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Def. Sampling distributions

Distributions of functions of random sample of given size.
statistics / estimators

E.g. A random sample of size n from N(µ, σ2) with σ2 known.

Sample mean Y = 1
n

∑n
i=1 Yi ∼ N(µ, σ2/n)

Aim: Determine distributions for

Sample variance S2 := 1
n−1

∑n
i=1

(
Yi − Y

)2

Chi square distr.

T :=
Y − µ

S/
√

n
Student t distr.

S2
1

σ2
1

/
S2

2

σ2
2

F distr.
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Thm 7.3.1. Let U =
∑m

i=1 Z 2
j , where Zj are independent N(0, 1) normal r.v.s. Then

U ∼ Gamma(shape=m/2, rate=1/2).

namely,
fU(u) =

1

2m/2Γ(m/2)
u

m
2
−1e−u/2, u ≥ 0.

Def 7.3.1. U in Thm 7.3.1 is called chi square distribution with m dgs of
freedom.
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Proof. We first consider the case when m = 1. In this case,

FZ2(u) = P
(
Z 2 ≤ u

)
= P

(
−
√

u ≤ Z ≤
√

u
)

= 2P(0 ≤ Z ≤
√

u)

=
2√
2π

∫ 2π

0

e−z2/2dz

Differentiating both sides of the above eq. in order to obtain the pdf:

fZ2(u) =
d

du
FZ2(u)

=
2√
2π

1

2
√

u
e−u/2

=
1√

2Γ(1/2)
u(1/2)−1e−u/2,

which is the pdf of a gamma distribution with r = λ = 1/2.
Then adding m independent copies of gamma distributions gives anther
gamma distribution with r = m/2 and λ = 1/2 (See Theorem 4.6.4). �
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Chi Square Table

P(χ2
5 ≤ 1.145) = 0.05 ⇐⇒ χ2

0.05,5 = 1.145

P(χ2
5 ≤ 15.086) = 0.99 ⇐⇒ χ2

0.99,5 = 15.086

1 > pchisq(1.145, df = 5)
2 [1] 0.04995622
3 > pchisq(15.086, df = 5)
4 [1] 0.9899989

1 > qchisq(0.05, df = 5)
2 [1] 1.145476
3 > qchisq(0.99, df = 5)
4 [1] 15.08627
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Chi Square Table

P(χ2
5 ≤ 1.145) = 0.05 ⇐⇒ χ2

0.05,5 = 1.145

P(χ2
5 ≤ 15.086) = 0.99 ⇐⇒ χ2

0.99,5 = 15.086

1 > scipy.stats.chi2.cdf(1.145, 5)
2 [1]: 0.04995622155207728
3 > scipy.stats.chi2.cdf(15.086, 5)
4 [1]: 0.9899988752378142

1 > scipy.stats.chi2.ppf(0.05, 5)
2 [1]: 1.1454762260617692
3 > scipy.stats.chi2.ppf(0.99, 5)
4 [1]: 15.08627246938899
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Thm 7.3.2. Let Y1, · · · ,Yn be a random sample from N(µ, σ2). Then
(a) S2 and Y are independent.

(b) (n − 1)S2

σ2
=

1

σ2

n∑
i=1

(
Yi − Y

)2

∼ Chi Square(n − 1).

Proof. We will prove the case n = 2.

Y =
Y1 + Y2

2
, Y1 − Y =

Y1 − Y2

2
, Y2 − Y =

Y2 − Y1

2

S2 = ... =
1

2
(Y1 − Y2)

2

(a) It is equivalanet to show Y1 + Y2 ⊥ Y1 − Y2. Since they are normal, it
suffices to show that

E[(Y1 + Y2)(Y1 − Y2)] = E[Y1 + Y2]E[Y1 − Y2]

(b) (n−1)S2

σ2 =
(

Y1−Y2√
2σ

)2

and Y1−Y2√
2σ

∼ N(0, 1) ... �
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Def 7.3.2. If U ∼ Chi Square(n) and V ∼ Chi Square(m), and U ⊥ V , then

F :=
V/m
U/n

follows the (Snedecor’s) F distribution with m and n degrees of
freedom.

Thm 7.3.3. Let Fm,n = V/m
U/n be an F r.v. with m and n degrees of freedom. Then

fFm,n (w) =
Γ
(m+n

2

)
mm/2nn/2

Γ(m/2)Γ(n/2)
× wm/2−1

(n + mw)(m+n)/2 , w ≥ 0

Equivalently,

fFm,n (w) = B(m/2, n/2)−1
(m

n

)m
2

w
m
2
−1

(
1 +

m
n

w
)− m+n

2

where B(a, b) = Γ(a)Γ(b)/Γ(a + b).
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Recall

Thm 3.8.4 Let X and Y be independent continuous random variables, with pdf
fX (x) and fY (y), respectively.
Assume that X is zero for at most a set of isolated points.
Then W = Y/X follows a distribution with pdf:

fW (w) =

∫ ∞

−∞
|x |fX (x)fY (wx)dx .

Thm 3.8.2 Suppose X is a continuous random variable and a 6= 0.
Then Y = aX + b follows a distribution with pdf:

fY (y) =
1

|a| fX
(

y − b
a

)
.

30
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Proof. Let us first find the pdf for W := V/U. By Theorem 7.3.1,

fV (v) =
1

2m/2Γ(m/2)
v (m/2)−1e−v/2,

fU(u) =
1

2n/2Γ(n/2)
u(n/2)−1e−u/2.

Then by Theorem 3.8.4, we see that the pdf of W is

fW (w) =

∫ ∞

−∞
|u|fU(u) fV (uw)du

=

∫ ∞

0

u
1

2n/2Γ(n/2)
u(n/2)−1e−u/2 1

2m/2Γ(m/2)
(uw)(m/2)−1e−uw/2du

=
1

2(n+m)/2Γ(n/2)Γ(m/2)
w (m/2)−1

∫ ∞

0

u
n+m
2

−1e− 1+w
2

udu
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Then by the change of variables, y = 1+w
2

u, we see that

fW (w) =
1

2(n+m)/2Γ(n/2)Γ(m/2)
w (m/2)−1

(
2

1 + w

) n+m
2

∫ ∞

0

y
n+m
2

−1e−y dy

=
1

2(n+m)/2Γ(n/2)Γ(m/2)
w (m/2)−1

(
2

1 + w

) n+m
2

Γ
(n + m

2

)
where the last equality is due to the definition of the Gamma function.

Finally, by Theorem 3.8.2, we see that F = V/m
U/n = n

m W follows a
distribution with pdf

fF (y) =
m
n

fW
(m

n
y
)

=
m
n

1

2(n+m)/2Γ(n/2)Γ(m/2)

(m
n

y
)(m/2)−1

(
2

1 + m
n y

) n+m
2

Γ
(n + m

2

)
= · · · y ≥ 0.

�
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�
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1 # Draw F density
2 x=seq(0,5,0.01)
3 pdf= cbind(df(x, df1 = 1, df2 = 1),
4 df(x, df1 = 2, df2 = 1),
5 df(x, df1 = 5, df2 = 2),
6 df(x, df1 = 10, df2 = 1),
7 df(x, df1 = 100, df2 = 100))
8 matplot(x,pdf, type = ”l”)
9 title(”F with various dgrs of freedom”)
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F- Table

P(F3,5 ≤ 5.41) = 0.95 ⇐⇒ F0.95,3,5 = 5.41

1 > pf(5.41, df1 = 3, df2 = 5)
2 [1] 0.9500093

1 > qf(0.95, df1 = 3, df2 = 5)
2 [1] 5.409451

1 > scipy.stats.f.cdf(5.41, 3, 5)
2 [1] 0.9500092950699683

1 > scipy.stats.f.ppf(0.95, 3, 5)
2 [1] 5.40945131805649
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Def 7.3.3. Suppose Z ∼ N(0, 1), U ∼ Chi Square(n), and Z ⊥ U. Then

Tn =
Z√
U/n

follows the Student’s t-distribution of n degrees of freedom.

Remark T 2
n ∼ F -distribution with 1 and n degrees of freedom.

Thm 7.3.4. The pdf of the Student t of degree n is

fTn (t) =
Γ
( n+1

2

)
√

nπΓ
( n
2

) ×
(
1 +

t2

n

)− n+2
2

, t ∈ R.
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Proof. Note that T 2
n = Z2

U/n follows an F (1, n) distribution. Hence,

fT2
n
(t) =

n
n
2Γ( n+1

2
)

Γ( 1
2
)Γ( n

2
)

t−
1
2

1

(n + t)
n+1
2

, t > 0.

Therefore,

FTn (t) = P(Tn ≤ t) = P(−∞ < Tn ≤ 0) + P(0 ≤ Tn ≤ t).

The term P(−∞ < Tn ≤ 0) is a constant which will disappear upon
differentiation.
Notice that{

T 2
n ≤ t2

}
= {−t ≤ Tn ≤ t} = {−t ≤ Tn ≤ 0} ∪ {0 ≤ Tn ≤ t}

=
{
−t

√
U/n ≤ Z ≤ 0

}
∪
{
0 ≤ Z ≤ t

√
U/n

}
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By symmetry of the distribution of Z ,

P
(
−t

√
U/n ≤ Z ≤ 0

)
= P

(
0 ≤ Z ≤ t

√
U/n

)
Therefore,

P
(
T 2

n ≤ t2
)
= P

(
−t

√
U/n ≤ Z ≤ 0

)
+ P

(
0 ≤ Z ≤ t

√
U/n

)
= 2P

(
0 ≤ Z ≤ t

√
U/n

)
= 2P(0 ≤ Tn ≤ t).

Hence,

FTn (t) = const .+
1

2
P
(
T 2

n ≤ t2
)

Finally, differentiation gives the density:

fTn (t) =
d
dt

FTn (t) =
d
dt

1

2
FT2

n
(t2) = t · fT2

n
(t2) = · · · .

�
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1 # Draw Student t−density
2 x=seq(−5,5,0.01)
3 pdf= cbind(dt(x, df = 1),
4 dt(x, df = 2),
5 dt(x, df = 5),
6 dt(x, df = 100))
7 matplot(x,pdf, type = ”l”)
8 title(”Student’s t−distributions”)
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t Table

P (T3 > 4.541) = 0.01 ⇐⇒ t0.01,3 = 4.541

1 > 1−pt(4.541, df =3)
2 [1] 0.009998238

1 > alpha = 0.01
2 > qt(1−alpha, df = 3)
3 [1] 4.540703

1 > 1 − scipy.stats.t.cdf(4.541, 3)
2 [1] 0.00999823806449407

1 > scipy.stats.t.ppf(1−0.01, 3)
2 [1] 4.540702858698419
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Thm 7.3.5. Let Y1, · · · ,Yn be a random sample from N(µ, σ2). Then

Tn−1 =
Y − µ

S/
√

n
∼ Student’s t of degree n − 1.

Proof.

Y − µ

S/
√

n
=

Y − µ

σ/
√

n√
(n − 1)S2

σ2(n − 1)

Y − µ

σ/
√

n
∼ N(0, 1) ⊥ (n − 1)S2

σ2
∼ Chi Square(n − 1)

By Def. 7.3.3 ... �
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As n → ∞, Students’ t distribution will converge to N(0, 1):

Thm 7.3.6. fTn (x) → fZ (x) =
1√
2π

e− x2
2 as n → ∞, where Z ∼ N(0, 1).

Proof By Stirling’s formula:

Γ(z) =

√
2π

z

(z
e

)z
(1 + O(1/z)) as z → ∞

=⇒ lim
n→∞

Γ
( n+1

2

)
√

nπ Γ
( n
2

) =
1√
2π

...... �
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