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1. Give all possible representations of 2022 as a sum of at least two consecutive positive integers
and prove that these are the only representations.

Let SM,N =
N∑

n=M

n be the sum of consecutive positive integers from n = M to n = N and recall

the formula

S1,N =
N(N + 1)

2

We aim to solve the equation SM,N = 2022. Using the above formula, observe

SM,N = S1,N − S1,M−1

=
N(N + 1)

2
− (M − 1)M

2

=
N2 + (M +N)−M2

2

Hence, an equivalent formulation for our equation is

N2 + (M +N)−M2︸ ︷︷ ︸
(N2−M2)+(N+M)

= 4044 =⇒ (N +M)(N −M + 1) = 22 · 3 · 337

N + M and N −M + 1 must have opposite parity. This leads to checking 6 possible cases, of
which we can quickly eliminate the possibilities corresponding to N +M ∈ {3, 4, 12}:

(a) Case 1: N +M = 337, N −M + 1 = 12

The system of equations reduces to 2N = 348, or N = 174. Then we find M = 163. Thus,
S163,174 = 2022.

(b) Case 2: N +M = 1011, N −M + 1 = 4

The system of equations reduces to 2N = 1014, or N = 507. Then we find M = 504.
Thus, S504,507 = 2022.

(c) Case 3: N +M = 1348, N −M + 1 = 3

The system of equations reduces to 2N = 1350, or N = 675. Then we find M = 673.
Thus, S673,675 = 2022.



2. Let A and B be the two foci of an ellipse and let P be a point on this ellipse. Prove that the
focal radii of P (that is, the segments AP and BP ) form equal angles with the tangent to the
ellipse at P .

Let ` be the line passing through P such that AP and BP form equal angles with `. It suffices
to show that the line ` is tangent to the ellipse.

If ` is not tangent to the ellipse, then it intersects the ellipse both at P and at a point Q different
from P . Let A′ be the reflection of A with respect to the line `. Since AP and BP form equal
angles with `, the points A′, P , and B are collinear. It follows that

|A′B| = |A′P |+ |PB| = |AP |+ |PB| = |AQ|+ |QB| = |A′Q|+ |QB|.

By the triangle inequality, this is impossible unless A′, Q, and B are on the same line, i.e.
P = Q, a contradiction.



3. Find all positive integers a, b, c, d, and n satisfying na + nb + nc = nd and prove that these are
the only such solutions.

Without loss of generality, a ≤ b ≤ c ≤ d. Then dividing through by nd, we have

na−d + nb−d + nc−d = 1

Each of the exponents is at most −1, so we have

na−d + nb−d + nc−d ≤ 3

n

which forces 1 ≤ n ≤ 3. Clearly n 6= 1.

For n = 3, we must have all exponents equal to −1; that is, a − d = −1, b − d = −1, and
c− d = −1. Hence, for any natural number k ≥ 2, it follows that

a = k − 1

b = k − 1

c = k − 1

d = k

gives a solution to the equation.

For n = 2, we can have neither min{a− d, b− d, c− d} ≥ −1 nor max{a− d, b− d, c− d} ≤ −2,
hence c− d = −1. The equation then reduces to

na−d + nb−d =
1

2

and by a similar argument, we must have a − d = −2 and b − d = −2. Then, for any natural
number k ≥ 3, it follows that

a = k − 2

b = k − 2

c = k − 1

d = k



4. Calculate the exact value of the series
∞∑
n=2

log(n3 + 1)− log(n3 − 1) and provide justification.

Using properties of logarithms, we have

∞∑
n=2

log(n3 + 1)− log(n3 − 1) =
∞∑
n=2

log

(
n3 + 1

n3 − 1

)

= log

(
∞∏
n=2

n3 + 1

n3 − 1

)

= log

(
∞∏
n=2

(n+ 1)(n2 − n+ 1)

(n− 1)(n2 + n+ 1)

)

= log

(
lim

N→∞

N∏
n=2

(n+ 1)(n2 − n+ 1)

(n− 1)(n2 + n+ 1)

)

Then the product satisfies

N∏
n=2

n+ 1

n− 1
=

(3)(4)(5)(6)(7) · · · (N + 1)

(1)(2)(3)(4)(5) · · · (N − 1)
=

1

2
·
(
N + 1

N − 1

)
and

N∏
n=2

n2 − n+ 1

n2 + n+ 1
=

(3)(7)(13)(21)(31) · · · (N2 −N + 1)

(7)(13)(21)(31) · · · (N2 +N + 1)
= 3 ·

(
N2 −N + 1

N2 +N + 1

)
Letting N →∞, we have

∞∑
n=2

log(n3 + 1)− log(n3 − 1) = log

(
3

2

)



5. Let A be an invertible n × n matrix with complex entries. Suppose that for each positive
integer m, there exists a positive integer km and an n × n invertible matrix Bm such that
Akmm = BmAB

−1
m . Show that all eigenvalues of A are equal to 1.

Let λ1, . . . , λn be the eigenvalues of A (which are allowed to repeat). Then λkmm
1 , . . . , λkmm

n are
the eigenvalues of Akmm, and λ1, . . . , λn are the eigenvalues of BmAB

−1
m . Therefore, we have for

all m ∈ N that
{λkmm

1 , . . . , λkmm
n } = {λ1, . . . , λn}.

So for each 1 ≤ i ≤ n and m ∈ N, λkmm
i = λam,i

for some am,i ∈ {1, . . . , n}. By the pigeonhole

principle, there exist m,m′ ∈ N, kmm 6= km′m′ such that λkmm
i = λ

km′m′

i and thus λ
kmm−km′m′

i =
1. Hence, λi is a root of unity for all 1 ≤ i ≤ n.

Then there exists m ∈ N such that λm1 = · · · = λmn = 1. Then {1} = {λkmm
1 , . . . , λkmm

n } =
{λ1, . . . , λn}. We are done.



6. Let f : R→ R be a function whose second derivative is continuous. Suppose that f and f ′′ are
bounded. Show that f ′ is also bounded.

Assume that |f(x)|, |f ′′(x)| ≤M for some M > 0 for all x ∈ R. If f ′ is not bounded, then there
exists x0 ∈ R such that |f ′(x0)| > N for some N ∈ R to be chosen later. We prove the case
where f ′(x0) > N ; the proof of the other case is similar.

Since |f ′′(x)| ≤M for all x ∈ R, by the Mean Value Theorem, we have

f ′(x) >
N

2
for all x such that x0 −

N

2M
≤ x ≤ x0

since if not, then there exists y ∈ [x0, x] such that

f ′′(y) =
f ′(x0)− f ′(x)

x− x0
>

N/2

N/2M
= M,

a contradiction. Define y0 := x0 −
N

2M
. Again by the Mean Value Theorem,

f(x0)− f(y0) ≥
N2

4M

since if not, then there exists y0 ≤ z ≤ x0 such that

f ′(z) =
f(x0)− f(y0)

x0 − y0
<
N2/4M

N/2M
= N/2,

a contradiction. Hence one of |f(x0)| and |f(y0)| is at least N2/8M . We arrive at a contradiction
if we choose N so that N2 > 8M2 since we then have

max{|f(x0)|, |f(y0)|} ≥
N2

8M
> M


