^{2}}(u) & =\frac{\mathrm{d}}{\mathrm{~d} u} F_{Z^{2}}(u) \\
& =\frac{2}{\sqrt{2 \pi}} \frac{1}{2 \sqrt{u}} e^{-u / 2} \\
& =\frac{1}{\sqrt{2} \Gamma(1 / 2)} u^{(1 / 2)-1} e^{-u / 2}
\end{aligned}
$$

which is the pdf of a gamma distribution with $r=\lambda=1 / 2$.

Proof. We first consider the case when $m=1$. In this case,

$$
\begin{aligned}
F_{Z^{2}}(u) & =\mathbb{P}\left(Z^{2} \leq u\right) \\
& =\mathbb{P}(-\sqrt{u} \leq Z \leq \sqrt{u}) \\
& =2 \mathbb{P}(0 \leq Z \leq \sqrt{u}) \\
& =\frac{2}{\sqrt{2 \pi}} \int_{0}^{2 \pi} e^{-z^{2} / 2} \mathrm{~d} z
\end{aligned}
$$

Differentiating both sides of the above eq. in order to obtain the pdf:

$$
\begin{aligned}
f_{Z^{2}}(u) & =\frac{\mathrm{d}}{\mathrm{~d} u} F_{Z^{2}}(u) \\
& =\frac{2}{\sqrt{2 \pi}} \frac{1}{2 \sqrt{u}} e^{-u / 2} \\
& =\frac{1}{\sqrt{2} \Gamma(1 / 2)} u^{(1 / 2)-1} e^{-u / 2},
\end{aligned}
$$

which is the pdf of a gamma distribution with $r=\lambda=1 / 2$.
Then adding m independent copies of gamma distributions gives anther gamma distribution with $r=m / 2$ and $\lambda=1 / 2$ (See Theorem 4.6.4).

Chi Square Table

p								
df	.01	.025	.05	.10	.90	.95	.975	.99
1	0.000157	0.000982	0.00393	0.0158	2.706	3.841	5.024	6.635
2	0.0201	0.0506	0.103	0.211	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345
4	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277
5	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.086
6	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812
7	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475
8	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090
9	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666
10	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209
11	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725
12	3.571	4.404	5.226	6.304	18.549	21.026	23.336	26.217

$$
\begin{aligned}
\mathbb{P}\left(\chi_{5}^{2} \leq 1.145\right) & =0.05 \\
\mathbb{P}\left(\chi_{5}^{2} \leq 15.086\right) & \Longleftrightarrow 0.99
\end{aligned} \Longleftrightarrow \chi_{0.05,5}^{2}=1.1451+\chi_{0.99,5}^{2}=15.086
$$

$1>\operatorname{pchisq}(1.145, \mathrm{df}=5)$	$1>\operatorname{qchisq}(0.05, \mathrm{df}=5)$
$2[1] 0.04995622$	$2[1] 1.145476$
$3>\operatorname{pchisq}(15.086, \mathrm{df}=5)$	$3>\operatorname{qchisq}(0.99, \mathrm{df}=5)$
$4[1] 0.9899989$	$4[1] 15.08627$

Chi Square Table

p																
df	.01									.025	.05	.10	.90	.95	.975	.99
1	0.000157	0.000982	0.00393	0.0158	2.706	3.841	5.024	6.635								
2	0.0201	0.0506	0.103	0.211	4.605	5.991	7.378	9.210								
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345								
4	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277								
5	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.086								
6	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812								
7	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475								
8	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090								
9	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666								
10	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209								
11	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725								
12	3.571	4.404	5.226	6.304	18.549	21.026	23.336	26.217								

$$
\begin{aligned}
& \mathbb{P}\left(\chi_{5}^{2} \leq 1.145\right)=0.05 \\
& \mathbb{P}\left(\chi_{5}^{2} \leq 15.086\right)=0.99 \quad \Longleftrightarrow \quad \chi_{0.05,5}^{2}=1.145 \\
& \chi_{0.99,5}^{2}=15.086
\end{aligned}
$$

```
1 > scipy.stats.chi2.cdf(1.145, 5) 1 > scipy.stats.chi2.ppf(0.05, 5)
2 [1]: 0.04995622155207728 2 [1]: 1.1454762260617692
3 > scipy.stats.chi2.cdf(15.086, 5) 3 > scipy.stats.chi2.ppf(0.99, 5)
4 [1]: 0.9899988752378142 4 [1]: 15.08627246938899
```

Thm 7.3.2. Let Y_{1}, \cdots, Y_{n} be a random sample from $N\left(\mu, \sigma^{2}\right)$. Then

Proof. We will prove the case $n=2$.

(a)
sinfices to show that
(b) $\frac{(n-1) S^{2}}{\sigma^{2}}=\left(\frac{Y_{1}-Y_{2}}{\sqrt{2} \sigma}\right)$

Thm 7.3.2. Let Y_{1}, \cdots, Y_{n} be a random sample from $N\left(\mu, \sigma^{2}\right)$. Then
(a) S^{2} and \bar{Y} are independent.

Proof. We will prove the case $n=2$.

(a) suffices to show that
(b) $\frac{(n-1) S^{2}}{\sigma^{2}}=\left(\frac{Y_{1}-Y_{2}}{\sqrt{2} \sigma}\right)$

$$
\text { and } \frac{Y_{1}-Y_{2}}{\sqrt{2} \sigma}
$$

Thm 7.3.2. Let Y_{1}, \cdots, Y_{n} be a random sample from $N\left(\mu, \sigma^{2}\right)$. Then
(a) S^{2} and \bar{Y} are independent.
(b) $\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} \sim \operatorname{Chi} \operatorname{Square}(n-1)$.

Proof. We will prove the case $n=2$
(a) It is equivalanet to show $Y_{1}+Y_{2} \perp Y_{1}-Y_{2}$. Since they are normal, it suffices to show that
(b)

$$
\mathbb{E}\left[\left(Y_{1}+Y_{2}\right)\left(Y_{1}-Y_{2}\right)\right]=\mathbb{E}\left[Y_{1}+Y_{2}\right] \mathbb{E}\left[Y_{1}-Y_{2}\right]
$$

Thm 7.3.2. Let Y_{1}, \cdots, Y_{n} be a random sample from $N\left(\mu, \sigma^{2}\right)$. Then
(a) S^{2} and Y are independent.
(b) $\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} \sim \operatorname{Chi} \operatorname{Square}(n-1)$.

Proof. We will prove the case $n=2$.

$$
\begin{aligned}
\bar{Y}=\frac{Y_{1}+Y_{2}}{2}, \quad & Y_{1}-\bar{Y}=\frac{Y_{1}-Y_{2}}{2}, \quad Y_{2}-\bar{Y}=\frac{Y_{2}-Y_{1}}{2} \\
& S^{2}=\ldots=\frac{1}{2}\left(Y_{1}-Y_{2}\right)^{2}
\end{aligned}
$$

(a) It is equivalanet to show $Y_{1}+Y_{2} \perp Y_{1}-Y_{2}$. Since they are
suffices to show that

$$
\mathbb{E}\left[\left(Y_{1}+Y_{2}\right)\left(Y_{1}-Y_{2}\right)\right]=\mathbb{E}\left[Y_{1}+Y_{2}\right] \mathbb{E}\left[Y_{1}-Y_{2}\right]
$$

Thm 7.3.2. Let Y_{1}, \cdots, Y_{n} be a random sample from $N\left(\mu, \sigma^{2}\right)$. Then
(a) S^{2} and \bar{Y} are independent.
(b) $\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} \sim \operatorname{Chi} \operatorname{Square}(n-1)$.

Proof. We will prove the case $n=2$.

$$
\begin{array}{cl}
\bar{Y}=\frac{Y_{1}+Y_{2}}{2}, & Y_{1}-\bar{Y}=\frac{Y_{1}-Y_{2}}{2}, \quad Y_{2}-\bar{Y}=\frac{Y_{2}-Y_{1}}{2} \\
S^{2}=\ldots=\frac{1}{2}\left(Y_{1}-Y_{2}\right)^{2}
\end{array}
$$

(a) It is equivalanet to show $Y_{1}+Y_{2} \perp Y_{1}-Y_{2}$. Since they are normal, it suffices to show that

$$
\mathbb{E}\left[\left(Y_{1}+Y_{2}\right)\left(Y_{1}-Y_{2}\right)\right]=\mathbb{E}\left[Y_{1}+Y_{2}\right] \mathbb{E}\left[Y_{1}-Y_{2}\right]
$$

Thm 7.3.2. Let Y_{1}, \cdots, Y_{n} be a random sample from $N\left(\mu, \sigma^{2}\right)$. Then
(a) S^{2} and \bar{Y} are independent.
(b) $\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} \sim \operatorname{Chi} \operatorname{Square}(n-1)$.

Proof. We will prove the case $n=2$.

$$
\begin{array}{cl}
\bar{Y}=\frac{Y_{1}+Y_{2}}{2}, \quad Y_{1}-\bar{Y}=\frac{Y_{1}-Y_{2}}{2}, \quad Y_{2}-\bar{Y}=\frac{Y_{2}-Y_{1}}{2} \\
S^{2}=\ldots=\frac{1}{2}\left(Y_{1}-Y_{2}\right)^{2}
\end{array}
$$

(a) It is equivalanet to show $Y_{1}+Y_{2} \perp Y_{1}-Y_{2}$. Since they are normal, it suffices to show that

$$
\mathbb{E}\left[\left(Y_{1}+Y_{2}\right)\left(Y_{1}-Y_{2}\right)\right]=\mathbb{E}\left[Y_{1}+Y_{2}\right] \mathbb{E}\left[Y_{1}-Y_{2}\right]
$$

(b) $\frac{(n-1) S^{2}}{\sigma^{2}}=\left(\frac{Y_{1}-Y_{2}}{\sqrt{2} \sigma}\right)^{2}$ and $\frac{Y_{1}-Y_{2}}{\sqrt{2} \sigma} \sim N(0,1) \ldots$

Def 7.3.2. If $U \sim \operatorname{Chi} \operatorname{Square}(n)$ and $V \sim \operatorname{Chi} \operatorname{Square}(m)$, and $U \perp V$, then

$$
F:=\frac{V / m}{U / n}
$$

follows the (Snedecor's) F distribution with m and n degrees of freedom.

Def 7.3.2. If $U \sim \operatorname{Chi} \operatorname{Square}(n)$ and $V \sim \operatorname{Chi} \operatorname{Square}(m)$, and $U \perp V$, then

$$
F:=\frac{V / m}{U / n}
$$

follows the (Snedecor's) F distribution with m and n degrees of freedom.

Thm 7.3.3. Let $F_{m, n}=\frac{V / m}{U / n}$ be an F r.v. with m and n degrees of freedom. Then

$$
f_{F_{m, n}}(w)=\frac{\Gamma\left(\frac{m+n}{2}\right) m^{m / 2} n^{n / 2}}{\Gamma(m / 2) \Gamma(n / 2)} \times \frac{w^{m / 2-1}}{(n+m w)^{(m+n) / 2}}, \quad w \geq 0
$$

Def 7.3.2. If $U \sim \operatorname{Chi} \operatorname{Square}(n)$ and $V \sim \operatorname{Chi} \operatorname{Square}(m)$, and $U \perp V$, then

$$
F:=\frac{V / m}{U / n}
$$

follows the (Snedecor's) F distribution with m and n degrees of freedom.

Thm 7.3.3. Let $F_{m, n}=\frac{V / m}{U / n}$ be an F r.v. with m and n degrees of freedom. Then

$$
f_{F_{m, n}}(w)=\frac{\Gamma\left(\frac{m+n}{2}\right) m^{m / 2} n^{n / 2}}{\Gamma(m / 2) \Gamma(n / 2)} \times \frac{w^{m / 2-1}}{(n+m w)^{(m+n) / 2}}, \quad w \geq 0
$$

Equivalently,

$$
f_{F_{m, n}}(w)=B(m / 2, n / 2)^{-1}\left(\frac{m}{n}\right)^{\frac{m}{2}} w^{\frac{m}{2}-1}\left(1+\frac{m}{n} w\right)^{-\frac{m+n}{2}}
$$

Def 7.3.2. If $U \sim \operatorname{Chi} \operatorname{Square}(n)$ and $V \sim \operatorname{Chi} \operatorname{Square}(m)$, and $U \perp V$, then

$$
F:=\frac{V / m}{U / n}
$$

follows the (Snedecor's) F distribution with m and n degrees of freedom.

Thm 7.3.3. Let $F_{m, n}=\frac{V / m}{U / n}$ be an F r.v. with m and n degrees of freedom. Then

$$
f_{F_{m, n}}(w)=\frac{\Gamma\left(\frac{m+n}{2}\right) m^{m / 2} n^{n / 2}}{\Gamma(m / 2) \Gamma(n / 2)} \times \frac{w^{m / 2-1}}{(n+m w)^{(m+n) / 2}}, \quad w \geq 0
$$

Equivalently,

$$
f_{F_{m, n}}(w)=B(m / 2, n / 2)^{-1}\left(\frac{m}{n}\right)^{\frac{m}{2}} w^{\frac{m}{2}-1}\left(1+\frac{m}{n} w\right)^{-\frac{m+n}{2}}
$$

where $B(a, b)=\Gamma(a) \Gamma(b) / \Gamma(a+b)$.

Recall
 $f_{X}(x)$ and $f_{Y}(y)$, respectively.

```
Assume that }X\mathrm{ is zero for at most a set of isolated points.
```

 Then \(W=Y / X\) follows a distribution with pdf:
 $$
f_{W}(w)=\int_{-\infty}^{\infty}|X| f_{X}(x) f_{Y}(w X) \mathrm{d} X
$$

Thm 3.8.2 Suppose X is a continuous random variable and $a \neq 0$. Then $Y=a X+b$ follows a distribution with ndf.

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
$$

Recall

Thm 3.8.4 Let X and Y be independent continuous random variables, with pdf $f_{X}(x)$ and $f_{Y}(y)$, respectively.
 Suppose X is a continuous random variable and $a \neq 0$. Then $Y=a X+b$ follows a distribution with pdf:

Recall

Thm 3.8.4 Let X and Y be independent continuous random variables, with pdf $f_{X}(x)$ and $f_{Y}(y)$, respectively.
Assume that X is zero for at most a set of isolated points.
Then $W=Y / X$ follows a distribution with pdf:

Thm 3.8.2 Suppose X is a continuous random variable and $a \neq 0$ Then $Y=a X+b$ follows a dictribution with ndf.

Recall

Thm 3.8.4 Let X and Y be independent continuous random variables, with pdf $f_{X}(x)$ and $f_{Y}(y)$, respectively.
Assume that X is zero for at most a set of isolated points.
Then $W=Y / X$ follows a distribution with pdf:

$$
f_{W}(w)=\int_{-\infty}^{\infty}|x| f_{X}(x) f_{Y}(w x) \mathrm{d} x .
$$

Thm 3.8.2 Suppose X is a continuous random variable and $a \neq 0$
Then $Y=a X+b$ follows a distribution with ndf:

Recall

Thm 3.8.4 Let X and Y be independent continuous random variables, with pdf $f_{X}(x)$ and $f_{Y}(y)$, respectively.
Assume that X is zero for at most a set of isolated points.
Then $W=Y / X$ follows a distribution with pdf:

$$
f_{W}(w)=\int_{-\infty}^{\infty}|x| f_{X}(x) f_{Y}(w x) \mathrm{d} x
$$

Thm 3.8.2 Suppose X is a continuous random variable and $a \neq 0$.

Recall

Thm 3.8.4 Let X and Y be independent continuous random variables, with pdf $f_{X}(x)$ and $f_{Y}(y)$, respectively.
Assume that X is zero for at most a set of isolated points.
Then $W=Y / X$ follows a distribution with pdf:

$$
f_{W}(w)=\int_{-\infty}^{\infty}|x| f_{X}(x) f_{Y}(w x) \mathrm{d} x .
$$

Thm 3.8.2 Suppose X is a continuous random variable and $a \neq 0$. Then $Y=a X+b$ follows a distribution with pdf:

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right) .
$$

Proof. Let us first find the pdf for $W:=V / U$. By Theorem 7.3.1,

$$
\begin{aligned}
& f_{V}(v)=\frac{1}{2^{m / 2} \Gamma(m / 2)} v^{(m / 2)-1} e^{-v / 2}, \\
& f_{U}(u)=\frac{1}{2^{n / 2} \Gamma(n / 2)} u^{(n / 2)-1} e^{-u / 2} .
\end{aligned}
$$

Proof. Let us first find the pdf for $W:=V / U$. By Theorem 7.3.1,

$$
\begin{aligned}
& f_{V}(v)=\frac{1}{2^{m / 2} \Gamma(m / 2)} v^{(m / 2)-1} e^{-v / 2}, \\
& f_{U}(u)=\frac{1}{2^{n / 2} \Gamma(n / 2)} u^{(n / 2)-1} e^{-u / 2} .
\end{aligned}
$$

Then by Theorem 3.8.4, we see that the pdf of W is

$$
\begin{aligned}
f_{w}(w) & =\int_{-\infty}^{\infty}|u| f_{u}(u) f_{v}(u w) \mathrm{d} u \\
& =\int_{0}^{\infty} u \frac{1}{2^{n / 2} \Gamma(n / 2)} u^{(n / 2)-1} e^{-u / 2} \frac{1}{2^{m / 2} \Gamma(m / 2)}(u w)^{(m / 2)-1} e^{-u w / 2} \mathrm{~d} u \\
& =\frac{1}{2^{(n+m) / 2} \Gamma(n / 2) \Gamma(m / 2)} w^{(m / 2)-1} \int_{0}^{\infty} u^{\frac{n+m}{2}-1} e^{-\frac{1+w}{2} u} \mathrm{~d} u
\end{aligned}
$$

Then by the change of variables, $y=\frac{1+w}{2} u$, we see that

$$
\begin{aligned}
f_{W}(w) & =\frac{1}{2^{(n+m) / 2} \Gamma(n / 2) \Gamma(m / 2)} w^{(m / 2)-1}\left(\frac{2}{1+w}\right)^{\frac{n+m}{2}} \int_{0}^{\infty} y^{\frac{n+m}{2}-1} e^{-y} \mathrm{~d} y \\
& =\frac{1}{2^{(n+m) / 2} \Gamma(n / 2) \Gamma(m / 2)} w^{(m / 2)-1}\left(\frac{2}{1+w}\right)^{\frac{n+m}{2}} \Gamma\left(\frac{n+m}{2}\right)
\end{aligned}
$$

where the last equality is due to the definition of the Gamma function.
 distribution with pdf

Then by the change of variables, $y=\frac{1+w}{2} u$, we see that

$$
\begin{aligned}
f_{W}(w) & =\frac{1}{2^{(n+m) / 2} \Gamma(n / 2) \Gamma(m / 2)} w^{(m / 2)-1}\left(\frac{2}{1+w}\right)^{\frac{n+m}{2}} \int_{0}^{\infty} y^{\frac{n+m}{2}-1} e^{-y} \mathrm{~d} y \\
& =\frac{1}{2^{(n+m) / 2} \Gamma(n / 2) \Gamma(m / 2)} w^{(m / 2)-1}\left(\frac{2}{1+w}\right)^{\frac{n+m}{2}} \Gamma\left(\frac{n+m}{2}\right)
\end{aligned}
$$

where the last equality is due to the definition of the Gamma function.

Finally, by Theorem 3.8.2, we see that $F=\frac{V / m}{U / n}=\frac{n}{m} W$ follows a distribution with pdf

$$
\begin{aligned}
f_{F}(y) & =\frac{m}{n} f_{W}\left(\frac{m}{n} y\right) \\
& =\frac{m}{n} \frac{1}{2^{(n+m) / 2} \Gamma(n / 2) \Gamma(m / 2)}\left(\frac{m}{n} y\right)^{(m / 2)-1}\left(\frac{2}{1+\frac{m}{n} y}\right)^{\frac{n+m}{2}} \Gamma\left(\frac{n+m}{2}\right) \\
& =\cdots \quad y \geq 0 .
\end{aligned}
$$


```
1 # Draw F density
2 x=seq(0,5,0.01)
3 pdf= cbind(df(x, df1 = 1, df2 = 1),
4 df(x, df1 = 2, df2 = 1),
5 df(x, df1 = 5, df2 = 2),
6 df(x, df1 = 10, df2 = 1),
7 df(x, df1 = 100, df2 = 100))
8 matplot(x,pdf, type = "1")
9 title("F with various dgrs of freedom")
```


$$
\mathbb{P}\left(F_{3,5} \leq 5.41\right)=0.95 \quad \Longleftrightarrow \quad F_{0.95,3,5}=5.41
$$

```
>pf(5.41, df1 = 3, df2 = 5)
1 > qf(0.95, df1 = 3, df2 = 5)
[1] 0.9500093
2 [1] 5.409451
> scipy.stats.f.cdf(5.41, 3, 5)
> scipy.stats.f.ppf(0.95, 3, 5)
2 [1] 0.9500092950699683 2 [1] 5.40945131805649
```

Def 7.3.3. Suppose $Z \sim N(0,1), U \sim$ Chi Square(n), and $Z \perp U$. Then

$$
T_{n}=\frac{Z}{\sqrt{U / n}}
$$

follows the Student's t-distribution of n degrees of freedom. Remark $T_{n}^{2} \sim F$-distribution with 1 and n degrees of freedom.

Def 7.3.3. Suppose $Z \sim N(0,1), U \sim$ Chi Square(n), and $Z \perp U$. Then

$$
T_{n}=\frac{Z}{\sqrt{U / n}}
$$

follows the Student's t-distribution of n degrees of freedom.

Remark $T_{n}^{2} \sim F$-distribution with 1 and n degrees of freedom.

Def 7.3.3. Suppose $Z \sim N(0,1), U \sim$ Chi Square(n), and $Z \perp U$. Then

$$
T_{n}=\frac{Z}{\sqrt{U / n}}
$$

follows the Student's t -distribution of n degrees of freedom.

Remark $T_{n}^{2} \sim F$-distribution with 1 and n degrees of freedom.

Thm 7.3.4. The pdf of the Student t of degree n is

$$
f_{T_{n}}(t)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n \pi} \Gamma\left(\frac{n}{2}\right)} \times\left(1+\frac{t^{2}}{n}\right)^{-\frac{n+2}{2}}, \quad t \in \mathbb{R} .
$$

Proof. Note that $T_{n}^{2}=\frac{Z^{2}}{U / n}$ follows an $F(1, n)$ distribution. Hence,

$$
f_{T_{n}^{2}}(t)=\frac{n^{\frac{n}{2}} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n}{2}\right)} t^{-\frac{1}{2}} \frac{1}{(n+t)^{\frac{n+1}{2}}}, \quad t>0
$$

The term $\mathbb{P}\left(-\infty<T_{n} \leq 0\right)$ is a constant which will disappear upon

 differentiation.Proof. Note that $T_{n}^{2}=\frac{Z^{2}}{U / n}$ follows an $F(1, n)$ distribution. Hence,

$$
f_{T_{n}^{2}}(t)=\frac{n^{\frac{n}{2}} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n}{2}\right)} t^{-\frac{1}{2}} \frac{1}{(n+t)^{\frac{n+1}{2}}}, \quad t>0 .
$$

Therefore,

$$
F_{T_{n}}(t)=\mathbb{P}\left(T_{n} \leq t\right)=\mathbb{P}\left(-\infty<T_{n} \leq 0\right)+\mathbb{P}\left(0 \leq T_{n} \leq t\right) .
$$

The term $\mathbb{P}\left(-\infty<T_{n} \leq 0\right)$ is a constant which will disappear upon

 differentiation.Proof. Note that $T_{n}^{2}=\frac{Z^{2}}{U / n}$ follows an $F(1, n)$ distribution. Hence,

$$
f_{T_{n}^{2}}(t)=\frac{n^{\frac{n}{2}} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n}{2}\right)} t^{-\frac{1}{2}} \frac{1}{(n+t)^{\frac{n+1}{2}}}, \quad t>0 .
$$

Therefore,

$$
F_{T_{n}}(t)=\mathbb{P}\left(T_{n} \leq t\right)=\mathbb{P}\left(-\infty<T_{n} \leq 0\right)+\mathbb{P}\left(0 \leq T_{n} \leq t\right) .
$$

The term $\mathbb{P}\left(-\infty<T_{n} \leq 0\right)$ is a constant which will disappear upon differentiation.

Proof. Note that $T_{n}^{2}=\frac{Z^{2}}{U / n}$ follows an $F(1, n)$ distribution. Hence,

$$
f_{T_{n}^{2}}(t)=\frac{n^{\frac{n}{2}} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n}{2}\right)} t^{-\frac{1}{2}} \frac{1}{(n+t)^{\frac{n+1}{2}}}, \quad t>0
$$

Therefore,

$$
F_{T_{n}}(t)=\mathbb{P}\left(T_{n} \leq t\right)=\mathbb{P}\left(-\infty<T_{n} \leq 0\right)+\mathbb{P}\left(0 \leq T_{n} \leq t\right) .
$$

The term $\mathbb{P}\left(-\infty<T_{n} \leq 0\right)$ is a constant which will disappear upon differentiation.
Notice that

$$
\begin{aligned}
\left\{T_{n}^{2} \leq t^{2}\right\} & =\left\{-t \leq T_{n} \leq t\right\}=\left\{-t \leq T_{n} \leq 0\right\} \cup\left\{0 \leq T_{n} \leq t\right\} \\
& =\{-t \sqrt{U / n} \leq Z \leq 0\} \cup\{0 \leq Z \leq t \sqrt{U / n}\}
\end{aligned}
$$

By symmetry of the distribution of Z,

$$
\mathbb{P}(-t \sqrt{U / n} \leq Z \leq 0)=\mathbb{P}(0 \leq Z \leq t \sqrt{U / n})
$$

Therefore,

$$
\begin{aligned}
\mathbb{P}\left(T_{n}^{n} \leq t^{2}\right) & =\mathbb{P}(-t \sqrt{U / n} \leq Z \leq 0)+\mathbb{P}(0 \leq Z \leq t \sqrt{U / n}) \\
& =2 \mathbb{P}(0 \leq Z \leq t \sqrt{U / n}) \\
& =2 \mathbb{P}\left(0 \leq T_{n} \leq t\right)
\end{aligned}
$$

Hence,

$$
F_{T_{n}}(t)=\text { const. }+\frac{1}{2} \mathbb{P}\left(T_{n}^{2} \leq t^{2}\right)
$$

Finally, differentiation gives the density:

$$
f_{T_{n}}(t)=\frac{d}{d t} F_{T_{n}}(t)=\frac{d}{d t} \frac{1}{2} F_{T_{n}}\left(t^{2}\right)=t \cdot f_{T_{n}}\left(t^{2}\right)=
$$

By symmetry of the distribution of Z,

$$
\mathbb{P}(-t \sqrt{U / n} \leq Z \leq 0)=\mathbb{P}(0 \leq Z \leq t \sqrt{U / n})
$$

Therefore,

$$
\begin{aligned}
\mathbb{P}\left(T_{n}^{2} \leq t^{2}\right) & =\mathbb{P}(-t \sqrt{U / n} \leq Z \leq 0)+\mathbb{P}(0 \leq Z \leq t \sqrt{U / n}) \\
& =2 \mathbb{P}(0 \leq Z \leq t \sqrt{U / n}) \\
& =2 \mathbb{P}\left(0 \leq T_{n} \leq t\right)
\end{aligned}
$$

Hence,

Pinally, differentintion mivece the dencitw

By symmetry of the distribution of Z,

$$
\mathbb{P}(-t \sqrt{U / n} \leq Z \leq 0)=\mathbb{P}(0 \leq Z \leq t \sqrt{U / n})
$$

Therefore,

$$
\begin{aligned}
\mathbb{P}\left(T_{n}^{2} \leq t^{2}\right) & =\mathbb{P}(-t \sqrt{U / n} \leq Z \leq 0)+\mathbb{P}(0 \leq Z \leq t \sqrt{U / n}) \\
& =2 \mathbb{P}(0 \leq Z \leq t \sqrt{U / n}) \\
& =2 \mathbb{P}\left(0 \leq T_{n} \leq t\right)
\end{aligned}
$$

Hence,

$$
F_{T_{n}}(t)=\text { const. }+\frac{1}{2} \mathbb{P}\left(T_{n}^{2} \leq t^{2}\right)
$$

Finally, differentiation gives the density:

By symmetry of the distribution of Z,

$$
\mathbb{P}(-t \sqrt{U / n} \leq Z \leq 0)=\mathbb{P}(0 \leq Z \leq t \sqrt{U / n})
$$

Therefore,

$$
\begin{aligned}
\mathbb{P}\left(T_{n}^{2} \leq t^{2}\right) & =\mathbb{P}(-t \sqrt{U / n} \leq Z \leq 0)+\mathbb{P}(0 \leq Z \leq t \sqrt{U / n}) \\
& =2 \mathbb{P}(0 \leq Z \leq t \sqrt{U / n}) \\
& =2 \mathbb{P}\left(0 \leq T_{n} \leq t\right)
\end{aligned}
$$

Hence,

$$
F_{T_{n}}(t)=\text { const. }+\frac{1}{2} \mathbb{P}\left(T_{n}^{2} \leq t^{2}\right)
$$

Finally, differentiation gives the density:

$$
f_{T_{n}}(t)=\frac{d}{d t} F_{T_{n}}(t)=\frac{d}{d t} \frac{1}{2} F_{T_{n}^{2}}\left(t^{2}\right)=t \cdot f_{T_{n}^{2}}\left(t^{2}\right)=\cdots .
$$

1 \# Draw Student t-density
$2 \mathrm{x}=\operatorname{seq}(-5,5,0.01)$
$3 \mathrm{pdf}=\operatorname{cbind}(\mathrm{dt}(\mathrm{x}, \mathrm{df}=1)$,
$4 \quad \operatorname{dt}(x, d f=2)$,
$\operatorname{dt}(x, d f=5)$, $\mathrm{dt}(\mathrm{x}, \mathrm{df}=100)$)
7 matplot $(x, p d f$, type $=" 1 ")$
8 title("Student's t-distributions")

α							
df	.20	.15	.10	.05	.025	.01	.005
1	1.376	1.963	3.078	6.3138	12.706	31.821	63.657
2	1.061	1.386	1.886	2.9200	4.3027	6.965	9.9248
3	0.978	1.250	1.638	2.3534	3.1825	4.541	5.8409
4	0.941	1.190	1.533	2.1318	2.7764	3.747	4.6041
5	0.920	1.156	1.476	2.0150	2.5706	3.365	4.0321
6	0.906	1.134	1.440	1.9432	2.4469	3.143	3.7074
\vdots			\vdots				
30	0.854	1.055	1.310	1.6973	2.0423	2.457	2.7500
---	0.84	1.04	1.28	1.64	1.96	2.33	2.58
	$0.8--1$						

$$
\mathbb{P}\left(T_{3}>4.541\right)=0.01 \quad \Longleftrightarrow \quad t_{0.01,3}=4.541
$$

```
1 > 1-pt(4.541, df =3)
2 [1] 0.009998238
\(1>1-\mathrm{pt}(4.541, \mathrm{df}=3)\)
[1] 0.009998238
```

$1>$ alpha $=0.01$
$2>\mathrm{qt}(1-\mathrm{alpha}, \mathrm{df}=3)$
[1] 4.540703

[^0]$1>$ scipy.stats.t.ppf(1-0.01, 3)
2 [1] 4.540702858698419

Thm 7.3.5. Let Y_{1}, \cdots, Y_{n} be a random sample from $N\left(\mu, \sigma^{2}\right)$. Then

$$
T_{n-1}=\frac{\bar{Y}-\mu}{S / \sqrt{n}} \sim \text { Student's } \mathrm{t} \text { of degree } n-1 .
$$

Thm 7.3.5. Let Y_{1}, \cdots, Y_{n} be a random sample from $N\left(\mu, \sigma^{2}\right)$. Then

$$
T_{n-1}=\frac{\bar{Y}-\mu}{S / \sqrt{n}} \sim \text { Student's } \mathrm{t} \text { of degree } n-1 .
$$

Proof.

$$
\frac{\bar{Y}-\mu}{S / \sqrt{n}}=\frac{\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1) S^{2}}{\sigma^{2}(n-1)}}}
$$

Thm 7.3.5. Let Y_{1}, \cdots, Y_{n} be a random sample from $N\left(\mu, \sigma^{2}\right)$. Then

$$
T_{n-1}=\frac{\bar{Y}-\mu}{S / \sqrt{n}} \sim \text { Student's } \mathrm{t} \text { of degree } n-1 .
$$

Proof.

$$
\frac{\bar{Y}-\mu}{S / \sqrt{n}}=\frac{\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1) S^{2}}{\sigma^{2}(n-1)}}}
$$

Thm 7.3.5. Let Y_{1}, \cdots, Y_{n} be a random sample from $N\left(\mu, \sigma^{2}\right)$. Then

$$
T_{n-1}=\frac{\bar{Y}-\mu}{S / \sqrt{n}} \sim \text { Student's } \mathrm{t} \text { of degree } n-1 .
$$

Proof.

$$
\frac{\bar{Y}-\mu}{S / \sqrt{n}}=\frac{\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1) S^{2}}{\sigma^{2}(n-1)}}}
$$

$$
\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) \quad \perp \quad \frac{(n-1) S^{2}}{\sigma^{2}} \sim \operatorname{Chi} \operatorname{Square}(n-1)
$$

By Def. 7.3.3 ...

As $n \rightarrow \infty$, Students' t distribution will converge to $N(0,1)$:

Thm 7.3.6. $f_{T_{n}}(x) \rightarrow f_{Z}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \quad$ as $n \rightarrow \infty$, where $Z \sim N(0,1)$. Prooi By Stirling's formula:

$$
\Gamma(z)=\sqrt{\frac{2 \pi}{z}}\left(\frac{z}{e}\right)^{z}(1+O(1 / z)) \quad \text { as } z \rightarrow \infty
$$

$$
\Longrightarrow \quad \lim _{n \rightarrow \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n \pi} \Gamma\left(\frac{n}{2}\right)}=\frac{1}{\sqrt{2 \pi}}
$$

As $n \rightarrow \infty$, Students' t distribution will converge to $N(0,1)$:

Thm 7.3.6. $f_{T_{n}}(x) \rightarrow f_{Z}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \quad$ as $n \rightarrow \infty$, where $Z \sim N(0,1)$.

Proof By Stirling's formula:

As $n \rightarrow \infty$, Students' t distribution will converge to $N(0,1)$:

Thm 7.3.6. $f_{T_{n}}(x) \rightarrow f_{Z}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \quad$ as $n \rightarrow \infty$, where $Z \sim N(0,1)$.
Proof By Stirling's formula:

$$
\Gamma(z)=\sqrt{\frac{2 \pi}{z}}\left(\frac{z}{e}\right)^{z}(1+O(1 / z)) \quad \text { as } z \rightarrow \infty
$$

As $n \rightarrow \infty$, Students' t distribution will converge to $N(0,1)$:

Thm 7.3.6. $f_{T_{n}}(x) \rightarrow f_{Z}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \quad$ as $n \rightarrow \infty$, where $Z \sim N(0,1)$.
Proof By Stirling's formula:

$$
\begin{gathered}
\Gamma(z)=\sqrt{\frac{2 \pi}{z}}\left(\frac{z}{e}\right)^{z}(1+O(1 / z)) \quad \text { as } z \rightarrow \infty \\
\Longrightarrow \lim _{n \rightarrow \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n \pi} \Gamma\left(\frac{n}{2}\right)}=\frac{1}{\sqrt{2 \pi}}
\end{gathered}
$$

[^0]: >1 - scipy.stats.t.cdf(4.541, 3)
 2 [1] 0.00999823806449407

