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1. Give all possible representations of 2022 as a sum of at least two consecutive positive integers
and prove that these are the only representations.

N
Let Sy n = Z n be the sum of consecutive positive integers from n = M to n = N and recall
n=M
the formula
N(N +1)
Siv= "5

We aim to solve the equation Sy, ny = 2022. Using the above formula, observe

Su,n = Si,nv — S1,m-1
N(N+1) (M-1)M

2 2
N4+ (M+N) - M?
B 2

Hence, an equivalent formulation for our equation is

N?+(M+N)—M?*=4044 = (N+M)(N—-M+1)=2*.3 . 337

(N2=M?)+(N+M)

N + M and N — M + 1 must have opposite parity. This leads to checking 6 possible cases, of
which we can quickly eliminate the possibilities corresponding to N + M € {3, 4, 12}:

(a) Case 1: N+ M =337, N - M+1=12
The system of equations reduces to 2N = 348, or N = 174. Then we find M = 163. Thus,
Sie3174 = 2022.

(b) Case 2: N+ M =1011, N -M+1=4
The system of equations reduces to 2N = 1014, or N = 507. Then we find M = 504.
Thus, Ss04,507 = 2022.

(c) Case 3: N+ M =1348, N— M +1=3
The system of equations reduces to 2N = 1350, or N = 675. Then we find M = 673.
Thus, Sers 675 = 2022.



2. Let A and B be the two foci of an ellipse and let P be a point on this ellipse. Prove that the
focal radii of P (that is, the segments AP and BP) form equal angles with the tangent to the
ellipse at P.

Let ¢ be the line passing through P such that AP and BP form equal angles with ¢. It suffices
to show that the line ¢ is tangent to the ellipse.

If / is not tangent to the ellipse, then it intersects the ellipse both at P and at a point () different
from P. Let A’ be the reflection of A with respect to the line /. Since AP and BP form equal
angles with ¢, the points A’, P, and B are collinear. It follows that

|A'B| = |A'P| +|PB| = |AP| + |[PB| = [AQ| + |@B| = |[A'Q| + |QB.

By the triangle inequality, this is impossible unless A’, ), and B are on the same line, i.e.
P = (), a contradiction.



3. Find all positive integers a, b, ¢, d, and n satisfying n® + n® + n° = n? and prove that these are
the only such solutions.

Without loss of generality, a < b < ¢ < d. Then dividing through by n¢, we have
na—d + nb—d + nc—d -1

Each of the exponents is at most —1, so we have

R 3
n
which forces 1 < n < 3. Clearly n # 1.
For n = 3, we must have all exponents equal to —1; that is, a —d = —1, b —d = —1, and
¢ —d = —1. Hence, for any natural number k& > 2, it follows that
a=Fk—1
b=Fk—1
c=k—1
d=k

gives a solution to the equation.

For n = 2, we can have neither min{a —d,b —d,c—d} > —1 nor max{a —d,b—d,c—d} < =2,

hence ¢ — d = —1. The equation then reduces to
a—d b—d
+n't ==
n n 5
and by a similar argument, we must have a — d = —2 and b — d = —2. Then, for any natural

number £ > 3, it follows that

a=k—2
b=k —2
c=k—-1

d=Fk



4. Calculate the exact value of the series Z log(n® + 1) — log(n® — 1) and provide justification.

n=2

Using properties of logarithms, we have

o0 o0 3
+1
log(n® + 1) —log(n® —1) =S log [ =
> tog(nt +1) g’ ~1) = >_og (157 )
=~ nd 1
=1
(

— log ( i T1 <”+1)("2_"+1)>

2
N—oo -2 (n—1)(n* + n+1)
Then the product satisfies

STntl o (B)@E)E)T) (N4 1 (N4
Il > (v

san—1  (1)2)3)4)5) - (N 1) N-1
and
Sl —nt 1l B)NA3)RDEBY) - (NP~ N+1) . (N>—N+1
gn2+n+1  (D3)2D)(31) - (N2+ N +1) '(N2+N+1)

Letting N — oo, we have

Ezlog(n3 +1) — log(n® — 1) = log (g)
n=2



5. Let A be an invertible n x n matrix with complex entries. Suppose that for each positive
integer m, there exists a positive integer k,, and an n x n invertible matrix B,, such that
Akmm — B AB-!. Show that all eigenvalues of A are equal to 1.

Let A1, ..., A\, be the eigenvalues of A (which are allowed to repeat). Then )\’fmm, o A are
the eigenvalues of A*™ and A, ..., )\, are the eigenvalues of B,,AB;!. Therefore, we have for
all m € N that

IDMND LU D VIR W

So for each 1 < i < nand m € N, \'"™ = A, . for some a,,; € {1,...,n}. By the pigeonhole
principle, there exist m,m’ € N, k,m # kyym’ such that \fm™ = )\j’m/m’ and thus )\f’"m_km'm, =
1. Hence, \; is a root of unity for all 1 <i < n.

Then there exists m € N such that A\J* = --- = A = 1. Then {1} = {\=™ ... Memm) =
{1, ..., A} We are done.



6. Let f: R — R be a function whose second derivative is continuous. Suppose that f and f” are

bounded. Show that f’ is also bounded.

Assume that |f(x)],|f"(z)| < M for some M > 0 for all z € R. If f"is not bounded, then there
exists o € R such that |f'(z)] > N for some N € R to be chosen later. We prove the case
where f’'(zg) > N; the proof of the other case is similar.

Since |f"(x)| < M for all z € R, by the Mean Value Theorem, we have
N N
f(z) > 5 for all x such that xy — i <z <z

since if not, then there exists y € [xg, x| such that

Fla) = Fx) N2
T — X N/2M

f(y) = M,

N
a contradiction. Define yy := xo — IR Again by the Mean Value Theorem,

N2
f(zo) = f(yo) = i

since if not, then there exists yy < z < xy such that

oy f@o) = flyo) _ N?/AM
f<z - Lo — Yo < N/QM —N/27

a contradiction. Hence one of | f(xo)| and | f(yo)] is at least N2 /8M. We arrive at a contradiction
if we choose N so that N? > 8 M? since we then have

2

maxc{| (o), |/} = oo > M



