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Abstract.

We consider large scale ill-conditioned linear systems arising from discretization of
ill-posed problems. Regularization is imposed through an (assumed known) upper
bound constraint on the solution. An iterative scheme, requiring the computation
of the smallest eigenvalue and corresponding eigenvector, is used to determine the
proper level of regularization. In this paper we consider several computational issues
involved in this approach, including the use of a Rayleigh quotient iteration for the
eigenvalue/vector computation.
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1 Introduction

Discretization of large scale ill-posed problems result in linear systems of the
form:
(1.1) g=Kf+n,

where K is a large ill-conditioned matrix, n is a vector representing perturbations
(such as noise) in the measured data, g, and the aim is to compute a good
approximation to the unknown vector f. It is well known (cf. [5, 12]) that
regularization is needed in order to avoid computing solutions that are corrupted
by noise. Regularization can take many forms, such as Tikhonov regularization
[9], truncated iterations [10], and truncated singular value decomposition [12].
In this paper we assume an upper bound, A, on the norm of the true solution, f,
is known, and enforce regularization by computing a solution of the constrained
minimization problem:

min %fTKTKf —gTKf

(12) subject to ||f]]> < A.
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We note that in many applications it may not be possible to find a good up-
per bound A, and the numerical methods considered in this paper may not be
appropriate in these situations. However, if a good bound is known, then knowl-
edge of this information should be exploited. Theoretical results characterizing
properties of solutions of (1.2) have been presented by Gander [6]. In this paper,
we are concerned with the development of efficient algorithms for computing
solutions of (1.2).

For matrices of small dimension, solutions to (1.2) can be computed using
the singular value decomposition (SVD) [7]. For large-scale problems, though,
the SVD approach can be prohibitively expensive. Eldén [4] proposed a more
efficient approach based on using the QR factorization, but it is still relatively
expensive, and any special structure of the matrix K is not easily exploited in
this scheme. Chan, Olkin and Cooley [3] consider the use of Newton and secant
iteration methods to solve (1.2), but they assume an efficient solver for least
squares problems exists. Golub and von Matt [8] propose a scheme based on
Lanczos bidiagonalization for the case when the bound in (1.2) is equality.

The scheme we use to solve the bound constrained minimization problem (1.2)
is based on recent work by Sorensen [19] and Rojas [17] (see also [18]). Our
approach differs in some of the computational details, where we adapt some
recent work by Bjorck, Heggernes and Matstoms [2] (see also [1]) for large total
least squares problems. The method suggested by Rojas and Sorensen is based
on the following lemma.

LEMMA 1.1. The vector f is a solution to the bound constrained minimization
problem (1.2) if and only if £ is a solution to the linear system

(1.3) (KTK —\)f =KTg,

where KT K — M is positive semi-definite, A < 0 and A(A — ||f|]2) = 0.

Typically the linear system (1.3) is written with a nonnegative regularization
parameter g = —\. The nonstandard formulation used by Rojas and Sorensen
allows for the problem of computing a regularized solution to be easily recast
into a form that requires the computation of the smallest eigenvalue and associ-
ated eigenvector of a certain structured matrix. This relationship is outlined in
section 2. In section 3 we describe a Rayleigh quotient iteration method (which
is a modification of a scheme used in [1, 2] for large scale total least squares
problems) to compute the smallest eigenvalue and corresponding eigenvector of
the structured matrix. Some additional algorithmic considerations are discussed
in section 4, and numerical results are reported in section 5.

2 An Eigenproblem

Suppose « is a fixed scalar. Then the solution to the bound constrained
minimization problem is related to the solution of the following eigenproblem

(ct. [19, 17]): i
g L] =]
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where the eigenvector has been normalized to have first component equal to one.
We assume that the first component of the eigenvector is different from zero; in
general, as we remark later, this will usually be the case. If the first component
of the eigenvector is zero, then some modifications of the approach are needed;
see [19, 17] for further details.

Note that this eigenvalue problem implies that

—KTg+ KTKf = ),

or equivalently
(KTK —ADf = K'g.

Thus, according to Lemma 1.1, the bound constrained minimization problem
(1.2) is solved if we can find a scalar « such that the bordered matrix

B — a —eTK
*~ | —KTg KTK

has an eigenvalue/eigenvector pair A, [ }. ] satisfying:

e KTK — ) is positive semi-definite,
¢ A <0, and
o \(A - [[f]l2) =0.

If we can iteratively adjust a so that such an eigenpair can be found, then we
have an approach to solve the regularization problem (1.2).

At first glance this approach appears to be computationally expensive. How-
ever, the following important observations allow us to restrict our search of
eigenpairs to the smallest eigenvalue of B,,.

1. Let Ay < Ay < -+ < Apy1 be the eigenvalues of the (n + 1) x (n + 1)
bordered matrix B,, and 0 < é; < §; < --- < &, be the eigenvalues of
the n x n matrix KT K. The interlacing property of eigenvalues [7] implies
that

M0 < X<oh< <A <0n < Ayt

2. For any choice of a, the interlacing property implies that A; > 0 for j > 2.
Moreover KT K — );I is not positive semi-definite for j > 2.

3. Moreover, for any «, the interlacing property implies that if A = Ay, then
KTK — ) is always positive semi-definite.

Since we need to find an eigenvalue satisfying A < 0 and such that KTK — \I
is positive semi-definite, these observations suggest that we need only consider
the smallest eigenvalue and corresponding eigenvector of B,. Thus, an outline
of a scheme to compute a solution to the regularized problem (1.2) is:
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Choose an initial «
for k=0,1,2,...
o Compute the smallest eigenvalue A and corresponding

(normalized) eigenvector }.
o if A <0 and A(A —||f||]2) = 0, stop.
e otherwise, adjust a and continue
end

Let us briefly explain why we can choose the first entry of the eigenvector of
B, to be equal to 1. In the general case we look for the solution of

(2.1) B,x = Ax

in the form
that is,

which is the same as the linear system

(a=Np = g'Kf
(KTK —ADf = pg’K

If we assume that the first entry of the solution can be zero (i.e. p = 0), then
this system becomes the following one:

gTKf = 0
(KTK —ADf = 0

However, since we are looking for the solution of this linear system under the
assumption that A < 0, then matrix KT K — \I is positive definite. Thus the lin-
ear subsystem (KT K — AI)f = 0 has only one solution f = 0. So, the solution of
the original problem (2.1) is 0 and this is not an eigenvector. This contradiction
proves that u # 0, or without loss of generality, we can assume p = 1.

Clearly the efficiency of this approach depends on how efficiently we can com-
pute the smallest eigenvalue and eigenvector of B,, and on how quickly we can
iteratively update « in order to converge to the optimal A. These issues are
discussed in the following sections.

3 Solving the Eigenproblem

Since we are considering large-scale problems, we use an iterative method to
compute the smallest eigenvalue and eigenvector of B,. In particular, we would
like a scheme in which matrix-vector multiplications are the most expensive
part of each iteration. Sorensen [19] and Rojas [17] use the implicitly restarted
Lanczos method as implemented in ARPACK [15].
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In this paper, we consider an alternative approach which uses a Rayleigh
quotient iteration (RQI). The motivation for using RQI comes from the fact
that the eigenvalue problem we want to solve is very similar to the one that
arises in the closed form expression of the basic solution for total least squares
problems (see [13, Theorem 2.7]). Bjorck [1] proposed using an RQI method to
solve the eigenvalue problem, and Bjorck, Heggernes and Matstoms [2] provided a
further analysis of the scheme. In particular, they suggest that the RQI approach
can be used to solve a wider range of problems than Lanczos type algorithms,
particularly because linear systems arising in the iteration can be solved by
a preconditioned conjugate gradient method. In the TLS context, Kamm and
Nagy [14] show that preconditioning can have a dramatic effect on the speed of
convergence when the coefficient matrix has a Toeplitz structure.

The derivation of the RQI method is very similar to that given in [1], but we
present it here for completeness. For the eigenvalue problem

a —gTK 1] A\ 1
-KTg KTK f | f|’
the Rayleigh quotient is

| g 8]

pf) = T
(1t ][f]
_ a—2g"Kf+ fTKTKf
- 1+ f7f
a—-glg+rTr
1+ fTf ’

where r = g — Kf. The RQI method for our problem can be stated as (see [7]):

fy given
for j=0,1,2,...
A0 = p(f))
. 1 1
—\@ =4
Solve (B, — AWI) [ £41 ] B; [ £ ]
end

The linear system we need to solve at each step of RQI is:

a— A0 -g"K L ]_s 1
—KTg KTK - )91 i | 8|

Multiplying both sides of this relation by

1 g"K(KTK - X0~
0 I
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we obtain

Tj 0 1 _ﬁ' 1
—KTg KTK fj+1 M 1+ fo] ’

where z; = (KTK -\ 1) 'KTg and 7; = a— A —gTKz;. From this relation,
we see that

o
(3.1) Bi = ﬁ

(32) firn = zj+ Py,

where u; = (KTK — A9 T)~'f;. If we now define the residuals
(3.3) p; = —KTr;—)\9f;

(34) v o= —g'r+A9 +gTg—a,

then we can rewrite z; and 7; as

(3.5) zj = fj+w;

(3:6) T = Zpj—vta-g'g

Using the relations (3.1-3.6) in the RQI method, we obtain the following algo-
rithm:

Assume an initial f is given
r=g— Kf

a,=a-g'g

O = (a, +7r)/(1 +£7)

for j=0,1,2,...

p=—-KTr - \Of
v=—glr+ A& — ay,
Solve (KTK — A Iw = —p
z=f+w

T=2Tp—1v
B=1/(1+zTf)

Solve (KTK — AW Iu=f
f=z+pfu

r=g— Kf

D) = (ay +170)/(1+£7)

end_

The advantages of using this RQI approach include the fact that RQI is cubi-
cally convergent, and that we can solve the linear systems involving KT K — X9 T
using a preconditioned conjugate gradient method; see [1, 2] for further details.

4 TUpdating «

In this section our goal is to find « such that the normalized eigenvector
[1,£7]T corresponding to the smallest eigenvalue A, of the matrix B, satisfies
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the equation:
lIf]l2 = A.

Rendl and Wolkowicz [16] presented the following bounds for the optimal
parameter q,p¢

(4.1) 5y — I

K
Tg” S aopt S 61 + ||KTg||Aa

where 47 is the smallest eigenvalue of K TE.
However it would be very expensive to find the exact value of §; or even a
good approximation to it. For this reason, we will use the following estimates

for &1 (see, for example, [17])
TN 2
5 < (L)
Il

where x is a random vector, and

1K ]|
1|

where Ay is the minimal eigenvalue of B, for the corresponding «. The last
inequality holds because of the interlacing property. Thus, we have computable
bounds for the optimal value of a € [y, ]

KTx[|\?
o= (M) +1aala

5, > Ay(min(0, ( ) +|IKTgl|A))

s

a; = A\ (min(0, a;)) A

4.1 Adjusting «

One approach to find the optimal value apt is based on the function ¢(\)
defined by

é(\) ="K (KTK - \I) ' K"g.

If the function ¢(A) is known, then the optimal parameter o can be found in the
form

(4.2) a=XA+¢(N).

The value of the function can be computed for each A, however we do not have
an analytical expression for ¢()\). Because of this, Rojas, Santos and Sorensen
[18, 17] suggested to use some approximations to the function @¢(\).

In particular, they approximate ¢()\) using the function ¢(\) which has the
form

(4.3) $() = L
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where 72 and § are to be found. It is very reasonable to look for an approxima-
tion having this form because if all eigenvalues §; are known, then the function
¢(A) can be written in the form

_N %

(44) o0 =2 55
where ; are the expansion coefficients of —K g in the eigenvector basis.

Another approximation for the function ¢(\) suggested by Rojas [17] has the
form

~ "YQ

(45) ) = 51 + B =X+,
where the coefficients 3, 72, 8, and 7 are to be determined.

To find the undetermined coefficients of the function ¢(\) the following prop-
erties of the original function are used:

(4.6) ¢(\) =g"Kfy and ¢'(\) =\,

where the vector [1,f{]7 is the eigenvector of B, corresponding to the eigenvalue
A

Note: we are assuming that the approximation function <73(/\) also satisfies these
properties. We also would like to note that for the approximation (4.3) one has
to know only the minimal eigenvalue of B, however for (4.5) it is not enough
to know only one pair (A1, fy,), because there are four unknown parameters and
only two conditions. Therefore, one has to know two pairs (A1, fx,) and (A2, f),)
to find all unknown parameters.

4.2 An alternative method for updating o

Aiming to find the same optimal value of the parameter a we consider an
alternative approach. Let us recall that the our goal is to find such a value a,p
that satisfies the equation ||f)_ ||z = A. Thus, the main idea of the method is to
solve the equation ||fy,||2 — A = 0 over the interval [oq, a;].

Let us define a new function n(a) by

n(a) = |[[fx.ll2 — A,

where A\, is the smallest eigenvalue of B, and [1,f{ |7 is the corresponding
eigenvector. Now we need to solve the equation n(a) = 0 numerically. In order
to do this we approximate the function n(a) by approximating ||fy_||- To do
this we recall that by the second part of (4.6) ||fx. || = v/¢'(Aa) and could be
approximated by a rational function of A\. However, since it is more convenient
for us to approximate it by a rational function of a, we use

fL(Oé) = ﬁ +C,

where the coefficients a, b, and ¢ are to be found. This approximation is similar
to (4.5) and, in a small neighborhood of the root of the equation n(a) = 0, we
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claim that they are essentially the same. This can be seen by observing that
near the root, ¢'(\) = A, and so differentiating equation (4.2) with respect to a

we obtain
dX\ 1 1

de  T+¢(N)  1+AZ
That is, Ay depends linearly on «, and it is therefore reasonable to consider a
rational approximation of n(a).
Since we need to find three coefficients we have to know values of the new
function 7i(«) at three different points. Thus, knowing values of n(a) at points

ay, a, and an intermediate point «; we are able to find the unknown coefficients
and then solve

a
2 =0
b—a+c

for a. Doing this we can conclude that the next intermediate pont au,e.¢ can be
expressed by

(4.7) Qnext = b+ %,
where

b= (o= aqMe0ne) oz oY (1 et on(e) ey T
(48 = —rledglend (g — b)(a; )

c= nloy)-— al‘ib

The iteration method and safeguarding. At each step of the iteration
process using the points (g, n()), (a;,n(e;)), and (a,,n(a;,)) and expressions
(4.8) we evaluate the next approximation to the optimal parameter and update
the points. If the current step of the process looks like the one on Figure 4.1,
then the old a; becomes the new «, anert becomes the new «;, and «, stays
unchanged.

When updating o one has to make sure that the next approximation ayezt
is located in the correct subinterval of the interval [ag, a,]. It might happen,
due to roundoff errors, that n(a;) is not between n(a;) and n(a,.). In this case
the approximation function will behave as shown in Figure 4.2. In situations
such as this, we choose apez¢ by using the secant method to find the solution
numerically

Qnext — O — (ar - ai)

Choosing the initial point «;. Starting the iteration process to find the
optimal value of a we are not able to find all unknown coefficients in the ap-
proximation 7i(a). To do this we need to have a value of the function at one
more point. We will call this point the initial one. Choosing the initial point
we would like to get a good initial approximation to the optimal value. We
can do that if we choose o = gT KK7Tg as the initial approximation. This
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Figure 4.1: One step of the iteration process.

choice can be explained if we remember that g is given by (1.1). If we solve
the pure system with no noise in it, then g = Kf and in this case the optimal
parameter a,,; = g' K KTg. It is easy to see that in this case the f-part of the
eigenvector [1,fT]7 corresponding the minimal eigenvalue A = 0 of the matrix
B,,,, is the solution of the original system (see, for example, [2]). If the noise
level is not too large, say ||n|| < ¢||g|| (where ¢ ~ 10~2-10"2), we can conclude
that « = g" KKTg is a very reasonable approximation. Extensive numerical
experiments indicate that n(a;) > 0. We are not able to prove this as a fact,
but evaluating function n(a) at the point a; before the point a, gives us an
opportunity to avoid an extra step of the iteration method.

5 Numerical Results

In this section we present the numerical results using the algorithms described
in this paper. The first set of experiments are similar to these used be Rojas
[17]. In particular, we consider several test problems (listed in the first column
of Table 1) from Hansen’s Regularization Tools package [11]. The dimension of
all problems was chosen to be n = 300. The right-hand side is

r
g = g+5—7
(Il

where g is the “pure” right-hand side, that is Kf.,.. = g, r is a random vector
with components uniformly distributed in [0,1], and € is the noise level. The
trust-region radius A was chosen to be equal to ||fezqct||-

Table 1 shows the numerical results of the described algorithm applied to spe-
cific problems. These results compare favorably with those presented in [17].
Moreover, we have also used Newton and secant methods suggested in [3], and
we have found the approach used in this paper to be more robust. That is,
although the Newton and/or secant methods sometimes require fewer matrix-
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Figure 4.2: Safeguarding a,ey¢-

Problem A W TR its | RQI its | CGLS its | MV prods
baart 1.2533 | 0.123742 4 20 185 469
deriv2 0.5514 | 0.028558 11 36 1009 2213
foxgood 9.9999 | 0.036772 3 12 60 183
wing 0.5774 | 0.602906 8 27 212 557
phillips 2.9999 | 0.028761 4 15 221 523
shaw 17.2893 | 0.090364 6 24 263 852

Table 5.1: No preconditioner

vector multiplications, the solutions can be significantly worse than those ob-
tained by the presented method. Table 2 shows the relative errors and required
number of matrix-vector products for the same set of test problems. Note, that
only for the phillips test problem is the same precision achieved. Relative errors
for all of the other problems are substantially larger than those obtained with
our approach.

In the next set of experiments we illustrate that preconditioning can be ef-
fective in reducing the computational cost of the approach used in this paper.
The test problem we use is a simulation of an application in which a degraded
gamma ray spectrum is to be restored [20, 21]. The true solution fepsc: (i- €.,
the original spectrum) is shown on Figure 5.1-a, and the noise free right hand
side g = Kfepact (i- €., the degraded spectrum) is shown on Figure 5.1-b. The
matrix K is a symmetric Toeplitz matrix with entries in the first column given
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Newton method Secant method
Problem W MYV prods ”fl;j;%“” MYV prods
baart 0.350582 43 0.341526 25
deriv2 0.771426 79 0.609696 41
foxgood 0.295256 61 0.036871 37
phillips 0.028086 65 0.028320 65
shaw 0.167104 Y 0.166490 371

Table 5.2: Results for Newton and secant method (¢ = 0.01).

by
(i - 1)

K(i1) = e

1
exp|
V2ro?
where o = 2.0. Noise was added to g, as in the previous set of experiments, for
varying values of €.

Lr 14
12r 1l
10 10r
8f 8
6F 6
at 4
2r 2
of 0
-2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ -2 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 2 EN 40 50 60 70 0 10 2 0 4 50 60

a) Original signal. b) Degraded signal.

Figure 5.1: Original and degraded signals.
Circulant preconditioners were constructed for the linear systems of the form
(KTK - X)x=y

that arise in the RQI methods; see [22] for further details.

70
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Table 3 provides a summary of numerical results for this test problem using
different noise level €. As we can see, preconditioning substantially reduces the
number of matrix-vector products (we count each preconditioner solve as one
matrix-vector product).

€ Precond W TR its | RQI its | CGLS its | MV prods
0.001 No 0.18051011 6 22 2210 4751
Yes 0.17749838 7 26 920 4071

0.003 No 0.22681155 6 23 2145 4554
Yes 0.22821271 5 20 650 2896

0.01 No 0.24978938 7 23 2156 4471
Yes 0.24978938 6 23 643 2851

0.03 No 0.36806460 8 33 3383 6937
Yes 0.39216796 7 26 651 2813

Table 5.3: Using preconditioner.

Figure 5.2 illustrates the solutions of the problem computed without using a
preconditioner (a) and using the preconditioner (b). The dotted solutions are
the approximate ones. We can see that both approximate solutions are very
close to the real one inside the interval and a little noisy when it comes to the
boundaries.

14r 14r
12r 12r

10- 10-

-2 L L L L L L | -2 L I I I I

0 10 20 30 40 50 60 70 0 10 20 30 40 50

a) No preconditioner used. b) Using preconditioner.

Figure 5.2: Comparing with the true solution.

60

70
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6 Concluding Remarks

We have considered an approach for solving bound constrained regulariza-
tion problems proposed recently by Sorensen [19] and Rojas [17], which requires
computing the smallest eigenvalue of structured matrices. We have shown that
a Rayleigh quotient method can be effectively used for this computation. The
advantage of this approach is that preconditioning can be used to reduce the
computational effort. Moreover, we have proposed an alternative method for
updating the alpha parameter. Numerical experiments indicate that our ap-
proach is competitive with the Sorensen-Rojas scheme. However, it is important
to note that there still is not one method that is optimal for all problems. It
would be useful to do a comprehensive study of the various existing approaches,
e.g., those discussed in [3, 8, 17, 19] as well as our approach, on a variety of
ill-posed problems. We plan to carry out such a study in our future work.
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