
Chapter 3

Trees

Section 3.1 Fundamental Properties of Trees

Suppose your city is planning to construct a rapid rail system. They want to construct
the most economical system possible that will meet the needs of the city. Certainly, a
minimum requirement is that passengers must be able to ride from any station in the
system to any other station. In addition, several alternate routes are under consideration
between some of the stations. Some of these routes are more expensive to construct than
others. How can the city select the most inexpensive design that still connects all the
proposed stations?

The model for this problem associates vertices with the proposed stations and edges
with all the proposed routes that could be constructed. The edges are labeled (weighted)
with their proposed costs. To solve the rapid rail problem, we must find a connected
graph (so that all stations can be reached from all other stations) with the minimum
possible sum of the edge weights.

Note that to construct a graph with minimum edge weight sum, we must avoid cycles,
since otherwise we could remove the most expensive edge (largest weight) on the cycle,
obtaining a new connected graph with smaller weight sum. What we desire is a
connected, acyclic graph (hence, a tree) with minimum possible edge weight sum. Such a
tree is called a minimum weight spanning tree. Before we determine algorithms for
finding minimum weight spanning trees, let’s investigate more of the properties of trees.

Trees are perhaps the most useful of all special classes of graphs. They have
applications in computer science and mathematics, as well as in chemistry, sociology and
many other studies. Perhaps what helps make trees so useful is that they may be viewed
in a variety of equivalent forms.

Theorem 3.1.1 A graph T is a tree if, and only if, every two distinct vertices of T are
joined by a unique path.

Proof. If T is a tree, by definition it is connected. Hence, any two vertices are joined by
at least one path. If the vertices u and v of T are joined by two or more different paths,
then a cycle is produced in T, contradicting the definition of a tree.

Conversely, suppose that T is a graph in which any two distinct vertices are joined by
a unique path. Clearly, T must be connected. If there is a cycle C containing the vertices
u and v, then u and v are joined by at least two paths, contradicting the hypothesis.

2 Chapter 3: Trees

Hence, T must be a tree.

Theorem 3.1.2 A (p , q) graph T is a tree if, and only if, T is connected and
q = p − 1.

Proof. Given a tree T of order p, we will prove that q = p − 1 by induction on p. If
p = 1 , then T = K 1 and q = 0. Now, suppose the result is true for all trees of order
less than p and let T be a tree of order p ≥ 2. Let e = uv ∈ E(T). Then, by Theorem
3.1.1, T − e contains no u − v path. Thus, T − e is disconnected and in fact, has
exactly two components (see Chapter 3, exercise 1). Let T 1 and T 2 be these
components. Then T 1 and T 2 are trees, and each has order less than p; hence, by the
inductive hypothesis

 E(T i) = V(T i) − 1 , for i = 1, 2.
Now we see that

 E(T) = E(T 1) + E(T 2) + 1
= V(T 1) + V(T 2) − 1
= p − 1.

Conversely, suppose T is a connected (p , q) graph and q = p − 1. In order to prove
that T is a tree, we must show that T is acyclic. Suppose T contains a cycle C and that e
is an edge of C. Then T − e is connected and has order p and size p − 2. But this
contradicts exercise 7 in Chapter 2. Therefore, T is acyclic and hence, T is a tree.

We summarize various characterizations of a tree in the following theorem.

Theorem 3.1.3 The following are equivalent on a (p , q) graph T:

1. The graph T is a tree.

2. The graph T is connected and q = p − 1.

3. Every pair of distinct vertices of T is joined by a unique path.

4. The graph T is acyclic and q = p − 1.

In any tree of order p ≥ 3 , any vertex of degree at least 2 is a cut vertex. However,
every nontrivial tree contains at least two vertices of degree 1, since it contains at least
two vertices that are not cut vertices (see Chapter 2, exercise 28). The vertices of degree
1 in a tree are called end vertices or leaves. The remaining vertices are called internal
vertices. It is also easy to see that every edge in a tree is a bridge.

Chapter 3: Trees 3

Every connected graph G contains a spanning subgraph that is a tree, called a
spanning tree. If G is itself a tree, this is clear. If G is not a tree, simply remove edges
lying on cycles in G, one at a time, until only bridges remain. Typically, there are many
different spanning trees in a connected graph. However, if we are careful, we can
construct a subtree in which the distance from a distinguished vertex v to all other
vertices in the tree is identical to the distance from v to each of these vertices in the
original graph. Such a spanning tree is said to be distance preserving from v or v-
distance preserving. The following result is originally from Ore [7].

Theorem 3.1.4 For every vertex v of a connected graph G, there exists a v-distance
preserving spanning tree T.

Proof. The graph constructed in the breadth-first search algorithm starting at v is a tree
and is clearly distance preserving from v.

The following result shows that there are usually many trees embedded as subgraphs
in a graph.

Theorem 3.1.5 Let G be a graph with δ(G) ≥ m and let T be any tree of order m + 1 ;
then T is a subgraph of G.

Proof. We proceed by induction on m. If m = 0, the result is clear since T = K 1 is a
subgraph of any graph. If m = 1, the result is also clear since T = K 2 is a subgraph of
every nonempty graph. Now, assume the result holds for any tree T 1 of order m and any
graph G 1 with δ(G 1) ≥ m − 1. Let T be a tree of order m + 1 and let G be a graph
with δ(G) ≥ m.

To see that T is a subgraph of G, consider an end vertex v of T. Also, suppose that v
is adjacent to w in T. Since T − v is a tree of order m and the graph G − v satisfies
δ(G − v) ≥ m − 1, we see from the inductive hypothesis that T − v ⊆ G − v ⊆ G.
Since deg G w ≥ m and T − v has order m, the vertex w has an adjacency in G outside of
V(T − v). But this implies that T is a subgraph of G.

Section 3.2 Minimum Weight Spanning Trees

To solve the rapid rail problem, we now want to determine how to construct a
minimum weight spanning tree. The first algorithm is from Kruskal [6]. The strategy of

4 Chapter 3: Trees

the algorithm is very simple. We begin by choosing an edge of minimum weight in the
graph. We then continue by selecting from the remaining edges an edge of minimum
weight that does not form a cycle with any of the edges we have already chosen. We
continue in this fashion until a spanning tree is formed.

Algorithm 3.2.1 Kruskal’s Algorithm.
Input: A connected weighted graph G = (V , E).
Output: A minimum weight spanning tree T = (V , E(T)).
Method: Find the next edge e of minimum weight w(e) that

does not form a cycle with those already chosen.

1. Let i ← 1 and T ← ∅.

2. Choose an edge e of minimum weight such that e ∈/ E(T) and such that
T ∪ { e } is acyclic.
If no such edge exists,

then stop;
else set e i ← e and T ← T ∪ { e i }.

3. Let i ← i + 1, and go to step 2.

Theorem 3.2.1 When Kruskal’s algorithm halts, T induces a minimum weight
spanning tree.

Proof. Let G be a nontrivial connected weighted graph of order p. Clearly, the
algorithm produces a spanning tree T; hence, T has p − 1 edges. Let

E(T) = {e 1 , e 2 , . . . , e p − 1} and let w(T) =
i = 1
Σ

p − 1
w(e i).

Note that the order of the edges listed in E(T) is also the order in which they were
chosen, and so w(e i) ≤ w(e j) whenever i ≤ j.

From the collection of all minimum weight spanning trees, let T min be chosen with
the property that it has the maximum number of edges in common with T. If T is not a
minimum weight spanning tree, T and T min are not identical. Let e i be the first edge of T
(following our listing of edges) that is not in T min . If we insert the edge e i into T min , we
get a graph H containing a cycle. Since T is acyclic, there exists an edge e on the cycle in
H that is not in T. The graph H − { e } is also a spanning tree of G and

w(H − { e }) = w(T min) + w(e i) − w(e).
Since w(T min) ≤ w(H − { e }), it follows that w(e) ≤ w(e i). However, by the
algorithm, e i is an edge of minimum weight such that the graph
< { e 1 , e 2 , . . . , e i } > is acyclic. However, since all these edges come from T min ,

Chapter 3: Trees 5

< { e 1 , e 2 , . . . , e i − 1 , e } > is also acyclic. Thus, we have that w(e i) = w(e) and
w(H − { e }) = w(T min). That is, the spanning tree H − { e } is also of minimum
weight, but it has more edges in common with T than T min , contradicting our choice of
T min and completing the proof.

Example 3.2.1. We demonstrate Kruskal’s algorithm on the graph of Figure 3.2.1.

v 1

v 5 v 2

v 4 v 3

3

2

3

4

33

1 2

3

Figure 3.2.1. A weighted graph to test Kruskal’s algorithm.

1. i ← 1 and T ← ∅. 2 − 3. T ← e = v 2 v 4 and i ← 2.

2 − 3. T ← T ∪ { v 2 v 3 } and i ← 3.

2 − 3. T ← T ∪ { v 4 v 5 } and i ← 4.

2 − 3. T ← T ∪ { v 1 v 4 } and i ← 5.

2. Halt (with the minimum spanning tree shown in Figure 3.2.2).

In the performance of Kruskal’s algorithm, it is best to sort the edges in order of
nondecreasing weight prior to beginning the algorithm. On the average, this can be done
in O(qlog q) time using either a quicksort or heap sort (see [10]). With this in mind, can
you determine the average time complexity of Kruskal’s algorithm?

6 Chapter 3: Trees

v 1

v 5 v 2

v 4 v 3

2

3

1 2

Figure 3.2.2. A minimum spanning tree for the graph of Figure 3.2.1.

Kruskal’s algorithm is an example of a type of algorithm known as greedy. Simply
stated, greedy algorithms are essentially algorithms that proceed by selecting the choice
that looks the best at the moment. This local point of view can sometimes work very
well, as it does in this case. However, the reader should not think that all processes can
be handled so simply. In fact, we shall see examples later in which the greedy approach
can be arbitrarily bad.

There are several other algorithms for finding minimum weight spanning trees. The
next result is fundamental to these algorithms.

Theorem 3.2.2 Let G = (V , E) be a weighted graph. Let U ⊆ V and let e have
minimum weight among all edges from U to V − U. Then there exists a minimum
weight spanning tree that contains e.

Proof. Let T be a minimum weight spanning tree of G. If e is an edge of T, we are
done. Thus, suppose e is not an edge of T and consider the graph H = T ∪ { e } ,
which must contain a cycle C. Note that C contains e and at least one other edge f = uv,
where u ∈ U and v ∈ V − U. Since e has minimum weight among the edges from U to
V − U, we see that w(e) ≤ w(f). Since f is on the cycle C, if we delete f from H, the
resulting graph is still connected and, hence, is a tree. Further, w(H − f) ≤ w(T) and
hence H − f is the desired minimum weight spanning tree containing e.

This result directly inspired the following algorithm from Prim [8]. In this algorithm
we continually expand the set of vertices U by finding an edge e from U to V − U of
minimum weight. The vertices of U induce a tree throughout this process. The end
vertex of e in V − U is then incorporated into U, and the process is repeated until
U = V. For convenience, if e = xy, we denote w(e) by w(x , y). We also simply
consider the tree T induced by the vertex set U.

Chapter 3: Trees 7

Algorithm 3.2.2 Prim’s Algorithm.
Input: A connected weighted graph G = (V , E) with

V = { v 1 , v 2 , . . . , v n } .
Output: A minimum weight spanning tree T.
Method: Expand the tree T from { v 1 } using the

minimum weight edge from T to V − V(T).

1. Let T ← v 1 .

2. Let e = tu be an edge of minimum weight joining a vertex t of T and a vertex u of
V − V(T) and set T ← T ∪ { e }.

3. If E(T) = p − 1 then halt, else go to step 2.

Example 3.2.2. We now perform Prim’s algorithm on the graph of Example 3.2.1.

1. T ← { v 1 }.

2. w(t , u) = 3 and T ← T ∪ { v 1 v 4 }. (Note that any of v 1 v 3 , v 1 v 4 , or v 1 v 5
could have been chosen.)

3. Go to step 2.

2. w(t , v 2) = 1 , w(t , v 3) = 3 , w(t , v 5) = 2 so select w(t , v 2) = 1 and set
T ← T ∪ { v 2 v 4 }.

3. Go to step 2.

2. w(t , v 3) = 2 , w(t , v 5) = 2 so select w(t , u) = 2 and set T ← T ∪ { v 4 v 5 }.

3. Go to step 2.

2. w(t , u) = 2 and so set T ← T ∪ { v 2 v 3 }.

3. Halt

We again obtain the minimum spanning tree T of Figure 3.2.2.

To determine the time complexity of Prim’s algorithm, note that step 2 requires at
most V − 1 comparisons and is repeated V − 1 times (and, hence, requires O(V2)

8 Chapter 3: Trees

time). Hence, Prim’s algorithm requires O(V2) time.

At this stage we must point out that the corresponding problem of finding minimum
weight spanning trees in digraphs is much harder. In fact, there is no known polynomial
algorithm for solving such a problem.

Section 3.3 Counting Trees

Let’s turn our attention now to problems involving counting trees. Although there is
no simple formula for determining the number of nonisomorphic spanning trees of a
given order, if we place labels on the vertices, we are able to introduce a measure of
control on the situation. We say two graphs G 1 and G 2 are identical if
V(G 1) = V(G 2) and E(G 1) = E(G 2). Now we consider the question of determining
the number of nonidentical spanning trees of a given graph (that is, on a given number of
vertices). Say G = (V , E) and for convenience we let V = { 1 , 2 , . . . , p } . For
p = 2 , there is only one tree, namely K 2 . For p = 3 , there are three such trees (see
Figure 3.3.1).

1 2 3 1 3 2

2 1 3

Figure 3.3.1. The spanning trees on V = { 1, 2, 3 }.

Cayley [1] determined a simple formula for the number of nonidentical spanning
trees on V = { 1 , 2 , . . . , p } . The proof presented here is from Pru

. .
fer [9]. This

result is known as Cayley’s tree formula.

Theorem 3.3.1 (Cayley’s tree formula). The number of nonidentical spanning trees on
p distinct vertices is p p − 2 .

Proof. The result is trivial for p = 1 or p = 2 so assume p ≥ 3. The strategy of this
proof is to find a one-to-one correspondence between the set of spanning trees of G and
the p p − 2 sequences of length p − 2 with entries from the set { 1 , 2 , . . . , p } . We
demonstrate this correspondence with two algorithms, one that finds a sequence
corresponding to a tree and one that finds a tree corresponding to a sequence. In what
follows, we will identify each vertex with its label. The algorithm for finding the

Chapter 3: Trees 9

sequence that corresponds to a given tree is:

1. Let i ← 1.

2. Let j ← the end vertex of the tree with smallest label. Remove j and its incident
edge e = j k. The ith term of the sequence is k.

3. If i = p − 2 then halt; else i ← i + 1 and go to 2.

Since every tree of order at least 3 has two or more end vertices, step 2 can always be
performed. Thus, we can produce a sequence of length p − 2. Now we must show that
no sequence is produced by two or more different trees and that every possible sequence
is produced from some tree. To accomplish these goals, we show that the mapping that
assigns sequences to trees also has an inverse.

Let w = n 1 , n 2 , . . . , n p − 2 be an arbitrary sequence of length p − 2 with entries
from the set V. Each time (except the last) that an edge incident to vertex k is removed
from the tree, k becomes the next term of the sequence. The last edge incident to vertex k
may never actually be removed if k is one of the final two vertices remaining in the tree.
Otherwise, the last time that an edge incident to vertex k is removed, it is because vertex
k has degree 1, and, hence, the other end vertex of the edge was the one inserted into the
sequence. Thus, deg T k = 1 + (the number of times k appears in w). With this
observation in mind, the following algorithm produces a tree from the sequence w:

1. Let i ← 1.

2. Let j be the least vertex such that deg T j = 1. Construct an edge from vertex j to
vertex n i and set deg T j ← 0 and deg T n i ← deg T n i − 1.

3. If i = p − 2, then construct an edge between the two vertices of degree 1 and halt;
else set i ← i + 1 and go to step 2.

It is easy to show that this algorithm selects the same vertex j as the algorithm for
producing the sequence from the tree (Chapter 3, exercise 17). It is also easy to see that a
tree is constructed. Note that at each step of the algorithm, the selection of the next
vertex is forced and, hence, only one tree can be produced. Thus, the inverse mapping is
produced and the result is proved.

Example 3.3.1. Pru
..

fer mappings. We demonstrate the two mappings determined in
the proof of Cayley’s theorem. Suppose we are given the tree T of Figure 3.3.2.

10 Chapter 3: Trees

2

3

4 7

5

1

6

Figure 3.3.2. The tree T.

Among the leaves of T, vertex 1 has the minimum label, and it is adjacent to 7; thus,
n 1 = 7. Our next selection is vertex 2, adjacent to vertex 4, so n 2 = 4. Our tree now
appears as in Figure 3.3.3.

3 4 7 5 6

Figure 3.3.3. The tree after the first two deletions.

The third vertex selected is 3, so n 3 = 4. We then select vertex 4; thus, n 4 = 7.
Finally, we select vertex 6, setting n 5 = 5. What remains is just the edge from 5 to 7;
hence, we halt. The sequence corresponding to the tree T of Figure 3.3.2 is 74475.

To reverse this process, suppose we are given the sequence s = 74475. Then we
note that:

deg 1 = 1, deg 2 = 1, deg 3 = 1, deg 4 = 3,
deg 5 = 2, deg 6 = 1, deg 7 = 3.

According to the second algorithm, we select the vertex of minimum label with
degree 1; hence, we select vertex 1. We then insert the edge from 1 to n 1 = 7. Now set
deg 1 = 0 and deg 7 = 2 and repeat the process. Next, we select vertex 2 and insert the
edge from 2 to n 2 = 4:

1 7 2 4

Figure 3.3.4. The reconstruction after two passes.

Again reducing the degrees, deg 2 = 0 and deg 4 = 2. Next, we select vertex 3 and
insert the edge from 3 to n 3 = 4 (see Figure 3.3.5).

Chapter 3: Trees 11

2 4 3 7 1

Figure 3.3.5. The reconstruction after three passes.

Now, select vertex 4 and insert the edge from 4 to n 4 = 7. This is followed by the
selection of vertex 6 and the insertion of the edge from 6 to n 5 = 5. Finally, since
i = p − 2, we end the construction by inserting the edge from 5 to 7, which completes
the reconstruction of T.

An alternate expression for the number of nonidentical spanning trees of a graph is
from Kirchhoff [5]. This result uses the p × p degree matrix C = [c i j] of G, where
c ii = deg v i and c i j = 0 if i ≠ j. This result is known as the matrix-tree theorem. For
each pair (i , j), let the matrix B i j be the n − 1 × n − 1 matrix obtained from the n × n
matrix B by deleting row i and column j. Then det B i j is called the minor of B at
position (i , j) and, (− 1) i + j det B i j is called the cofactor of B at position (i , j).

Theorem 3.3.2 (The matrix-tree theorem) Let G be a nontrivial graph with adjacency
matrix A and degree matrix D. Then the number of nonidentical spanning trees of G is
the value of any cofactor of D − A.

Example 3.3.2. Consider the following graph:

1 2

3 4

We can use the matrix-tree theorem to calculate the number of nonidentical spanning
trees of this graph as follows. The matrices

12 Chapter 3: Trees

A =

 1

1

1

0

0

0

0

1

1

0

0

1

0

1

0

1

D =

 0

0

0

3

0

0

1

0

0

2

0

0

2

0

0

0

are easily seen to be the adjacency matrix and degree matrix for this graph, while

(D − A) =

 − 1

− 1

− 1

3

0

0

1

− 1

− 1

2

0

− 1

2

− 1

0

− 1

.

Thus,

det (D − A 11) = det

 0

0

1

− 1

2

0

2

− 1

0

= det

 0

0

1

− 1

0

0

2

3

0

= − 1 det

 0

0

1

0

− 1

0

3

2

0

= 3.

These three spanning trees are easily found since the triangle has three spanning trees.

Section 3.4 Directed Trees

As with connectivity, directed edges create some additional complications with trees.
Initially, we need to decide exactly what we want a directed tree to be. For our purposes,
the following definition is most useful: A directed tree T = (V , E) has a distinguished
vertex r , called the root, with the property that for every vertex v ∈ V, there is a directed
r − v path in T and the underlying undirected graph induced by V is also a tree. As with
trees, directed trees have many possible characterizations. We consider some of them in
the next theorem.

If there is an edge e in a digraph D with the property that for some pair of vertices
u , v in D, e lies on every u − v path, then we say that e is a bridge in D.

Chapter 3: Trees 13

r

Figure 3.4.1. A directed tree with root r.

Theorem 3.4.1 The following conditions are equivalent for the digraph T = (V , E):

1. The digraph T is a directed tree.

2. The digraph T has a root r, and for every vertex v ∈ V, there is a unique r − v
path in T.

3. The digraph T has a root r with id r = 0, and for every v ≠ r , id v = 1, and there
is a unique directed (r − v) −path in T.

4. The digraph T has a root r, and for every v ∈ V, there is an r − v path and every
arc of T is a bridge.

5. The graph underlying T is connected, and in T, there is a vertex r with id r = 0
and for every other vertex v ∈ V , id v = 1.

Proof. Our strategy is to show the following string of implications: 1 => 2 => 3 => 4
=> 5 => 1.

To see that 1 => 2, assume that T has a root r, there are paths from r to v for every v ∈
V and the underlying graph of T is a tree. Since there is an r − v path in T and since the
underlying graph is a tree, this r − v path must be unique.

To see that 2 => 3, assume that T has a root r and a unique directed path from r to
every vertex v ∈ V. Suppose that e = u → r is an arc of T. Since there is a directed
path from r to u, the arc e completes a directed cycle containing r. But then there are at
least two paths from r to r, namely the trivial path and the path obtained by following the
arcs of this cycle. This contradicts the hypothesis; hence, id r = 0. Now, consider an
arbitrary vertex v ≠ r. Clearly, id v > 0 since there is a directed r − v path in T.
Suppose that id v > 1; in fact, suppose that e 1 = v 1 → v and e 2 = v 2 → v are two
arcs into v. Note that T contains a directed r − v 1 path P 1 and a directed r − v 2 path
P 2 . By adding the arc e 1 to P 1 and adding e 2 to the path P 2 , we obtain two different

14 Chapter 3: Trees

r − v paths, producing a contradiction. If v ∈ P 1 (or P 2) then the segment of P 1 from r
to v and the segment of P 2 followed by the arc e 2 are two different r − v paths in T,
again producing a contradiction.

To see that 3 => 4, note that the deletion of any arc e = u → v means that v is
unreachable from r; hence, each arc must be a bridge.

To see that 4 => 5, suppose that T has root r and that every arc is a bridge. Since any
arc into r can be deleted without changing the fact that there are r − v paths to all other
vertices v, no such arc can exist. Hence, id r = 0. If v ≠ r, id v > 0 since there is a
directed r − v path in T. Suppose e 1 and e 2 are two arcs into v. Then the path P from r
to v cannot use both of these arcs. Thus, the unused arc can be deleted without
destroying any r − v path. But this contradicts the fact that every arc is a bridge. Hence,
id v = 1 for every vertex v ≠ r.

To see that 5 => 1, assume that the graph G underlying T is connected, id r = 0 and
id v = 1 for all v ≠ r. To see that there is an r − v path for any vertex v, let P G be an
r − v path in G. Then P G corresponds to a directed path in T for otherwise, some arc
along P G is oriented incorrectly and, hence, either id r > 0 or id w > 1 for some
w ≠ r. Similarly, G must be acyclic or else a cycle in G would correspond to a directed
cycle in T.

A subgraph T of a digraph D is called a directed spanning tree if T is a directed tree
and V(T) = V(D). In order to be able to count the number of nonidentical directed
spanning trees of a digraph D, we need a useful variation of the adjacency matrix. For a
digraph D with m arcs from vertex j to vertex k we define the indegree matrix, as
A i (D) = A i = [d j k], where

d j k =

 − m if j ≠ k.

id j if j = k

Using the indegree matrix, we can obtain another characterization of directed trees
(Tutte [11]).

Theorem 3.4.2 A digraph T = (V , E) is a directed tree with root r if, and only if,
A i (T) = [d j k] has the following properties:

1. The entry d jj = 0 if j = r and the entry d jj = 1 otherwise.

2. The minor at position (r , r) of A i (T) has value 1.

Proof. Let T = (V , E) be a directed tree with root r. By Theorem 3.4.1, condition (1)

Chapter 3: Trees 15

must be satisfied. We now assign an ordering to the vertices of T as follows:

1. The root r is numbered 1.

2. If the arc u → v is in T, then the number i assigned to u is less than the number j
assigned to v.

This numbering is done by assigning the neighbors of r the numbers
2 , 3 , . . . , (1 + od r), and we continue the numbering with the vertices a distance 2
from r, then number those a distance 3 from r, etc.

The indegree matrix Ai
* = [dj k

*] (with row and column ordering according to our
new vertex ordering) has the following properties:

1. d11
* = 0.

2. djj
* = 1 for j = 2 , 3 , . . . , V .

3. dj k
* = 0 if j > k.

Note that Ai
* can be obtained from the original indegree matrix A i by permuting rows

and performing the same permutations on the columns. Since such permutations do not
change the determinant except for sign, and since each row permutation is matched by
the corresponding column permutation, the two minors are equal. The value of the minor
obtained from Ai

* by deleting the first row and column and computing the determinant is
easily seen to be 1.

Conversely, suppose that A i satisfies conditions (1) and (2). By (1) and Theorem
3.4.1, either T is a tree or its underlying graph contains a cycle C. The root r is not a
member of C since id r = 0 and id v = 1 for all other vertices. Thus, C must be of the
form:

C: x 1 , x 2 , . . . , x a , x 1 , where x i ≠ r for each i = 1 , 2 , . . . , a.
Any of the vertices may have other arcs going out, but no other arcs may come into these
vertices. Thus, each column of A i corresponding to one of these vertices must contain
exactly one +1 (on the main diagonal) and exactly one − 1, and all other entries are 0.
Each row of this submatrix either has all zeros as entries or contains exactly one +1 and
one − 1. But then the sum of the entries on these columns is zero, and, hence, the minor
at position (r , r) is zero. This contradicts condition (2), and the result is proved.

Corollary 3.4.1 If D is a digraph with indegree matrix A i and the minor of A i is zero,
then D is not a directed tree.

Corollary 3.4.2 The number of directed spanning trees with root r of a digraph D
equals the minor of A i (D) resulting from the deletion of the rth row and column.

16 Chapter 3: Trees

Proof. Define the digraph D G obtained from G in the natural manner; that is, for every
edge e = uv in G, replace e by the symmetric pair of arcs u → v and v → u to form
D G . Now, let v ∈ V(D G) (hence, of V(G)). There is a one-to-one correspondence
between the set of spanning trees of G and the set of directed spanning trees of D G
rooted at r. To see that this is the case, suppose that T is a spanning tree of G and
suppose that e = uv is an edge of T. In the directed tree T * rooted at r , we insert the arc
u → v if d T (u , r) < d T (v , r) , and we insert the arc v → u otherwise. Hence, for
every spanning tree T of G , we obtain a distinct directed spanning tree T * of D G .

Conversely, given a directed tree T * rooted at r, we can simply ignore the directions
on the arcs to obtain a spanning tree T of G.

Example 3.4.1. Determine the number of spanning trees rooted at vertex 1 of the
digraph D of Figure 3.4.2.

1

2

3

Figure 3.4.2. A digraph D with three spanning trees rooted at 1.

We begin by constructing the indegree matrix A i of the digraph D.

A i =

 0

− 1

1

− 1

2

− 1

2

− 1

− 1

Then, the determinant resulting from the deletion of row 1 and column 1 can be found
as:

det

 − 1

2

2

− 1

= 4 − 1 = 3.

Hence, D has three spanning trees rooted at vertex 1. Consulting Figure 3.4.3(a), we
see these spanning trees are exactly those shown. For spanning trees rooted at vertex 2
we find that there are two such; while the number rooted at vertex 3 is one. These are
shown in Figure 3.4.3(b)

Chapter 3: Trees 17

1 2 3

2 1 3

1 3 2

1 2 3

2 1 3

3 2 1

(a) (b)

Figure 3.4.3. (a) Directed spanning trees of D rooted at 1 and (b) others.

Suppose we now consider the undirected case. Let G = (V , E) be an undirected
graph. We form a digraph D G from G as follows: Let V(D G) = V(G) , and for every
edge e = uv in G, we form two arcs, e 1 = u → v and e 2 = v → u. If r ∈ V(G), then
there is a 1-1 correspondence between the set spanning trees of G and the set of directed
spanning trees of D G rooted at r. To see that this is the case, let T be a spanning tree of
G. If the edge e = uv is in T and if d T (u , r) < d T (v , r) , then select e 1 for the
directed spanning tree T D ; otherwise, select e 2 . Conversely, given a directed spanning
tree T D of D G , it is easy to see that simply ignoring the directions of the arcs of T D
produces a spanning tree of G.

Thus, to compute the number of spanning trees of G , begin by forming D G . If there
are m arcs from vertex i to vertex j , then let

A i (D G) =

 − m

deg G v i

if i ≠ j.

if i = j ,

Thus, applying Corollary 3.4.2 produces the desired result; the choice of r makes no
difference.

As an example of this, consider the graph of Figure 3.3.2. We earlier determined it
had three spanning trees. We now verify this again, using our result on digraphs. First
we form D G .

18 Chapter 3: Trees

1 2

3 4

Figure 3.4.4. D G for the graph of Example 3.3.2.

Now form

A i (D G) =

 − 1

− 1

− 1

3

0

0

1

− 1

− 1

2

0

− 1

2

− 1

0

− 1

.

But note A i (D G) equals the matrix C − A of Example 3.3.2 (this is no coincidence!).
Hence, we must get the number of spanning trees with the choice of r making no
difference, by applying the matrix-tree theorem.

Section 3.5 Optimal Directed Subgraphs

We now wish to consider a problem for digraphs similar to the minimal spanning tree
problem for graphs; that is, given a weighted digraph D, we want to find a minimal
weight acyclic subgraph of D. Notice that we are not restricting the subgraphs under
consideration to directed trees or even to spanning subgraphs, but rather to a somewhat
larger class of digraphs often called branchings. A subgraph B = (V , E *) of a digraph
D = (V , E) is a branching if B is acyclic and id v ≤ 1 for every v ∈ V. If for exactly
one vertex r, id r = 0 and for all other vertices v, id v = 1 , then B is a directed tree with
root r.

For finding optimum branchings, the following idea is useful. An arc e = u → v is
called critical if it satisifies the following two conditions:

1. w(e) < 0.

2. w(e) ≤ w(e 1) for all other arcs e 1 = z → v.

Chapter 3: Trees 19

Form the arc set E c ⊆ E by selecting one critical arc entering each vertex of V. Using
this arc set, we obtain the critical subgraph C = (V , E c). Karp [4] showed the
relationship between critical subgraphs and minimum (as well as maximum) branchings.
(For maximum branchings, merely reverse the inequalities in the above definition of
critical arcs.)

Proposition 3.5.1 Let C = (V , E c) be a critical subgraph of a weighted digraph
D = (V , E). Then

1. Each vertex of C is on at most one cycle.

2. If C is acyclic, then C is a minimum weight branching.

Proof. (1) Suppose that v is on two directed cycles. Then there must be a vertex with
indegree at least 2, which is a contradiction to the way we selected arcs for C.
(2) It is clear that if C is acyclic, then it is a branching. Suppose the vertex v has no
negatively weighted arcs entering it in D. Then in a branching B of D, either B has no arc
entering v or we can remove the arc entering v without increasing the weight of B. It is
clear that C has no arc entering v. If the vertex v has negatively weighted arcs entering it
in D, then the arc entering v contained in E c is of minimum weight. Thus, no branching
can have a smaller weighted arc at v and, hence, C is a minimum weight branching.

It is possible to have many different branchings in a given digraph. In fact, some of
these branchings may actually be very similar, that is, they may have a large number of
arcs in common with one another. In fact, it is possible that simply deleting one arc and
inserting another creates a new branching. If B = (V , E B) is a branching and if
e = u → v is an arc of D that is not in B, then we say that e is eligible relative to B if
there is an arc e 1 ∈ E B such that

B 1 = (V , E B ∪ { e } − e 1)

is also a branching. We can characterize eligible arcs using directed paths.

Theorem 3.5.1 Let B be a branching of the digraph D and let e = u → v be an arc of
D that is not in B. Then e is eligible relative to B if, and only if, there is no directed
v − u path in B.

Proof. Suppose there is a directed v − u path in B. Then when e is inserted into B, a
directed cycle is formed. The removal of the arc in B entering v (if any did exist) does
not destroy this cycle. Thus, e is not eligible.

20 Chapter 3: Trees

Conversely, if there is no directed v − u path in B, then inserting e cannot form a
directed cycle. The arc set that results from the insertion of e is not a branching if there
already is an arc entering v. Removing any such arc ensures that B is a branching and,
hence, e is eligible.

There is a strong tie between the set of eligible arcs and the arc set of a branching. In
fact, we can show that there is a time when they are nearly the same.

Theorem 3.5.2 Let B = (V , E B) be a branching and C a directed circuit of the
digraph D. If no arc of E(C) − E B is eligible relative to B, then E(C) − E B = 1.

Proof. Since B is acyclic, it contains no circuits. Thus, E(C) − E B ≥ 1. Let
e 1 , e 2 , . . . , e k be the arcs of E(C) − E B in the order in which they appear in C. Say

C: u 1 , e 1 , v 1 , P 1 , u 2 , e 2 , v 2 , P 2 , . . . , v k , P k , u k , e k , v k , u 1

is the circuit, where the P i’s are the directed paths in both B and C. Since e 1 is not
eligible relative to B, by Theorem 3.5.1 there must be a directed path P * in B from v 1 to
u 1 . This path leaves P 1 at some point and enters v k and continues on to u 1 , so P *

cannot enter the path p k after v k ; if it could, B would have two arcs entering the same
vertex. Similarly, e j is not eligible relative to B and, thus, there must be a directed path
from v j to u j in B. This path must leave P j at some point and enter P j − 1 at v j − 1 . But
we now see that B contains a directed circuit from v 1 , along a section of P 1 , to a path
leading to v k , via part of P k , to a path leading to v k − 1 , etc., until it finally returns to v 1 .
Since B is circuit-free, k ≤ 1.

Theorem 3.5.3 Let C = (V , E C) be a critical subgraph of the digraph D = (V , E).
For every directed circuit C * in C, there exists a branching B = (V , E B) such that
E(C *) − E B = 1.

Proof. Among all maximum branchings of D, let B be one that contains the maximum
number of arcs of C. Let e = u → v ∈ E C − E B . If e is eligible, then

E B ∪ { e } − { e ′ e ′ enters v in B }
determines another maximum branching which contains more arcs of C than does B;
thus, we have a contradiction to our choice of B. Thus, no arc of E C − E B is eligible
relative to B, and, by the last theorem, E(C *) − E B = 1, for every directed circuit
C * of C.

Chapter 3: Trees 21

Thus, we see that in trying to construct maximum branchings, we can restrict our
attention to those branchings which have all arcs (except one per circuit) in common with
a critical subgraph C = (V , E 1). Edmonds [2] realized this and developed an algorithm
to construct maximum branchings. His approach is as follows: Traverse D, examining
vertices and arcs. The vertices are placed in the set B v as they are examined, and the arcs
are placed in the set B e if they have been previously selected for a branching. The set B e
is always the arc set of a branching. Examining a vertex simply means selecting the
critical arc e into that vertex, if one exists. We then check to see if e forms a circuit with
the arcs already in B e . If e does not form a circuit, then it is inserted in B e and we begin
examining another vertex. If e does form a circuit, then we "restructure" D by shrinking
all the vertices of the circuit to a single new vertex and assigning new weights to the arcs
that are incident to this new vertex. We then continue the vertex examination until all
vertices of the final restructured graph have been examined. The final restructured graph
contains these new vertices, while the vertices and arcs of the circuit corresponding to a
new vertex have been removed. The set B e contains the arcs of a maximum branching
for this restructured digraph.

The reverse process of replacing the new vertices by the circuits that they represent
then begins. The arcs placed in B e during this process are chosen so that B e remains a
maximum branching for the digraph at hand. The critical phase of the algorithm is the
rule for assigning weights to arcs when circuits are collapsed to single vertices. This
process really forces our choice of arcs for B e when the reconstruction is performed.

Let C 1 , C 2 , . . . , C k be the circuits of the critical graph (V , H). Let ei
m be an edge

of minimum weight on C i . Let e
_

be the edge of C i which enters v. For arcs e = u → w
on C i , define the new weight w

_ _
as: w

_ _
(e) = w(e) − w(e

_
) + w(ei

m). Edmonds’s
algorithm is now presented.

Algorithm 3.5.1 Edmonds’s Maximum Branching Algorithm.
Input: A directed graph D = (V , E).
Output: The set B e of arcs in a maximum branching.
Method: The digraph is shrunk around circuits.

1. B v ← B e ← ∅ and i ← 0.

2. If B v = V i , then go to step 13.

3. For some v ∈/ B v and v ∈ V i , do steps 4 − 6 :

4. B v ← B v ∪ { v },

22 Chapter 3: Trees

5. find an arc e = x → v in E i with maximum weight.

6. If w(e) ≥ 0, then go to step 2.

7. If B e ∪ { e } contains a circuit C i , then do steps 8 − 10 :

8. i ← i + 1.

9. Construct G i by shrinking C i to u i .

10. Update B e and B v and the necessary arc weights.

11. B e ← B e ∪ { e }.

12. Go to step 2.

13. While i ≠ 0, do steps 14 − 17 :

14. Reconstruct G i − 1 and rename some arcs in B e .

15. If u i was a root of an out-tree in B e ,
then B e ← B e ∪ { e e ∈ C i and e ∈/ ei

m };

16. else B e ← b e ∪ { e e ∈ C i and e ∈/ e
_

i }.

17. i ← i − 1.

18. w(B) ←
e∈B e

Σ w(e).

Section 3.6 Binary Trees

One of the principle uses of trees in computer science is in data representation. We
use trees to depict the relationship between pieces of information, especially when the
usual linear (list-oriented) representation seems inadequate. Tree representations are
more useful when slightly more structure is given to the tree. In this section, all trees
will be rooted. We will consider the trees to be leveled, that is, the root r will constitute
level 0, the neighbors of r will constitute level 1, the neighbors of the vertices on level 1
that have not yet been placed in a level will constitute level 2, etc. With this structure, if
v is on level k, the neighbors of v on level k + 1 are called the children (or descendents)
of v, while the neighbor of v on level k − 1 (if it exists) is called the parent (or father, or
predecessor) of v.

A binary tree is a rooted, leveled tree in which any vertex has at most two children.
We refer to the descendents of v as the left child and right child of v. In any drawing of
this tree, we always place the root at the top, vertices in level 1 below the root, etc. The
left child of v is always placed to the left of v in the drawing and the right child of v is

Chapter 3: Trees 23

always placed to the right of v. With this orientation of the children, these trees are said
to be ordered. If every vertex of a binary tree has either two children or no children, then
we say the tree is a full binary tree.

r

right child of rleft child of r

level 0

level 1

level 2

Figure 3.6.1. A binary tree.

The additional structure that we have imposed in designating a distinction between
the left and right child means that we obtain distinct binary trees at times when ordinary
graph isomorphism actually holds. The trees of Figure 3.6.2 are examples of this
situation.

Figure 3.6.2. Two different binary trees of order 5.

The height of a leveled tree is the length of a longest path from the root to a leaf, or
alternately, the largest level number of any vertex.

As an example of the use of binary trees in data representation, suppose that we wish
to represent the arithmetic expression a + 3b = a + 3 × b. Since this expression
involves binary relations, it is natural to try to use binary trees to depict these relations.
For example, the quantity 3b represents the number 3 multiplied by the value of b. We
can represent this relationship in the binary tree as shown in Figure 3.6.3.

×

3 b

Figure 3.6.3. Representing the arithmetic expression 3b.

24 Chapter 3: Trees

Now the quantity represented by 3b is to be added to the quantity represented by a.
We repeat the tree depiction of this relationship to obtain another binary tree (see Figure
3.6.4).

+

a ×

3 b

Figure 3.6.4. The expression a + 3b represented using a binary tree.

Once we have a representation for data using a tree, it is also necessary to recover this
information and its inherent relationships. This usually involves examining the data
contained in (or represented within) the vertices of the tree. This means we must
somehow visit the vertices of the tree in an order that allows us not only to retrieve the
necessary information but also to understand how these data are related. This visiting
process is called a tree traversal, and it is done with the aid of the tree structure and a
particular set of rules for deciding which neighbor we visit next. One such traversal, the
inorder traversal (or symmetric order) is now presented.

Algorithm 3.6.1 Inorder Traversal of a Binary Tree.
Input: A binary tree T = (V , E) with root r.
Output: An ordering of the vertices of T (that is, the data contained

within these vertices, received in the order of the vertices).
Method: Here "visit" the vertex simply means perform the operation of

your choice on the data contained in the vertex.

procedure inorder(r)

1. If T ≠ φ, then

2. inorder (left child of v)

3. visit the present vertex

4. inorder (right child of v)
end

Chapter 3: Trees 25

This recursive algorithm amounts to performing the following steps at each vertex:

1. Go to the left child if possible.

2. Visit the vertex.

3. Go to the right child if possible.

Thus, on first visiting a vertex v, we immediately proceed to its left child if one exists.
We only visit v after we have completed all three operations on all vertices of the subtree
rooted at the left child of v.

Applying this algorithm to the tree of Figure 3.6.4 and assuming that visit the vertex
simply means write down the data contained in the vertex, we obtain the following
traversal.

First, we begin at the root vertex and immediately go to its left child. On reaching
this vertex, we immediately attempt to go to its left child. However, since it has no left
child, we then "visit" this vertex; hence, we write the data a. We now attempt to visit the
right child of this vertex, again the attempt fails. We have now completed all operations
on this vertex, so we backtrack (or recurse) to the parent of vertex a. Thus, we are back
at the root vertex. Having already performed step 2 at this vertex, we now visit this
vertex, writing the data +. Next, we visit the right child of the root. Following the three
steps, we immediately go to the left child, namely vertex 3. Since it has no left child, we
visit it, writing its data 3. Then, we attempt to go to the right child (which fails), and so
we recurse to its parent. We now write the data of this vertex, namely ×. We proceed to
the right child, attempt to go to its left child, write out its data b, attempt to go to the right
child, recurse to × and recurse to the root. Having completed all three instructions at
every vertex, the algorithm halts. Notice that the data were written as a + 3 × b. We
have recovered the expression.

Two other useful and closely related traversal algorithms are the preorder and
postorder traversals. The only difference between these traversals is the order in which
we apply the three steps. In the preorder traversal, we visit the vertex, go to the left child
and then go to the right child. In the postorder traversal, we go to the left child, go to the
right child and, finally, visit the vertex. Can you write the preorder and postorder
algorithms in recursive form?

Another interesting application of binary trees concerns the transmission of coded
data. If we are sending a message across some medium, such as an electronic cable, the
characters in the message are sent one at a time, in some coded form. Usually, that form
is a binary number (that is, a sequence of 1s and 0s). Since speed is sometimes
important, it will be helpful if we can shorten the encoding scheme as much as possible,

26 Chapter 3: Trees

while still maintaining the ability to distinguish between the characters. An algorithm for
determining binary codes for characters, based on the frequency of use of these
characters, was developed by Huffman [3]. Our aim is to assign very short code numbers
to frequently used characters, thereby attempting to reduce the overall length of the
binary string that represents the message.

As an example of Huffman’s construction, suppose that our message is composed of
characters from the set { a , b , c , d , e , f } and that the corresponding frequencies of
these characters is (13 , 6 , 7 , 12 , 18 , 10). Huffman’s technique is to build a binary
tree based on the frequency of use of the characters. More frequently used characters
appear closer to the root of this tree, and less frequently used characters appear in lower
levels. All characters (and their corresponding frequencies) are initially represented as
the root vertex of separate trivial trees. Huffman’s algorithm attempts to use these trees
to build other binary trees, gradually merging the intermediate trees into one binary tree.
The vertices representing the characters from our set will be leaves of the Huffman tree.
The internal vertices of the tree will represent the sum of the frequencies of the leaves in
the subtree rooted at that vertex.

For example, suppose we assign each of the characters of our message and its
corresponding frequency to the root vertex of a trivial tree. From this collection of trees,
select the two trees with roots having the smallest frequencies. In case of ties, randomly
select the trees from those having the smallest frequencies. In this example the
frequencies selected are 6 and 7. Make these two root vertices the left and right children
of a new vertex, with this new vertex having frequency 13 (Figure 3.6.5). Return this
new tree to our collection of trees.

13

6 7

Figure 3.6.5. The first stage of Huffman’s algorithm.

Again, we choose from the collection of trees the two trees with roots having the
lowest frequencies, 10 and 12, and again form a larger tree by inserting a new vertex
whose frequency is 22 and that has vertex 10 and vertex 12 as its left and right children,
respectively. Again, return this tree to the collection. Repeating this process a third time,
we select vertices 13 and 13. Following the construction, we obtain the tree of Figure
3.6.6.

Chapter 3: Trees 27

We return this tree to the collection and again repeat this process. The next two roots
selected have frequencies 18 and 22. We build the new tree and return it to the
collection. Finally, only the roots 26 and 40 remain. We select them and build the tree
shown in Figure 3.6.7. In addition to the tree we constructed, we also place a value of 0
on the edge from any vertex to its left child and a value of 1 on any edge from a vertex to
its right child. Note that this choice is arbitrary and could easily be reversed.

We can read the code for each of the characters by following the unique path from the
root 66 to the leaf representing the character of interest. The entire code is given in Table
3.6.1.

26

13 13

6 7

Figure 3.6.6. The new tree formed.

66

26 40

13 13 18 22

6 7 10 12

0

0

0

0

0

1

1 1

1 1

Figure 3.6.7. The final Huffman tree.

Next, suppose we are presented with an encoded message string, say, for example, a
string like:

01011101100000101010110.
Assuming this encoded string was created from the Huffman tree of our example, we can
decode this string by again using the Huffman tree. Beginning at the root, we use the
next digit of the message to decide which edge of the tree we will follow. Initially, we
follow the 0 edge from vertex 66 to vertex 26, then the 1 edge to vertex 13 and then the 0
edge to vertex 6. Since we are now at a leaf of the Huffman tree, the first character of the

28 Chapter 3: Trees

message is the letter b, as it corresponds to this leaf.
_ __________________

character code_ __________________
a 00_ __________________
b 010_ __________________
c 011_ __________________
d 111_ __________________
e 10_ __________________
f 110_ __________________

Table 3.6.1 The Huffman codes for the example character set.

Return to the root and repeat this process on the remaining digits of the message. The
next three digits are 111, the code that corresponds to d, followed in turn by 011 (c), 00
(a), 00 (a), 010 (b), 010 (b), 10 (e) and 110 (f). Thus, the encoded message was
bdcaabef.

Algorithm 3.6.2 Construction of a Huffman Tree.
Input: Ordered frequencies (f 1 , f 2 , . . . , f n) corresponding to

the characters (a 1 , a 2 , . . . , a n).
Output: A Huffman tree with leaves corresponding to the frequencies

above.
Method: From a collection of trees, select the two root vertices

corresponding to the smallest frequencies. Then insert a new
vertex and make the two selected vertices the children of this
new vertex. Return this tree to the collection of trees and
repeat this process until only one tree remains.

1. If n = 2, then halt, thereby forming the tree:

0 1

f 1 + f 2

f 1 f 2

2. If n > 2, then reorder the frequencies so that f 1 and f 2 are the two smallest
frequencies. Let T 1 be the Huffman tree resulting from the algorithm being
recursively applied to the frequencies (f 1 + f 2 , f 3 , . . . , f n) and let T 2 be the
Huffman tree that results from calling the algorithm recursively on the frequencies
(f 1 , f 2). Halt the algorithm with the tree that results from substituting T 2 for

Chapter 3: Trees 29

some leaf of T 1 (which has value f 1 + f 2).

Note that the Algorithm does not produce a unique tree. If several frequencies are
equal, their positions in the frequency list and, hence, their positions in the tree can vary.
Can you find a different Huffman tree for the example data? What conditions would
produce a unique Huffman tree?

Huffman trees are in a sense the optimal structure for binary encoding. That is, we
would like to show that the Huffman code minimizes the length of encoded messages,
with characters and frequencies matching those used in the construction of the Huffman
tree. Our measure of the efficiency of the code is called the weighted path length of the
coding tree and is defined to be:

1≤ i≤n
Σ f i l i , where f i is the frequency of the ith letter and

l i is the length of the path from the root in the Huffman tree to the vertex corresponding
to the ith letter. The weighted path length is a reasonable measure to minimize since,

when this value is divided by
i = 1
Σ
n

f i (that is, the number of characters being encoded),

we obtain the average length of the encoding per character.

Theorem 3.6.1 A Huffman tree for the frequencies (f 1 , f 2 , . . . , f n) has minimum
weighted path length among all full binary trees with leaves

f 1 , f 2 , . . . , f n .

Proof. We proceed by induction on n, the number of frequencies. If n = 2, the
weighted path length of any full binary tree is f 1 + f 2 , as is the value we obtain from the
algorithm. Now, suppose that n ≥ 3 and assume that the result follows for all Huffman
trees with fewer than n leaves.

Reorder the frequencies so that f 1 ≤ f 2 ≤ , . . . , ≤ f n (if necessary). Since there are
only a finite number of full binary trees with n leaves, there must be one, call it T, with
minimum weighted path length. Let x be an internal vertex of T whose distance from the
root r is a maximum (for the internal vertices).

If f 1 and f 2 are not the frequencies of the leaves of T that are children of x, then we
can exchange the frequencies of the children of x, say f i and f j , with f 1 and f 2 without
increasing the weighted path length of T. This follows since f i ≥ f 1 and f j ≥ f 2 and this
interchange moves f i closer to the root and f 1 farther away from the root. But T has
minimum weighted path length, and thus, its value cannot decrease. Hence, there must
be a tree with minimum weighted path length that does have f 1 and f 2 as the frequencies
of the children of an internal vertex that is a maximum distance from the root (again, this

30 Chapter 3: Trees

maximum is taken over internal vertices only).

Finally, it remains for us to show that this tree is minimal if, and only if, the tree that
results from deleting the leaves f 1 and f 2 is also minimal for the frequencies that remain,
namely f 1 + f 2 , f 3 , . . . , f n .

Note that the value at any internal vertex equals the sum of the frequencies of the
leaves of the subtree rooted at that internal vertex. Thus, the weighted path length of a
Huffman tree is the sum of the values of the internal vertices of the tree. If W T is the
weighted path length of T and W * is the weighted path length of the graph
T * = T − { f 1 , f 2 } , then W T = W * + f 1 + f 2 . But now we see that T has
minimum weighted path length if, and only if, T * does, since their weights differ by the
constant f 1 + f 2 . Thus, if either tree failed to be minimal, both trees would fail to be
minimal.

We can also verify that Huffman’s algorithm assigns the shortest codes to the most
frequently used characters.

Theorem 3.6.2 If c 1 , c 2 , . . . , c n are the binary codes assigned by Huffman’s
algorithm to the characters with frequencies f 1 , f 2 , . . . , f n , respectively, and if
f i < f j , then length(c i) ≥ length(c j).

Proof. Suppose instead that length(c j) > length(c i). If we assign the code word c i to
the character with frequency f j and c j to the character with frequency f i and leave all
other code assignments the same, then we obtain a new code with minimum weighted
path length less than the Huffman code. To see that this is the case, note that if W H is the
minimum weighted path length for the original Huffman tree and W * is the new
minimum weighted path length for the modified code, then

W H − W * = (f i length(c i) + f j length(c j))
− (f i length(c j) − f j length(c i))

= (f j − f i) (length(c j) − length(c i)) > 0 ,

contradicting the fact that W H is minimum.

Can you verify that Huffman’s algorithm has time complexity 0 (n 2)?

Chapter 3: Trees 31

Section 3.7 More About Counting Trees − Using Generating Functions

In this section, our fundamental goal is to introduce one of the principal tools used to
count combinatorial objects, namely generating functions.

To begin with, what is a generating function? Suppose we have a sequence of

numbers (c i); then the power series
i = 0
Σ
∞

c ix
i is called the generating function for the

sequence. Examples from calculus and algebra demonstrate that a power series can be
used to approximate a function of x. Our goal is to use the tools already developed for
series to help us count objects. Our purpose is not to present a complete development of
generating functions, but rather to show the reader already familiar with series how they
can be used for counting.

Suppose we consider the question of the number of binary trees T possible on a set of
n vertices. Let’s call this number b n . Clearly, if n = 1, b 1 = 1. For n > 1, we can
select one vertex to be the root, and the remaining n − 1 vertices can be partitioned into
those in the left and right subtrees of T. If there are j vertices in the left subtree and
n − 1 − j vertices in the right subtree, then the number of binary trees we can form on n
vertices depends on the number of ways we can build the left and right subtrees; that is
b n depends on b j and b n − 1 − j . To determine exactly how many binary trees b n there are,
we must sum the products b j b n − 1 − j for j = 0 , 1 , . . . , n − 1. This gives us the
following recurrence relation:

b n = b 0 b n − 1 + b 1 b n − 2 + . . . + b n − 1 b 0 .

We now illustrate how to solve this recurrence relation using generating functions.

Suppose our generating function g(x) =
i = 0
Σ
∞

b i x i . When we square g(x) , we obtain

the following:

(g(x))2 = g(x) × g(x) =
n≥0
Σ (

0≤ j≤n
Σ b j b n − j) x n

=
n ≥ 0
Σ (b 0 b n + b 1 b n − 1 + b 2 b n − 2 + . . . + b n b 0) x n.

But on careful examination we see that the coefficient of x n in g 2 (x) is nothing but
b n + 1 . Hence, we obtain another relationship, namely

1 + xg 2 (x) = g(x) .

32 Chapter 3: Trees

But this equation is quadratic in g(x) , and so it yields the solution

g(x) =
2x

1 − √ 1 − 4x_ _____________ .

Now, to obtain a series expansion for g(x), we use the binomial generating function

(1 + z) r = 1 + rz + r (
2

r − 1_ ______) z 2 + r (
6

(r − 1) (r − 2)_ _________________) z 3 + . . .

We write the coefficients of this power series using the definition of generalized binomial
coefficients, where for any real number r and integer k ,

(k

r) =
k!

r(r − 1) (r − 2) . . . (r − k + 1)_ _________________________________ , for k > 0 ,

while it has value zero if k < 0 and 1 when k = 0. Thus, we can rewrite the binomial
generating function as

(1 + z) r =
k≥0
Σ (k

r) z k .

Substituting this function in our expression for g(x) , we obtain

g(x) =
2x
1_ __ (1 −

k≥0
Σ (k

1⁄2) (− 4x) k).

Changing the dummy variable k to n + 1 and simplifying yields

g(x) =
2x
1_ __ (1 −

n + 1≥0
Σ (n + 1

1⁄2) (− 4x) n + 1)

=
2x
1_ __ +

n + 1≥0
Σ (n + 1

1⁄2) (− 1) n 22n + 1 x n

=
n≥0
Σ (n + 1

1⁄2)(− 1) n 22n + 1 x n .

But this process yields coefficients of x n which match b n in our original definition of
g(x). Thus, we have that,

b n = (n + 1

1⁄2) (− 1) n 22n + 1 .

Chapter 3: Trees 33

Using exercise 26, we can simplify this expression for b n to obtain:

b n =
n + 1

1_ _____ (n

2n) .

Exercises

1. Show that if T = (V , E) is a tree, then for any e ∈ E, T − e has exactly two
components.

2. Show that any connected graph on p vertices contains at least p − 1 edges.

3. Show that if T is a tree with ∆(T) ≥ k, then T has at least k leaves.

4. In a connected graph G, a vertex v is called central if
u∈V(G)
max d(u , v) = rad(G).

Show that for a tree T, the set of central vertices consists of either one vertex or
two adjacent vertices.

5. Show that the sequence d 1 , d 2 , . . . , d p of positive integers is the degree

sequence of a tree if, and only if, the graph is connected and
i = 1
Σ
p

d i = 2 (p − 1).

6. Show that the number of end vertices in a nontrivial tree of order n equals
2 +

deg v i ≥ 3
Σ (deg v i − 2).

7. Determine the time complexity of Kruskal’s algorithm.

8. What happens to the time complexity of Kruskal’s Algorithm if we do not presort
the edges in nondecreasing order of weight?

9. Apply Kruskal’s algorithm to the graph:

12

23

4

1

53
1

34 Chapter 3: Trees

10. Apply Prim’s algorithm to the graph of the previous problem.

11. Prove that a graph G is acyclic if, and only if, every induced subgraph of G
contains a vertex of degree one at most.

12. Characterize those graphs with the property that every connected subgraph is also
an induced subgraph.

13. Find the binary tree representations for the expressions 4x − 2y,
(3x + z) (xy − 7z), and √ b 2 − 4ac .

14. Perform a preorder, postorder and inorder traversal on the trees constructed in the
previous problem.

15. Determine the number of nonidentical spanning trees of the graph below. Before
you begin your computation, make an observation about this graph that will
simplify the calculations.

x y z

a b

16. (a) Find the number of nonidentical spanning trees of the graph

x

y

z

w

t

s

(b) Determine the number of spanning trees in the above graph using D G , the
directed graph obtained from G.

17. Find the spanning trees on the set { 1, 2, 3, 4 }.

18. Using the proof of Cayley’s theorem, determine the sequences of length p − 2 on
{ 1 , 2 , 3 , 4 } that correspond to any two of the trees found in the previous
problem.

19. Show that the Pru
. .
fer algorithm for creating a tree from a sequence selects the same

vertex as the algorithm for producing the sequence.

Chapter 3: Trees 35

20. Use the matrix-tree theorem to prove Cayley’s tree formula.

21. Find the number of directed spanning trees with root 3 in the following digraph:

1

3

2

4 5

6

How many are rooted at vertex 5? How many are rooted at vertex 2?

22. Given a graph G with adjacency matrix A and degree matrix C, show that the
matrices C − A and A i (D G) are equal.

23. Show that the number of trees with m labeled edges and no labels on the vertices is
(m + 1) m − 2 .

24. Determine the number of trees that can be built on p labeled vertices such that one
specified vertex is of degree k.

25. By contracting an edge e = uv, we mean removing e and identifying the vertices u
and v as a single new vertex. Let num T (G) denote the number of spanning trees
of the graph G. Show that the following recursive formula holds:

num T (G) = num T (G − e) + num T (G o e)

where G o e means the graph obtained from G by contracting the edge e. Hint:
Interpret what num T (G − e) and num T (G o e) really count.

26. Show that the algorithm for determining the number of spanning trees of G implied
by the previous problem takes exponential time.

27. Determine the Huffman tree and code for the alphabet { x , y , z , a , b , c } with
corresponding frequencies (3 , 8 , 1 , 5 , 4 , 4).

28. What is the minimum weighted path length for the Huffman tree you constructed
in the previous problem?

29. Using the definition of (n + 1

1⁄2), show that

36 Chapter 3: Trees

(n + 1

1⁄2) =
2n + 1

(− 1) n
_ _______ ×

(1) (2) (3) . . . (n + 1)
(1) (3) (5) . . . (2n − 1)_ __________________________ .

Also show that (1) (3) (5) . . . (2n − 1) =
2nn!

(2n) !_ ______ and use these two

facts to obtain the formula for b n .

References

1. Cayley, A., A Theorem on Trees. Quart. J. Math., 23(1889), 376 − 378.

2. Edmonds, J., Optimum Branchings. J. of Res. of the Nat. Bureau of Standards,
71B(1967), 233 − 240.

3. Huffman, D. A., A Method for the Construction of Minimum Redundancy Codes.
Proc. IRE, No. 10, 40(1952), 1098 − 1101.

4. Karp, R. M., A Simple Derivation of Edmonds Algorithm for Optimum
Branchings. Networks, 1(1972), 265 − 272.

5. Kirchhoff, G., U
. .

ber die Aufflo
. .
sung der Gleichungen, auf welche man bei der

Untersuchung der linearen Verteilung galvanischer Stro
. .
me gefu

. .
hrt wird. Ann. Phy.

Chem., 72(1847), 497 − 508.

6. Kruskal, J. B. Jr., On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem. Proc. Amer. Math. Soc., 7(1956), 48 − 50.

7. Ore, O., Theory of Graphs. Amer. Math. Soc. Publ., Providence (1962).

8. Prim, R. C., Shortest Connection Networks and Some Generalizations. Bell System
Tech. J., 36(1957), 1389 − 1401.

9. Pru
. .
fer, H., Neuer Beweis eines satzes u

. .
ber Permutationen. Arch. Math. Phys.,

27(1918), 742 − 744.

10. Standish, T. A., Data Structure Techniques. Addison-Wesley Pub. Co., Reading,
Mass. (1980).

11. Tutte, W. T., The Dissection of Equilateral Triangles into Equilateral Triangles.
Proc. Cambridge Phil. Soc., 44(1948), 463 − 482.

