Anti-reflective Boundary Conditions and Fast 2D Deblurring Models

M. Donatelli, C. Estatico, J. Nagy, L. Perrone and S. Serra-Capizzano


Serra-Capizzano recently introduced anti-reflecting boundary conditions (AR-BC) for blurring models: the idea seems promising both from the computational and approximation viewpoint. The key point is that, under certain symmetry conditions, the AR-BC matrices can be essentially simultaneously diagonalized by the (fast) sine transform DST I and, moreover, a $C^1$ continuity at the border is guaranteed in the 1D case. Here we give more details for the 2D case and we perform extensive numerical simulations which illustrate that the AR-BC can be superior to Dirichlet, periodic and reflective BCs in certain applications.