Dissertation Defense

Polynomials non-negative on non-compact subsets of the plane

Ha Nguyen
Emory University

Abstract

In 1991, Schmüdgen proved that if a polynomial f in n variables with real coeffcients such that $f>0$ on a compact set K_{S}, then there always exists an algebraic expression showing that f is positive on K_{S}. Then in 1999, Scheiderer showed that if K_{S} is not compact and its dimension is 3 or more, there is no analogue of Schmüdgen's Theorem. However, in the noncompact twodimensional case, very little is known about when every f positive or nonnegative on a noncompact set $K_{S} \subseteq \mathbb{R}^{2}$ has an algebraic expression proving that f is nonnegative on K_{S}. Recently, M. Marshall answered a long-standing question in real algebraic geometry by showing that if $f(x, y) \in \mathbb{R}[x, y]$ and $f(x, y) \geq 0$ on the strip $[0,1] \times \mathbb{R}$, then f has a representation $f=\sigma_{0}+\sigma_{1} x(1-x)$, where $\sigma_{0}, \sigma_{1} \in \mathbb{R}[x, y]$ are sums of squares.

In this talk I will give some background to Marshall's result, which goes back to Hilbert's 17th problem, and our generalizations to other noncompact basic closed semialgebraic sets of \mathbb{R}^{2} which are contained in strip. We also give some negative results.

Friday, April 2, 2010, 4:00 pm
Mathematics and Science Center: W201

Mathematics and Computer Science Emory University

