Combinatorics Seminar

Flips in Graphs

Andrzej Dudek
Carnegie Mellon University

Abstract

In this talk we will study a problem motivated by a question related to quantum-errorcorrecting codes. Given a graph G with ± 1 signs on vertices, each vertex can perform at most one of the following three operations: flip all of its neighbors (i.e., change their signs), flip itself, or flip itself and all of its neighbors. We want to start with all +1 's, execute some non-zero number of operations (as small as possible) and return to all +1 's. Combinatorially, it involves the following graph parameter:

$$
f(G)=\min \left\{|A|+\mid\left\{x \in V \backslash A: d_{A}(x) \text { is odd }\right\} \mid: A \neq \emptyset\right\},
$$

where V is the vertex set of G and $d_{A}(x)$ is the number of neighbors of x in A. We give asymptotically tight estimates of f for the random graph $G_{n, p}$ when p is constant. Also, if

$$
f(n)=\max \{f(G):|V(G)|=n\},
$$

then we show that $f(n) \leq(0.382+o(1)) n$.
This is joint work with Tom Bohman, Alan Frieze, and Oleg Pikhurko.

Friday, May 8, 2009, 4:00 pm
Mathematics and Science Center: W303

Mathematics and Computer Science Emory University

