Math 362: Mathematical Statistics II

Le Chen
le.chen@emory.edu
Emory University Atlanta, GA

Last updated on April 13, 2021

2021 Spring

Chapter 9. Two-Sample Inferences

§ 9.1 Introduction
§ 9.2 Testing $H_{0}: \mu_{X}=\mu_{Y}$
\S 9.3 Testing $H_{0}: \sigma_{X}^{2}=\sigma_{Y}^{2}$
§ 9.4 Binomial Data: Testing $H_{0}: p_{X}=p_{Y}$
§ 9.5 Confidence Intervals for the Two-Sample Problem

Chapter 9. Two-Sample Inferences

§ 9.1 Introduction
§ 9.2 Testing $H_{0}: \mu_{X}=\mu_{Y}$
\S 9.3 Testing $H_{0}: \sigma_{X}^{2}=\sigma_{Y}^{2}$
§ 9.4 Binomial Data: Testing $H_{0}: p_{X}=p_{Y}$
§ 9.5 Confidence Intervals for the Two-Sample Problem

- Let X_{1}, \cdots, X_{n} be a random sample of size n from $N\left(\mu x, \sigma_{X}^{2}\right)$.

Let Y_{1}, \cdots, Y_{m} be a random sample of size m from $N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$.

Prob. 1 Testing $H_{0}: \mu_{X}=\mu_{Y}$ if $\sigma_{X}^{2}=\sigma_{Y}^{2}$.

Prob. 2 Testing $H_{0}: \mu_{X}=\mu_{Y}$ if $\sigma_{X}^{2} \neq \sigma_{Y}^{2}$.

- True means:
- True std. dev.'s: $\quad \sigma_{X}, \sigma_{Y}$
- True variances: $\quad \sigma_{X}^{2}, \sigma_{Y}^{2}$
- Sample means:
\bar{X}, \bar{Y}
- Sample std. dev.'s:
S_{X}, S_{Y}
\rightarrow Sample variances: S_{X}^{2}, S_{Y}^{2}

$$
\text { When } \sigma_{X}^{2}=\sigma_{Y}^{2}=\sigma^{2}
$$

Def. The pooled variance: $S_{p}^{2}=\frac{(n-1) S_{X}^{2}+(m-1) S_{Y}^{2}}{n+m-2}$

$$
=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}+\sum_{j=1}^{n}\left(Y_{j}-\bar{Y}\right)^{2}}{n+m-2}
$$

Thm. $T_{n+m-2}=\frac{\bar{X}-\bar{Y}-\left(\mu_{X}-\mu_{Y}\right)}{S_{\rho} \sqrt{\frac{1}{n}+\frac{1}{m}}} \sim$ Student t distr. of $n+m-2$ dgs of fd.

Proof. (See slides on Section 9.1)

When $\sigma_{X}^{2}=\sigma_{Y}^{2}=\sigma^{2}$

Testing $H_{0}: \mu_{X}=\mu_{Y}$ v.s.
(at the α level of significance)

$$
t=\frac{\bar{x}-\bar{y}}{s_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}}
$$

$H_{1}: \mu_{X}<\mu_{Y}:$
$H_{1}: \mu_{X} \neq \mu_{Y}:$
$H_{1}: \mu_{X}>\mu_{Y}:$
Reject H_{0} if
$t \leq-t_{\alpha, n+m-2}$
Reject H_{0} if
Reject H_{0} if
$t \geq t_{\alpha, n+m-2}$
E.g. Test whether Mark Twain and Snodgrass are the same person by checking the proportion of three-letter words at the 99% level of significance.

Table 9.2.1			
Proportion of Three-Letter	Words		
Twain	Proportion	QCS	Proportion
Sergeant Fathom letter	0.225	Letter I	0.209
Madame Caprell letter	0.262	Letter II	0.205
Mark Twain letters in		Letter III	0.196
\quad Territorial Enterprise		Letter IV	0.210
First letter	0.217	Letter V	0.202
Second letter	0.240	Letter VI	0.207
Third letter	0.230	Letter VII	0.224
Fourth letter	0.229	Letter VIII	0.223
First Innocents Abroad letter		Letter IX	0.220
First half	0.235	Letter X	0.201
Second half	0.217		

Sol. We need to test

$$
H_{0}: \mu_{X}=\mu_{Y} \quad \text { v.s. } \quad H_{1}: \mu_{X} \neq \mu_{Y} .
$$

Since we are tesing whether they are the same person, one can assume that $\sigma_{X}^{2}=\sigma_{Y}^{2}$.

1. $n=8, m=10$,

$$
\begin{array}{ll}
\sum_{i=1}^{n} x_{i}=1.855, & \sum_{i=1}^{n} x_{i}^{2}=0.4316 \\
\sum_{i=1}^{m} y_{i}=2.097, & \sum_{i=1}^{m} y_{i}^{2}=0.4406
\end{array}
$$

2. Hence,

$$
\begin{gathered}
\bar{x}=1.855 / 8=02319 \quad \bar{y}=2.097 / 10=0.2097 \\
s_{X}^{2}=\frac{8 \times 0.4316-1.855^{2}}{8 \times 7}=0.0002103 \\
s_{Y}^{2}=\frac{10 \times 0.4406-2.097^{2}}{10 \times 9}=0.0000955 \\
s_{p}^{2}=\frac{(n-1) s_{X}^{2}+(m-1) s_{Y}^{2}}{n+m-2}=\ldots=0.0001457 \\
t=\frac{\bar{x}-\bar{y}}{s_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}}=\ldots=3.88
\end{gathered}
$$

3. Critical region: $|t| \geq t_{0.005, n+m-2}=t_{0.005,16}=2.9208$.

4. Conclusion: Rejection!

E.g. Comparing large-scales and small-scales companies:

Based on the data below, can we say that the return o equity differs between the two types of companies?

Large-Sales Companies	Return on Equity (\%)	Small-Sales Companies	Return on Equity (\%)
Deckers Outdoor	21	NVE	21
Jos. A. Bank Clothiers	23	Hi-Shear Technology	21
National Instruments	13	Bovie Medical	14
Dolby Laboratories	22	Rocky Mountain Chocolate Factory	31
Quest Software	7	Rochester Medical	19
Green Mountain Coffee Roasters	17	Anika Therapeutics	19
Lufkin Industries	19	Nathan's Famous	11
Red Hat	11	Somanetics	29
Matrix Service	2	Bolt Technology	20
DXP Enterprises	30	Energy Recovery	27
Franklin Electric	15	Transcend Services	27
LSB Industries	43	IEC Electronics	24

Sol. Let μ_{X} and μ_{Y} be the average returns. We are asked to test

$$
H_{0}: \mu_{X}=\mu_{Y} \quad \text { v.s. } \quad H_{1}: \mu_{X} \neq \mu_{Y} .
$$

1.

$$
\begin{array}{lll}
n=12, & \sum_{i=1}^{n} x_{i}=223 & \sum_{i=1}^{n} x_{i}^{2}=5421 \\
m=12, & \sum_{i=1}^{m} y_{i}=263 & \sum_{i=1}^{m} y_{i}^{2}=6157
\end{array}
$$

2.

$$
\begin{gathered}
\bar{x}=18.5833, \quad s_{X}^{2}=116.0833 \\
\bar{y}=21.9167, \quad s_{Y}^{2}=35.7197 \\
w=\frac{18.5833-21.9167}{\sqrt{\frac{116.0833}{12}+\frac{35.7197}{12}}}=-0.9371932 . \\
\hat{\theta}=\frac{116.0833}{35.7179}=3.250 \Rightarrow \quad \nu=\left[\frac{(3.250+1)^{2}}{\frac{1}{11} 3.250^{2}+\frac{1}{11} 1^{2}}\right]=[17.18403]=17 .
\end{gathered}
$$

3. The critical region is $|w| \geq t_{\alpha / 2,17}=2.1098$.
4. Conclusion:

Since $w=-0.94$ is not in the critical region, we fail to reject H_{0}.

